

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, IrDA, SmartCard, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	51
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.8V
Data Converters	A/D 23x10/12b; D/A 1x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/sim3l166-c-gq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.	Related Documents and Conventions	5
	1.1. Related Documents	
	1.1.1. SiM3L1xx Reference Manual	
	1.1.2. Hardware Access Layer (HAL) API Description	5
	1.1.3. ARM Cortex-M3 Reference Manual	5
	1.2. Conventions	5
2.	Typical Connection Diagrams	6
	2.1. Power	
3.	Electrical Specifications	8
	3.1. Electrical Characteristics	
	3.2. Thermal Conditions	. 30
	3.3. Absolute Maximum Ratings	.31
4.	Precision32 [™] SiM3L1xx System Overview	.32
	4.1. Power	
	4.1.1. DC-DC Buck Converter (DCDC0)	
	4.1.2. Three Low Dropout LDO Regulators (LDO0)	
	4.1.3. Voltage Supply Monitor (VMON0)	
	4.1.4. Power Management Unit (PMU)	.35
	4.1.5. Device Power Modes	
	4.1.6. Process/Voltage/Temperature Monitor (TIMER2 and PVTOSC0)	. 38
	4.2. I/O	
	4.2.1. General Features	
	4.2.2. Crossbar	
	4.3. Clocking	
	4.3.1. PLL (PLL0)	
	4.3.2. Low Power Oscillator (LPOSC0)	
	4.3.3. Low Frequency Oscillator (LFOSC0)	
	4.3.4. External Oscillators (EXTOSC0)	
	4.4. Integrated LCD Controller (LCD0)	
	4.5. Data Peripherals	
	4.5.1. 10-Channel DMA Controller	
	4.5.2. Data Transfer Managers (DTM0, DTM1, DTM2)	.43
	4.5.3. 128/192/256-bit Hardware AES Encryption (AES0)	
	4.5.4. 16/32-bit Enhanced CRC (ECRC0)	
	4.5.5. Encoder / Decoder (ENCDEC0)	
	4.6. Counters/Timers	
	4.6.1. 32-bit Timer (TIMER0, TIMER1, TIMER2)	
	4.6.2. Enhanced Programmable Counter Array (EPCA0)	
	4.6.3. Real-Time Clock (RTC0)	
	4.6.4. Low Power Timer (LPTIMER0)	
	4.6.5. Watchdog Timer (WDTIMER0)	
	4.6.6. Low Power Mode Advanced Capture Counter (ACCTR0)	
	4.7. Communications Peripherals	
	4.7.1. USART (USART0)	.48

Table 3.2. Power Consumption

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Digital Core Supply Current	• •			1	Ļ	
Normal Mode ^{1,2,3,4} —Full speed with code executing from flash, peripheral clocks ON	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz	—	17.5	18.9	mA
		F _{AHB} = 20 MHz, F _{APB} = 10 MHz	—	6.7	7.2	mA
		F _{AHB} = 2.5 MHz, F _{APB} = 1.25 MHz	—	1.15	1.4	mA
Normal Mode ^{1,2,3,4} —Full speed with code executing from flash,	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz	—	13.3	14.5	mA
peripheral clocks OFF		F _{AHB} = 20 MHz, F _{APB} = 10 MHz	—	5.4	5.9	mA
	-	F _{AHB} = 2.5 MHz, F _{APB} = 1.25 MHz	_	980	1.2	μA
Normal Mode ^{1,2,3,4} —Full speed with code executing from flash, LDOs powered by dc-dc at 1.9 V,	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz V _{BAT} = 3.3 V		9.7		mA
peripheral clocks OFF		F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz V _{BAT} = 3.8 V		8.65		mA
		F _{AHB} = 20 MHz, F _{APB} = 10 MHz V _{BAT} = 3.3 V	_	4.15	_	mA
		F _{AHB} = 20 MHz, F _{APB} = 10 MHz V _{BAT} = 3.8 V	_	3.9	_	mA

Notes:

1. Currents are additive. For example, where I_{BAT} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.

2. Includes all peripherals that cannot have clocks gated in the Clock Control module.

- 3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (<20 MHz) supply current.
- **4.** Internal Digital and Memory LDOs scaled to optimal output voltage.
- 5. Flash AHB clock turned off.
- 6. Running from internal LFO, Includes LFO supply current.
- 7. LCD0 current does not include switching currents for external load.
- 8. IDAC output current not included.
- 9. Does not include LC tank circuit.
- Does not include digital drive current or pullup current for active port I/O. Unloaded I_{VIO} is included in all I_{BAT} PM8 production test measurements.

Table 3.2. Power Consumption (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Power Mode 1 ^{1,2,3,4} —Full speed with code executing from RAM,	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz	—	13.4	16.6	mA
peripheral clocks ON		F _{AHB} = 20 MHz, F _{APB} = 10 MHz	—	4.7		mA
		F _{AHB} = 2.5 MHz, F _{APB} = 1.25 MHz	_	810		μA
Power Mode 1 ^{1,2,3,4} —Full speed with code executing from RAM,	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz		9.4	12.5	mA
peripheral clocks OFF		F _{AHB} = 20 MHz, F _{APB} = 10 MHz	—	3.3	_	mA
		F _{AHB} = 2.5 MHz, F _{APB} = 1.25 MHz	—	630	_	μA
Power Mode 1 ^{1,2,3,4} —Full speed with code executing from RAM, LDOs powered by dc-dc at 1.9 V,	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz V _{BAT} = 3.3 V	_	7.05		mA
peripheral clocks OFF		F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz V _{BAT} = 3.8 V		6.3	_	mA
		F _{AHB} = 20 MHz, F _{APB} = 10 MHz V _{BAT} = 3.3 V	_	2.75	—	mA
		F _{AHB} = 20 MHz, F _{APB} = 10 MHz V _{BAT} = 3.8 V	_	2.6	—	mA
Power Mode 2 ^{1,2,3,4,5} —Core halted with peripheral clocks ON	I _{BAT}	F _{AHB} = 49 MHz, F _{APB} = 24.5 MHz	—	7.6	11.3	mA
		F _{AHB} = 20 MHz, F _{APB} = 10 MHz	_	2.75		mA
		F _{AHB} = 2.5 MHz, F _{APB} = 1.25 MHz	_	575	_	μA

Notes:

- 1. Currents are additive. For example, where I_{BAT} is specified and the mode is not mutually exclusive, enabling the functions increases supply current by the specified amount.
- 2. Includes all peripherals that cannot have clocks gated in the Clock Control module.
- 3. Includes LDO and PLL0OSC (>20 MHz) or LPOSC0 (<20 MHz) supply current.
- 4. Internal Digital and Memory LDOs scaled to optimal output voltage.
- 5. Flash AHB clock turned off.
- 6. Running from internal LFO, Includes LFO supply current.
- 7. LCD0 current does not include switching currents for external load.
- **8.** IDAC output current not included.
- 9. Does not include LC tank circuit.
- Does not include digital drive current or pullup current for active port I/O. Unloaded I_{VIO} is included in all I_{BAT} PM8 production test measurements.

Table 3.3. Power Mode Wake Up Times

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Power Mode 2 or 6 Wake Time	t _{PM2}		4	—	5	clocks
Power Mode 3 Fast Wake Time (using LFO as clock source)	t _{PM3FW}		_	425	_	μs
Power Mode 8 Wake Time	t _{PM8}			3.8		μs
Notes: 1. Wake times are specified as the t This includes latency to recogniz			•			wing WFI.

Table 3.4. Reset and Supply Monitor

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
V _{BAT} High Supply Monitor Threshold	V _{VBATMH}	Early Warning	_	2.20	—	V
(VBATHITHEN = 1)		Reset	1.95	2.05	2.1	V
V _{BAT} Low Supply Monitor Threshold	V _{VBATML}	Early Warning	—	1.85	—	V
(VBATHITHEN = 0)		Reset	1.70	1.75	1.77	V
Power-On Reset (POR) Threshold	V _{POR}	Rising Voltage on V_{BAT}	_	1.4	—	V
		Falling Voltage on V _{BAT}	0.8	1	1.3	V
V _{BAT} Ramp Time	t _{RMP}	Time to $V_{BAT} \ge 1.8 \text{ V}$	10		3000	μs
Reset Delay from POR	t _{POR}	Relative to V _{BAT} ≥ V _{POR}	3	_	100	ms
Reset Delay from non-POR source	t _{RST}	Time between release of reset source and code execution	—	10	_	μs
RESET Low Time to Generate Reset	t _{RSTL}		50	_	—	ns
Missing Clock Detector Response Time (final rising edge to reset)	t _{MCD}	F _{AHB} > 1 MHz	—	0.5	1.5	ms
Missing Clock Detector Trigger Frequency	F _{MCD}		—	2.5	10	kHz
V _{BAT} Supply Monitor Turn-On Time	t _{MON}		—	2		μs

Table 3.9. SAR ADC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Resolution	N _{bits}	12 Bit Mode		12		Bits
		10 Bit Mode		10		Bits
Supply Voltage Requirements	V _{ADC}	High Speed Mode	2.2		3.8	V
(VBAT)		Low Power Mode	1.8		3.8	V
Throughput Rate	f _S	12 Bit Mode			250	ksps
(High Speed Mode)		10 Bit Mode			1	Msps
Throughput Rate	f _S	12 Bit Mode			62.5	ksps
(Low Power Mode)		10 Bit Mode			250	ksps
Tracking Time	t _{TRK}	High Speed Mode	230			ns
		Low Power Mode	450			ns
SAR Clock Frequency	f _{SAR}	High Speed Mode			16.24	MHz
		Low Power Mode			4	MHz
Conversion Time	t _{CNV}	10-Bit Conversion, SAR Clock = 16 MHz, APB Clock = 40 MHz		762.5		
Sample/Hold Capacitor	C _{SAR}	Gain = 1	_	5	_	pF
		Gain = 0.5		2.5		pF
Input Pin Capacitance	C _{IN}	High Quality Inputs		18	—	pF
		Normal Inputs		20	—	pF
Input Mux Impedance	R _{MUX}	High Quality Inputs		300	—	Ω
		Normal Inputs		550	_	Ω
Voltage Reference Range	V _{REF}		1		V _{BAT}	V
Input Voltage Range*	V _{IN}	Gain = 1	0		V _{REF}	V
		Gain = 0.5	0	_	$2 \mathrm{x} \mathrm{V}_{\mathrm{REF}}$	V
Power Supply Rejection Ratio	PSRR _{ADC}		_	70	—	dB
DC Performance						
Integral Nonlinearity	INL	12 Bit Mode	—	±1	±1.9	LSB
		10 Bit Mode		±0.2	±0.5	LSB
Differential Nonlinearity	DNL	12 Bit Mode	-1	±0.7	1.8	LSB
(Guaranteed Monotonic)		10 Bit Mode		±0.2	±0.5	LSB
Offset Error (using VREFGND)	E _{OFF}	12 Bit Mode, VREF = 2.4 V	-2	0	2	LSB
		10 Bit Mode, VREF = 2.4 V	-1	0	1	LSB

Table 3.10. IDAC

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Static Performance	<u> </u>			I.	1	
Resolution	N _{bits}			10		Bits
Integral Nonlinearity	INL			±0.5	±2	LSB
Differential Nonlinearity (Guaranteed Monotonic)	DNL			±0.5	±1	LSB
Output Compliance Range	V _{OCR}				V _{BAT} – 1.0	V
Full Scale Output Current	I _{OUT}	2 mA Range, T _A = 25 °C	1.98	2.046	2.1	mA
		1 mA Range, T _A = 25 °C	0.99	1.023	1.05	mA
		0.5 mA Range, T _A = 25 °C	491	511.5	525	μA
Offset Error	E _{OFF}			250		nA
Full Scale Error Tempco	TC _{FS}	2 mA Range		100		ppm/°C
VBAT Power Supply Rejection Ratio		2 mA Range		-220		ppm/V
Test Load Impedance (to V _{SS})	R _{TEST}			1		kΩ
Dynamic Performance	1					
Output Settling Time to 1/2 LSB		min output to max output	_	1.2	—	μs
Startup Time				3	—	μs

Table 3.11. ACCTR (Advanced Capture Counter)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
LC Comparator Response Time,	t _{RESP0}	+100 mV Differential		100	_	ns
CMPMD = 11 (Highest Speed)		–100 mV Differential		150		ns
LC Comparator Response Time,	t _{RESP3}	+100 mV Differential	—	1.4	_	μs
CMPMD = 00 (Lowest Power)		-100 mV Differential		3.5		μs
LC Comparator Positive Hysteresis	HYS _{CP+}	CMPHYP = 00		0.37		mV
Mode 0 (CPMD = 11)		CMPHYP = 01	—	7.9	_	mV
		CMPHYP = 10		16.7	_	mV
		CMPHYP = 11		32.8	—	mV
LC Comparator Negative Hysteresis	HYS _{CP-}	CMPHYN = 00		0.37		mV
Mode 0 (CPMD = 11)		CMPHYN = 01		-7.9	_	mV
		CMPHYN = 10		-16.1	—	mV
		CMPHYN = 11		-32.7	_	mV
LC Comparator Positive Hysteresis Mode 1 (CPMD = 10)	HYS _{CP+}	CMPHYP = 00		0.47	_	mV
		CMPHYP = 01		5.85	_	mV
		CMPHYP = 10		12	_	mV
		CMPHYP = 11	—	24.4		mV
LC Comparator Negative Hysteresis	HYS _{CP-}	CMPHYN = 00		0.47	—	mV
Mode 1 (CPMD = 10)		CMPHYN = 01		-6.0		mV
		CMPHYN = 10		-12.1		mV
		CMPHYN = 11		-24.6		mV
LC Comparator Positive Hysteresis	HYS _{CP+}	CMPHYP = 00		0.66		mV
Mode 2 (CPMD = 01)		CMPHYP = 01		4.55		mV
		CMPHYP = 10		9.3	_	mV
		CMPHYP = 11		19		mV
LC Comparator Negative Hysteresis	HYS _{CP-}	CMPHYN = 00		0.6	_	mV
Mode 2 (CPMD = 01)		CMPHYN = 01		-4.5	—	mV
		CMPHYN = 10		-9.5		mV
		CMPHYN = 11		-19		mV

Table 3.14. Comparator (Continued)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Positive Hysteresis	HYS _{CP+}	CMPHYP = 00		1.37		mV
Mode 3 (CPMD = 11)		CMPHYP = 01	_	3.8	—	mV
		CMPHYP = 10		7.8		mV
		CMPHYP = 11		15.6		mV
Negative Hysteresis	HYS _{CP-}	CMPHYN = 00		1.37		mV
Mode 3 (CPMD = 11)		CMPHYN = 01		-3.9		mV
		CMPHYN = 10		-7.9		mV
		CMPHYN = 11		-16		mV
Input Range (CP+ or CP–)	V _{IN}		-0.25		V _{BAT} + 0.25	V
Input Pin Capacitance	C _{CP}			7.5		pF
Common-Mode Rejection Ratio	CMRR _{CP}			75		dB
Power Supply Rejection Ratio	PSRR _{CP}			72		dB
Input Offset Voltage	V _{OFF}	T _A = 25 °C	-10	0	10	mV
Input Offset Tempco	TC _{OFF}		_	3.5	—	µV/°C
Reference DAC Resolution	N _{Bits}			6		bits

Table 3.15. LCD0

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Charge Pump Output Voltage Error	V _{CPERR}			±50	_	mV
LCD Clock Frequency	F _{LCD}		16		33	kHz

Table 3.16. Port I/O

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Output High Voltage (PB0, PB1,	V _{OH}	Low Drive, I _{OH} = -1 mA	V _{IO} – 0.7	_		V
PB3, or PB4)		Low Drive, $I_{OH} = -10 \ \mu A$	V _{IO} – 0.1	_		V
		High Drive, $I_{OH} = -3 \text{ mA}$	V _{IO} – 0.7	—	_	V
		High Drive, $I_{OH} = -10 \ \mu A$	V _{IO} – 0.1	_	—	V
Output High Voltage (PB2)	V _{OH}	Low Drive, $I_{OH} = -1 \text{ mA}$	$V_{IORF} - 0.7$	_	—	V
		Low Drive, $I_{OH} = -10 \ \mu A$	$V_{IORF} - 0.1$	—	—	V
		High Drive, I _{OH} = -3 mA	$V_{IORF} - 0.7$	_	—	V
		High Drive, $I_{OH} = -10 \ \mu A$	V _{IORF} - 0.1	_	—	V
Output Low Voltage (any Port I/O	V _{OL}	Low Drive, I _{OL} = 1.4 mA	—	_	0.6	V
pin or \overline{RESET}^1)		Low Drive, $I_{OL} = 10 \ \mu A$	—	_	0.1	V
		High Drive, I _{OL} = 8.5 mA	—	_	0.6	V
		High Drive, I _{OL} = 10 µA	—	_	0.1	V
Input High Vo <u>ltage (P</u> B0, PB1, PB3, PB4 or RESET)	V _{IH}		V _{IO} – 0.6		_	V
Input High Voltage (PB2)	V _{IH}		V _{IORF} - 0.6	_		V
Input Low Voltage any Port I/O pin or RESET)	V _{IL}		—	_	0.6	V
Weak Pull-Up Current ² (per pin)	I _{PU}	V _{IO} or V _{IORF} = 1.8	-6	-3.5	-2	μA
		V _{IO} or V _{IORF} = 3.8	-32	-20	-10	μA
Input Leakage (Pullups off or Analog)	I _{LK}	$0 \le V_{IN} \le V_{IO} \text{ or } V_{IORF}$	-1		1	μA

Notes:

 Specifications for RESET V_{OL} adhere to the low drive setting.
 On the SiM3L1x6 and SiM3L1x4 devices, the SWV pin will have double the weak pull-up current specified whenever the device is held in reset.

4.1.5.6. Power Mode Summary

The power modes described above are summarized in Table 4.1. Table 3.2 and Table 3.3 provide more information on the power consumption and wake up times for each mode.

Mode	Description	Notes
Normal	Core operating at full speedCode executing from flash	 Full device operation
Power Mode 1 (PM1)	 Core operating at full speed Code executing from RAM 	 Full device operation Higher CPU bandwidth than PM0 (RAM can operate with zero wait states at any frequency)
Power Mode 2 (PM2)	 Core halted AHB, APB and all peripherals operational at full speed 	 Fast wakeup from any interrupt source
Power Mode 3 (PM3)	 All clocks to core and peripherals stopped Faster wake enabled by keeping LFOSC0 or RTC0TCLK active 	 Wake on any wake source or reset source defined in the PMU
Power Mode 4 (PM4)	 Core operating at low speed Code executing from flash 	 Same capabilities as PM0, operating at lower speed Lower clock speed enables lower LDO output settings to save power
Power Mode 5 (PM5)	 Core operating at low speed Code executing from RAM 	 Same capabilities as PM1, operating at lower speed Lower clock speed enables lower LDO output settings to save power
Power Mode 6 (PM6)	 Core halted AHB, APB and all peripherals operational at low speed 	 Same capabilities as PM2, operating at lower speed Lower clock speed enables lower LDO output settings to save power When running from LFOSC0, power is similar to PM3, but the device wakes much faster
Power Mode 8 (PM8)	 Low power sleep LDO regulators are disabled and all active circuitry operates directly from VBAT The following functions are available: ACCTR0, RTC0, UART0 running from RTC0TCLK, LPTIMER0, port match, and the LCD controller Register and RAM state retention 	 Lowest power consumption Wake on any wake source or reset source defined in the PMU

Table 4.1. SiM3L1xx Power Modes

4.4. Integrated LCD Controller (LCD0)

SiM3L1xx devices contain an LCD segment driver and on-chip bias generation that supports static, 2-mux, 3-mux and 4-mux LCDs with 1/2 or 1/3 bias. The on-chip charge pump with programmable output voltage allows software contrast control which is independent of the supply voltage. LCD timing is derived from the RTC timer clock (RTC0TCLK) to allow precise control over the refresh rate.

The SiM3L1xx devices use registers to store the enabled/disabled state of individual LCD segments. All LCD waveforms are generated on-chip based on the contents of these registers with flexible waveform control to reduce power consumption wherever possible. An LCD blinking function is also supported on a subset of LCD segments.

The LCD0 module has the following features:

- Up to 40 segment pins and 4 common pins.
- Supports LCDs with 1/2 or 1/3 bias.
- Includes an on-chip charge pump with programmable output that allows firmware to control the contrast independent of the supply voltage.
- The RTC timer clock (RTC0TCLK) determines the LCD timing and refresh rate.
- All LCD waveforms are generated on-chip based on the contents of the LCD0 registers with flexible waveform control.
- LCD segments can be placed in a discharge state for a configurable number of RTC clock cycles before switching to the next state to reduce power consumption due to display loading.
- Includes a VBAT monitor that can serve as a wakeup source for Power Mode 8.
- Supports four hardware auto-contrast modes: bypass, constant, minimum, and auto-bypass.
- Supports hardware blinking for up to 8 segments.

4.6.3. Real-Time Clock (RTC0)

The RTC module includes a 32-bit timer that allows up to 36 hours of independent time-keeping when used with a 32.768 kHz watch crystal. The RTC provides three alarm events in addition to a missing clock event, which can also function as interrupt, reset, or wakeup sources on SiM3L1xx devices.

The RTC module includes internal loading capacitors that are programmable to 16 discrete levels, allowing compatibility with a wide range of crystals.

The RTC timer clock can be buffered and routed to a port bank pin to provide an accurate, low frequency clock to other devices while the core is in its lowest power down mode. The module also includes a low power internal low frequency oscillator that reduces low power mode current and is available for other modules to use as a clock source.

The RTC module includes the following features:

- 32-bit timer (supports up to 36 hours) with three separate alarms.
- Option for one alarm to automatically reset the RTC timer.
- Missing clock detector.
- Can be used with the internal Low Frequency Oscillator or with an external 32.768 kHz crystal (no additional resistors or capacitors necessary).
- Programmable internal loading capacitors support a wide range of external 32.768 kHz crystals.
- The RTC timer clock (RTC0CLK) can be buffered and routed to an I/O pin to provide an accurate, low frequency clock to other devices while the core is in its lowest power down mode.
- The RTC module can be powered from the low power mode charge pump for lowest possible power consumption while in PM8.

4.6.4. Low Power Timer (LPTIMER0)

The Low Power Timer (LPTIMER) module runs from the RTC timer clock (RTC0CLK), allowing the LPTIMER to operate even if the AHB and APB clocks are disabled. The LPTIMER counter can increment using one of two clock sources: the clock selected by the RTC0 module, or rising or falling edges of an external signal.

The Low Power Timer includes the following features:

- Runs on low-frequency RTC timer clock (RTC0TCLK).
- The LPTIMER counter can increment using one of two clock sources: the RTC0TCLK or rising or falling edges of an external signal.
- Overflow and threshold-match detection.
- Timer reset on threshold-match allows square-wave generation at a variable output frequency.
- Supports PWM with configurable period and duty cycle.
- The LPTIMER module can be powered from the low power mode charge pump for lowest possible power consumption while in PM8.

4.6.5. Watchdog Timer (WDTIMER0)

The WDTIMER module includes a 16-bit timer, a programmable early warning interrupt, and a programmable reset period. The timer registers are protected from inadvertent access by an independent lock and key interface.

The watchdog timer runs from the low frequency oscillator (LFOSC0).

The Watchdog Timer has the following features:

- Programmable timeout interval.
- Optional interrupt to warn when the Watchdog Timer is nearing the reset trip value.
- Lock-out feature to prevent any modification until a system reset.

4.6.6. Low Power Mode Advanced Capture Counter (ACCTR0)

The SiM3L1xx devices contain a low-power Advanced Capture Counter module that runs from the RTC0 clock domain and can be used with digital inputs, switch topology circuits (reed switches), or with LC resonant circuits. For switch topology circuits, the module charges one or two external lines by pulsing internal pull-up resistors and detecting whether the reed switch is open or closed. For LC resonant circuits, the inputs are periodically energized to produce a dampened sine wave and configurable discriminator circuits detect the resulting decay time-constant.

The advanced capture counter has the following general features:

- Single or differential inputs supporting single, dual, and quadrature modes of operation.
- Variety of interrupt and PM8 wake up sources.
- Provides feedback of the direction history, current and previous states, and condition flags.

The advanced capture counter has the following features for switch circuit topologies:

- Ultra low power input comparators.
- Supports a wide range of pull-up resistor values with a self-calibration engine.
- Asymmetrical integrators for low-pass filtering and switch debounce.
- Two 24-bit counters and two 24-bit digital threshold comparators.
- Supports switch flutter detection.

For LC resonant circuit topologies, the advanced capture counter includes:

- Separate minimum and maximum count registers and polarity, pulse, and toggle controls.
- Zone-based programmable timing.
- Two input comparators with support for a positive side input bias at VIO divided by 2.
- Supports a configurable excitation pulse width based on a 40 MHz oscillator and timer or an external digital stop signal.
- Two 8-bit peak counters that saturate at full scale for detecting the number of LC resonant peaks.
- Two discriminators with programmable thresholds.
- Supports a sample and hold mode for Wheatstone bridges.

All devices in the SiM3L1xx family include the low power mode advanced capture counter (ACCTR0). Table 4.2 lists the supported inputs and outputs for each of the packages.

Table 4.2. SiM3L1xx Supported Advanced Capture Counter Inputs and Outputs

Input/Output	SiM3L1x7	SiM3L1x6	SiM3L1x4
ACCTR0_IN0	\checkmark	\checkmark	~
ACCTR0_IN1	\checkmark	~	~
ACCTR0_LCIN0	\checkmark	~	
ACCTR0_LCIN1	\checkmark	~	~
ACCTR0_STOP0	\checkmark	~	~
ACCTR0_STOP1	\checkmark	~	~
ACCTR0_LCPUL0	\checkmark	~	
ACCTR0_LCPUL1	\checkmark	~	
ACCTR0_LCBIAS0	\checkmark	~	
ACCTR0_LCBIAS1	\checkmark	~	
ACCTR0_DBG0	V	\checkmark	
ACCTR0_DBG1	\checkmark	\checkmark	

Pin Name	Туре	Pin Numbers (TQFP-80)	I/O Voltage Domain	Crossbar Capability	Port Match	LCD Interface	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions
PB0.0	Standard I/O	4	VIO	V	~		~	INT0.0 WAKE.0	ADC0.20 VREF CMP0P.0
PB0.1	Standard I/O	3	VIO	~	1		1	INT0.1 WAKE.1	ADC0.21 VREFGND CMP0N.0
PB0.2	Standard I/O	2	VIO	~	~		~	INT0.2 WAKE.2	ADC0.22 CMP1P.0 XTAL2
PB0.3	Standard I/O	1	VIO	~	~		~	INT0.3 WAKE.3	ADC0.23 CMP1N.0 XTAL1
PB0.4	Standard I/O	80	VIO	~	~		~	INT0.4 WAKE.4	ADC0.0 CMP0P.1 IDAC0
PB0.5	Standard I/O	79	VIO	~	~		\checkmark	INT0.5 WAKE.5 ACCTR0_STOP0	ACCTR0_IN0
PB0.6	Standard I/O	78	VIO	V	~		~	INT0.6 WAKE.6 ACCTR0_STOP1	ACCTR0_IN1
PB0.7	Standard I/O	77	VIO	~	~		~	INT0.7 WAKE.7	ACCTR0_LCIN0
PB0.8	Standard I/O	76	VIO	~	\checkmark		~	LPT0T0 LPT0OUT0 INT0.8 WAKE.8	ACCTR0_LCIN1

Table 6.1. Pin Definitions and Alternate Functions for SiM3L1x7 (Continued)

Pin Name	Туре	Pin Numbers	I/O Voltage Domain	Crossbar Capability	Port Match	Output Toggle Logic	External Trigger Inputs / Digital Functions	Analog Functions	
PB2.1	Standard I/O	28	VIORF	XBR0	~		LPT0T9 INT1.1 WAKE.13 VIORFCLK	ADC0.3 CMP0N.4	
PB2.2	Standard I/O	27	VIORF	XBR0	~		LPT0T10 INT1.2 WAKE.14	ADC0.4 CMP1P.4	
PB2.3	Standard I/O	26	VIORF	XBR0	\checkmark		LPT0T11 INT1.3 WAKE.15	ADC0.5 CMP1N.4	
PB2.4	Standard I/O	24	VIORF	XBR0	~		LPT0T12 INT1.4 SPI1_SCLK	ADC0.6 CMP0P.5	
PB2.5	Standard I/O	23	VIORF	XBR0	~		LPT0T13 INT1.5 SPI1_MISO	ADC0.7 CMP0N.5	
PB2.6	Standard I/O	22	VIORF	XBR0	~		LPT0T14 INT1.6 SPI1_MOSI	ADC0.8 CMP1P.5	
PB2.7	Standard I/O	21	VIORF	XBR0	~		INT1.7 SPI1_NSS	ADC0.9 CMP1N.5	
PB3.0	Standard I/O	20	VIO	XBR0	\checkmark		INT1.8	CMP0N.7	
PB3.1	Standard I/O	19	VIO	XBR0	\checkmark		INT1.9	CMP1P.7	
PB3.2	Standard I/O	18	VIO	XBR0	\checkmark		INT1.10	CMP1N.7	
PB3.3	Standard I/O	17	VIO	XBR0	\checkmark		INT1.11	ADC0.10	
PB3.4	Standard I/O	16	VIO	XBR0	\checkmark		INT1.12	ADC0.11	
PB3.5	Standard I/O	15	VIO	XBR0	\checkmark		INT1.13	ADC0.12	

Table 6.3. Pin Definitions and Alternate Functions for SiM3L1x4 (Continued)

Dimension	Min	Nominal	Мах		
A	_	—	1.20		
A1	0.05	—	0.15		
A2	0.95	1.00	1.05		
b	0.17	0.22	0.27		
С	0.09	—	0.20		
D		12.00 BSC			
D1		10.00 BSC			
е	0.50 BSC				
E	12.00 BSC				
E1	10.00 BSC				
L	0.45	0.60	0.75		
Θ	0°	3.5°	7°		
aaa	_		0.20		
bbb	—	—	0.20		
ccc	—	—	0.08		
ddd	_	_	0.08		

Table 6.8. TQFP-64 Package Dimensions

4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

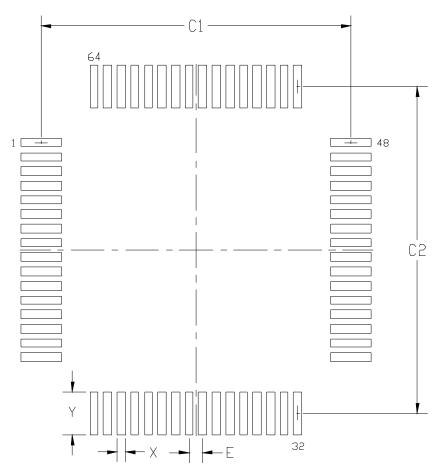
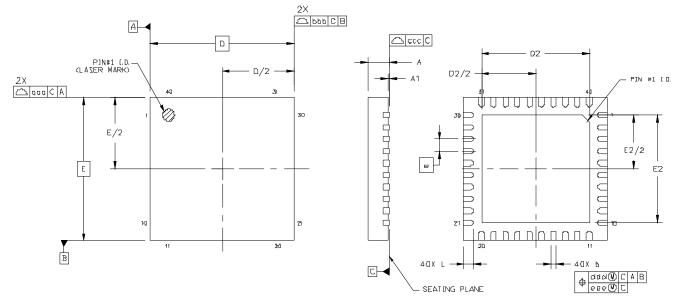



Figure 6.10. TQFP-64 Landing Diagram

Table 6.9. TQFP-64 Landing Dia	agram Dimensions
--------------------------------	------------------

Dimension	Min	Мах				
C1	11.30	11.40				
C2	11.30	11.40				
E	0.50 BSC					
Х	0.20	0.30				
Y 1.40 1.50						
 Notes: 1. All dimensions shown are in millimeters (mm) unless otherwise noted. 2. This land pattern design is based on the IPC-7351 guidelines. 						

6.7. QFN-40 Package Specifications

Dimension	Min	Nominal	Max		
A	0.80	0.85	0.90		
A1	0.00	0.02	0.05		
b	0.18	0.25	0.30		
D	6.00 BSC				
D2	4.35 4.50 4.65				
e	0.50 BSC				
E	6.00 BSC				
E2	4.35 4.5 4.65				
L	0.30 0.40 0.50				
aaa	0.10				
bbb	0.10				
CCC	0.08				
ddd	0.10				
eee	0.05				
Nataa					

Table 6.10. QFN-40 Package Dimensions

Notes:

- 1. All dimensions shown are in millimeters (mm) unless otherwise noted.
- 2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
- 3. This package outline conforms to JEDEC MO-220.
- **4.** Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.

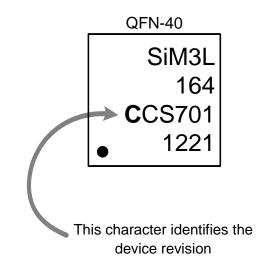


Figure 7.3. SiM3L1x4-GM Revision Information

DOCUMENT CHANGE LIST

Revision 0.5 to Revision 1.0

- Updated Electrical Specifications Tables with latest characterization data and production test limits.
- Added missing signal ACCTR0_LCPUL1 to Table 6.2, "Pin Definitions and Alternate Functions for SiM3L1x6," on page 64.
- Removed ACCTR0_LCIN1 and ACCTR0_STOP0/1 signals from Table 6.3, "Pin Definitions and Alternate Functions for SiM3L1x4," on page 70.
- Updated Figure 6.8, "TFBGA-80 Package Drawing," on page 79.

Revision 1.0 to Revision 1.1

■ Removed all references to BGA-80 and the parts SiM3L167-C-GL and SiM3L157-C-GL.

