

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	S08
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	LVD, POR, PWM, WDT
Number of I/O	28
Program Memory Size	60KB (60K x 8)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 16x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9s08pt60avlc

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Input/Output
 - Up to 57 GPIOs including one output-only pin
 - Two 8-bit keyboard interrupt modules (KBI)
 - Two true open-drain output pins
 - Eight, ultra-high current sink pins supporting 20 mA source/sink current
- Package options
 - 64-pin LQFP; 64-pin QFP
 - 48-pin LQFP
 - 44-pin LQFP
 - 32-pin LQFP

1 Ordering parts

1.1 Determining valid orderable parts

Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PT60 and PT32.

2 Part identification

2.1 Description

Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.

2.2 Format

Part numbers for this device have the following format:

MC 9 S08 PT AA (V) B CC

2.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
MC	Qualification status	MC = fully qualified, general market flow
9	Memory	9 = flash based
S08	Core	• S08 = 8-bit CPU
PT	Device family	• PT
AA	Approximate flash size in KB	• 60 = 60 KB • 32 = 32 KB
(V)	Mask set version	 (blank) = Any version A = Rev. 2 or later version, this is recommended for new design

Field	Description	Values
В	Operating temperature range (°C)	• V = -40 to 105
CC	Package designator	 QH = 64-pin QFP LH = 64-pin LQFP LF = 48-pin LQFP LD = 44-pin LQFP LC = 32-pin LQFP

2.4 Example

This is an example part number:

MC9S08PT60VQH

3 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 1. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}) or the programmable pullup resistor associated with the pin is enabled.

Symbol	Description	Min.	Max.	Unit
V _{DD}	Supply voltage	-0.3	6.0	V
I _{DD}	Maximum current into V _{DD}	_	120	mA
V _{DIO}	Digital input voltage (except RESET, EXTAL, XTAL, or true open drain pin PTA2 and PTA3)	-0.3	V _{DD} + 0.3	V
	Digital input voltage (true open drain pin PTA2 and PTA3)	-0.3	6	V
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
I _D	Instantaneous maximum current single pin limit (applies to all port pins)	- 25	25	mA
V_{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V

^{1.} All digital I/O pins, except open-drain pin PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD} . PTA2 and PTA3 is only clamped to V_{SS} .

5 General

5.1 Nonswitching electrical specifications

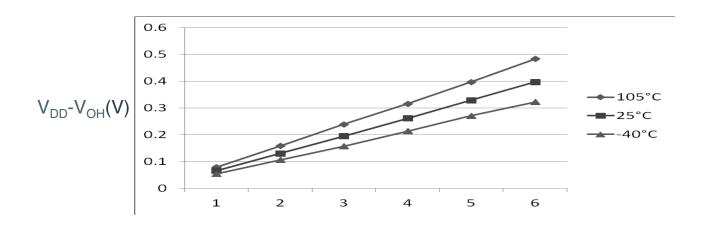
5.1.1 DC characteristics

This section includes information about power supply requirements and I/O pin characteristics.

Descriptions Symbol Min Typical¹ Max Unit 2.7 Operating voltage 5.5 V_{OH} Р 5 V, $I_{load} =$ V_{DD} - 0.8 ٧ Output high All I/O pins, standard--5 mA voltage drive strength 3 V, $I_{load} =$ С V_{DD} - 0.8 V -2.5 mA ٧ Ρ High current drive 5 V, $I_{load} =$ $V_{DD} - 0.8$ pins, high-drive -20 mA strength² С 3 V, $I_{load} =$ $V_{DD} - 0.8$ ٧ -10 mA

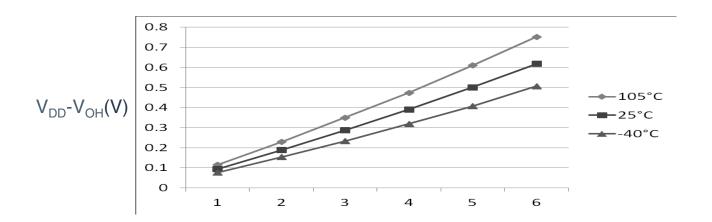
Table 2. DC characteristics

Nonswitching electrical specifications

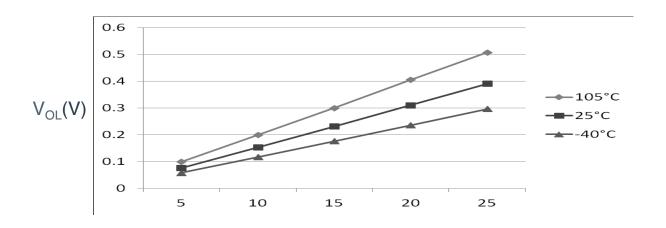

Table 2. DC characteristics (continued)

Symbol	С		Descriptions		Min	Typical ¹	Max	Unit
I _{OHT}	D	Output high	Max total I _{OH} for all	5 V	_	_	-100	mA
		current	ports	3 V	_	_	-50	
V _{OL}	Р	Output low voltage	All I/O pins, standard- drive strength	5 V, I _{load} = 5 mA		_	0.8	V
	С			3 V, I _{load} = 2.5 mA	_	_	0.8	V
	Р		High current drive pins, high-drive	5 V, I _{load} =20 mA	_	_	0.8	V
	С		strength ²	3 V, I _{load} = 10 mA	_	_	0.8	V
I _{OLT}	D	Output low	Max total I _{OL} for all	5 V	_	_	100	mA
		current	ports	3 V	_	_	50	
V _{IH}	Р	Input high	All digital inputs	V _{DD} >4.5V	$0.70 \times V_{DD}$	_	_	V
	С	voltage		V _{DD} >2.7V	$0.75 \times V_{DD}$	_	_	
V _{IL}	Р	Input low	All digital inputs	V _{DD} >4.5V	_	_	$0.30 \times V_{DD}$	٧
	С	voltage		V _{DD} >2.7V	_	_	$0.35 \times V_{DD}$	
V _{hys}	С	Input hysteresis	All digital inputs	_	$0.06 \times V_{DD}$	_	_	mV
I _{In}	Р	Input leakage current	All input only pins (per pin)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μA
ll _{OZ} l	Р	Hi-Z (off- state) leakage current	All input/output (per pin)	$V_{IN} = V_{DD}$ or V_{SS}	_	0.1	1	μА
ll _{oztot} l	С	Total leakage combined for all inputs and Hi-Z pins	All input only and I/O	$V_{IN} = V_{DD}$ or V_{SS}	_	_	2	μА
R _{PU}	Р	Pullup resistors	All digital inputs, when enabled (all I/O pins other than PTA2 and PTA3)	_	30.0	_	50.0	kΩ
R _{PU} ³	Р	Pullup resistors	PTA2 and PTA3 pin	_	30.0	_	60.0	kΩ
I _{IC}	D	DC injection	Single pin limit	$V_{IN} < V_{SS}$	-0.2	_	2	mA
		current ^{4, 5, 6}	Total MCU limit, includes sum of all stressed pins	$V_{IN} > V_{DD}$	-5	_	25	
C _{In}	С	Input cap	pacitance, all pins	_	_	_	7	pF
V_{RAM}	С	RAM re	etention voltage	_	2.0	_	_	V

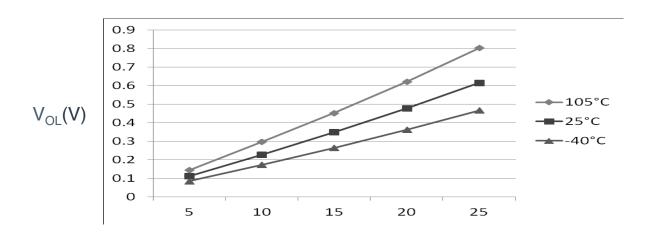
- 1. Typical values are measured at 25 °C. Characterized, not tested.
- 2. Only PTB4, PTB5, PTD0, PTD1, PTE0, PTE1, PTH0, and PTH1 support ultra high current output.
- 3. The specified resistor value is the actual value internal to the device. The pullup value may appear higher when measured externally on the pin.
- 4. All functional non-supply pins, except for PTA2 and PTA3, are internally clamped to V_{SS} and V_{DD} .
- 5. Input must be current-limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the large one.


MC9S08PT60 Series Data Sheet, Rev. 5, 06/2015

 $I_{OH}(mA)$


Figure 1. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 5 V)

 $I_{OH}(mA)$


Figure 2. Typical I_{OH} Vs. V_{DD} - V_{OH} (standard drive strength) (V_{DD} = 3 V)

 $I_{OL}(mA)$

Figure 7. Typical I_{OL} Vs. V_{OL} (high drive strength) ($V_{DD} = 5$ V)

 $I_{OL}(mA)$

Figure 8. Typical I_{OL} Vs. V_{OL} (high drive strength) ($V_{DD} = 3 \text{ V}$)

5.1.2 Supply current characteristics

This section includes information about power supply current in various operating modes.

Table 4. Supply current characteristics

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
1	С	Run supply current FEI	RI_{DD}	20 MHz	5	12.6		mA	-40 to 105 °C
	С	mode, all modules on; run from flash		10 MHz		7.2			
		monn naon		1 MHz		2.4	_		
	С			20 MHz	3	9.6	_		
	С			10 MHz		6.1	_		
				1 MHz		2.1	_		
2	С	Run supply current FEI	RI _{DD}	20 MHz	5	10.5	_	mA	-40 to 105 °C
	С	mode, all modules off & gated; run from flash		10 MHz		6.2	_		
		gated, full from flash		1 MHz		2.3	_		
	С			20 MHz	3	7.4	_		
	С			10 MHz		5.0	_		
				1 MHz		2.0	_		
3	Р	Run supply current FBE	RI _{DD}	20 MHz	5	12.1	14.8	mA	-40 to 105 °C
	С	mode, all modules on; run from RAM		10 MHz		6.5	_		
		IIOIII I IAWI		1 MHz		1.8	_		
	Р			20 MHz	3	9.1	11.8		
	С			10 MHz		5.5	_		
				1 MHz		1.5	_		
4	Р	Run supply current FBE	RI _{DD}	20 MHz	5	9.8	12.3	mA	-40 to 105 °C
	С	mode, all modules off & gated; run from RAM		10 MHz		5.4	_		
		gated, full from HAW		1 MHz		1.6	_		
	Р			20 MHz	3	6.9	9.2		
	С			10 MHz		4.4	_		
				1 MHz		1.4	_		
5	С	Wait mode current FEI	WI _{DD}	20 MHz	5	7.8	_	mA	-40 to 105 °C
	С	mode, all modules on		10 MHz		4.5	_		
				1 MHz		1.3	_		
	С			20 MHz	3	5.1	_		
				10 MHz		3.5	_		
				1 MHz		1.2	_]	
6	С	Stop3 mode supply	S3I _{DD}	_	5	3.8	_	μA	-40 to 105 °C
	С	current no clocks active (except 1 kHz LPO clock) ^{2, 3}		_	3	3	_		-40 to 105 °C
7	С	ADC adder to stop3	_	_	5	44	_	μΑ	-40 to 105 °C

Table 4	Supply current	characteristics	(continued)
iabic 7.	Juppiv Cullelli	Ullai autel iotiuo	(COHUHU C U)

Num	С	Parameter	Symbol	Bus Freq	V _{DD} (V)	Typical ¹	Max	Unit	Temp
	С	ADLPC = 1			3	40	_		
		ADLSMP = 1							
		ADCO = 1							
		MODE = 10B							
		ADICLK = 11B							
8	С	TSI adder to stop3 ⁴	_	_	5	111	_	μΑ	-40 to 105 °C
	С	PS = 010B			3	110	_		
		NSCN =0x0F							
		EXTCHRG = 0							
		REFCHRG = 0							
		DVOLT = 01B							
9	С	LVD adder to stop3 ⁵	_	_	5	130	_	μΑ	-40 to 105 °C
	С				3	125	_		

- 1. Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.
- 2. RTC adder cause <1 μ A I_{DD} increase typically, RTC clock source is 1 kHz LPO clock.
- 3. ACMP adder cause <10 μ A I_{DD} increase typically.
- 4. The current varies with TSI configuration and capacity of touch electrode. Please refer to TSI electrical specifications.
- 5. LVD is periodically woken up from stop3 by 5% duty cycle. The period is equal to or less than 2 ms.

5.1.3 EMC performance

Electromagnetic compatibility (EMC) performance is highly dependent on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

5.1.3.1 EMC radiated emissions operating behaviors Table 5. EMC radiated emissions operating behaviors for 64-pin SOIC package

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	12	dΒμV	1, 2
V _{RE2}	Radiated emissions voltage, band 2	50–150	10	dΒμV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	4	dΒμV	
V _{RE4}	Radiated emissions voltage, band 4	500-1000	5	dΒμV	
V _{RE_IEC}	IEC level	0.15-1000	N	_	2, 3

switching specifications

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150
 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits Measurement of
 Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband
 TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported
 emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the
 measured orientations in each frequency range.
- 2. $V_{DD} = 5.0 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$, $f_{OSC} = 10 \text{ MHz}$ (crystal), $f_{SYS} = 20 \text{ MHz}$, $f_{BUS} = 20 \text{ MHz}$
- 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method

5.2 Switching specifications

5.2.1 Control timing

Table 6. Control timing

Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit	
1	Р	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	DC	_	20	MHz	
2	Р	Internal low power oscillato	r frequency	f _{LPO}	0.67	1.0	1.25	KHz
3	D	External reset pulse width ²		t _{extrst}	1.5 ×	_	_	ns
					t _{cyc}			
4	D	Reset low drive		t _{rstdrv}	$34 \times t_{cyc}$	_	_	ns
5	D	BKGD/MS setup time after debug force reset to enter u	t _{MSSU}	500	_	_	ns	
6	D	BKGD/MS hold time after is debug force reset to enter u	t _{MSH}	100	_	_	ns	
7	D	IRQ pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	D		Synchronous path ⁴	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
8	D	Keyboard interrupt pulse width	Asynchronous path ²	t _{ILIH}	100	_	_	ns
	D		Synchronous path	t _{IHIL}	$1.5 \times t_{cyc}$	_	_	ns
9	С	Port rise and fall time -	_	t _{Rise}	_	10.2	_	ns
	С	standard drive strength (load = 50 pF) ⁵		t _{Fall}	_	9.5	_	ns
	С	Port rise and fall time -		t _{Rise}	_	5.4	_	ns
	С	high drive strength (load = 50 pF) ⁵		t _{Fall}	_	4.6	_	ns

- 1. Typical values are based on characterization data at $V_{DD} = 5.0 \text{ V}$, 25 °C unless otherwise stated.
- 2. This is the shortest pulse that is guaranteed to be recognized as a reset pin request.
- To enter BDM mode following a POR, BKGD/MS must be held low during the powerup and for a hold time of t_{MSH} after V_{DD} rises above V_{LVD}.
- 4. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized.
- 5. Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels in operating temperature range.

5.3 Thermal specifications

5.3.1 Thermal operating requirements

Table 9. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature	-40	105	°C

NOTE

Maximum T_A can be exceeded only if the user ensures that T_J does not exceed the maximum. The simplest method to determine T_J is: $T_J = T_A + R_{\theta J A} \times \text{chip power dissipation}$.

5.3.2 Thermal characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and voltage regulator circuits, and it is user-determined rather than being controlled by the MCU design. To take $P_{\rm I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} will be very small.

Table 10. Thermal attributes

Board type	Symbo I	Description	64 LQFP	64 QFP	48 LQFP	44 LQFP	32 LQFP	Unit	Notes
Single-layer (1S)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	71	61	81	75	86	°C/W	1, 2
Four-layer (2s2p)	$R_{\theta JA}$	Thermal resistance, junction to ambient (natural convection)	53	47	57	53	57	°C/W	1, 3
Single-layer (1S)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	59	50	68	62	72	°C/W	1, 3
Four-layer (2s2p)	R _{θJMA}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	46	41	50	47	51	°C/W	1, 3

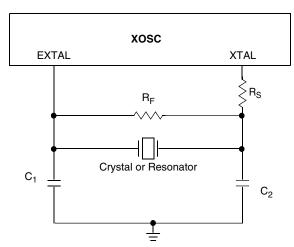


Figure 15. Typical crystal or resonator circuit

NVM specifications

This section provides details about program/erase times and program/erase endurance for the flash and EEPROM memories.

С Characteristic **Symbol** Min¹ Max³ Unit4 Typical² D Supply voltage for program/erase -40 °C 5.5 ٧ $V_{prog/erase}$ 2.7 to 105 °C ٧ D Supply voltage for read operation V_{Read} 2.7 5.5 D **NVM** Bus frequency 1 25 MHz **f**NVMBUS D **NVM Operating frequency** 8.0 1 1.05 MHz f_{NVMOP} D Erase Verify All Blocks 17338 t_{VFYALL} t_{cyc} D Erase Verify Flash Block 16913 t_{RD1BLK} t_{cyc}

Table 12. Flash characteristics

D	Erase Verify EEPROM Block	t _{RD1BLK}	_	_	810	t _{cyc}			
D	Erase Verify Flash Section	t _{RD1SEC}	_	_	484	t _{cyc}			
D	Erase Verify EEPROM Section	t _{DRD1SEC}	_	_	555	t _{cyc}			
D	Read Once	t _{RDONCE}	_	_	450	t _{cyc}			
D	Program Flash (2 word)	t _{PGM2}	0.12	0.12	0.29	ms			
D	Program Flash (4 word)	t _{PGM4}	0.20	0.21	0.46	ms			
D	Program Once	t _{PGMONCE}	0.20	0.21	0.21	ms			
D	Program EEPROM (1 Byte)	t _{DPGM1}	0.10	0.10	0.27	ms			
D	Program EEPROM (2 Byte)	t _{DPGM2}	0.17	0.18	0.43	ms			
D	Program EEPROM (3 Byte)	t _{DPGM3}	0.25	0.26	0.60	ms			
D	Program EEPROM (4 Byte)	t _{DPGM4}	0.32	0.33	0.77	ms			
D	Erase All Blocks	t _{ERSALL}	96.01	100.78	101.49	ms			
D	Erase Flash Block	t _{ERSBLK}	95.98	100.75	101.44	ms			
	Table continues on the next page								

Table 12. Flash characteristics (continued)

С	Characteristic	Symbol	Min ¹	Typical ²	Max ³	Unit ⁴
D	Erase Flash Sector	t _{ERSPG}	19.10	20.05	20.08	ms
D	Erase EEPROM Sector	t _{DERSPG}	4.81	5.05	20.57	ms
D	Unsecure Flash	t _{UNSECU}	96.01	100.78	101.48	ms
D	Verify Backdoor Access Key	t _{VFYKEY}	_	_	464	t _{cyc}
D	Set User Margin Level	t _{MLOADU}	_	_	407	t _{cyc}
С	FLASH Program/erase endurance T_L to $T_H = -40$ °C to 105 °C	n _{FLPE}	10 k	100 k	_	Cycles
С	EEPROM Program/erase endurance TL to TH = -40 °C to 105 °C	n _{FLPE}	50 k	500 k	_	Cycles
С	Data retention at an average junction temperature of T _{Javg} = 85°C after up to 10,000 program/erase cycles	t _{D_ret}	15	100	_	years

- 1. Minimum times are based on maximum $f_{\mbox{\scriptsize NVMOP}}$ and maximum $f_{\mbox{\scriptsize NVMBUS}}$
- 2. Typical times are based on typical f_{NVMOP} and maximum f_{NVMBUS}
- 3. Maximum times are based on typical f_{NVMOP} and typical f_{NVMBUS} plus aging
- 4. $t_{cyc} = 1 / f_{NVMBUS}$

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see the Memory section.

6.3 Analog

6.3.1 ADC characteristics

Table 13. 5 V 12-bit ADC operating conditions

Characteri stic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
Supply	Absolute	V _{DDA}	2.7	_	5.5	V	_
voltage	Delta to V _{DD} (V _{DD} -V _{DDAD})	ΔV_{DDA}	-100	0	+100	mV	
Ground voltage	Delta to V _{SS} (V _{SS} -V _{SSA}) ²	ΔV_{SSA}	-100	0	+100	mV	
Input voltage		V _{ADIN}	V _{REFL}	_	V _{REFH}	V	
Input capacitance		C _{ADIN}	_	4.5	5.5	pF	
Input resistance		R _{ADIN}	_	3	5	kΩ	_
Analog source	12-bit mode • f _{ADCK} > 4 MHz	R _{AS}	_	_	2	kΩ	External to MCU
resistance	• f _{ADCK} < 4 MHz		_	_	5		

reripheral operating requirements and behaviors

Table 13. 5 V 12-bit ADC operating conditions (continued)

Characteri stic	Conditions	Symb	Min	Typ ¹	Max	Unit	Comment
	10-bit mode • f _{ADCK} > 4 MHz		_	_	5		
	• f _{ADCK} < 4 MHz		_	_	10		
	8-bit mode		_	_	10		
	(all valid f _{ADCK})						
ADC	High speed (ADLPC=0)	f _{ADCK}	0.4	_	8.0	MHz	_
conversion clock frequency	Low power (ADLPC=1)		0.4	_	4.0		

- Typical values assume V_{DDA} = 5.0 V, Temp = 25°C, f_{ADCK}=1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- 2. DC potential difference.

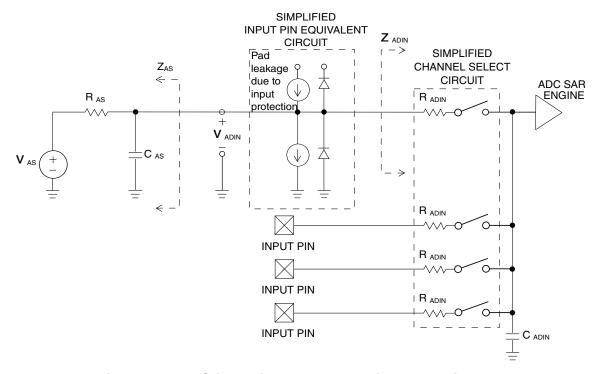


Figure 16. ADC input impedance equivalency diagram

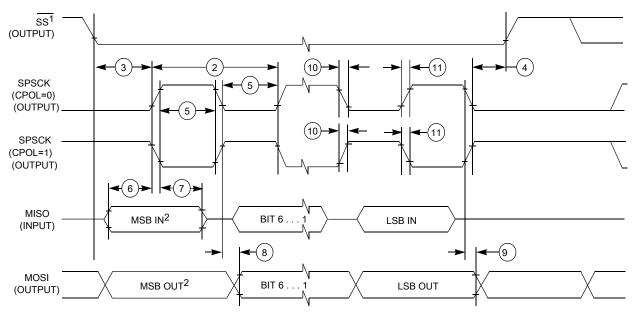
Table 14. 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Characteristic	Conditions	С	Symb	Min	Typ ¹	Max	Unit
Supply current		Т	I _{DDA}	_	133	_	μΑ
ADLPC = 1							
ADLSMP = 1							
ADCO = 1							
Supply current		Т	I _{DDA}	_	218	_	μΑ

11

 t_{RO}

 t_{FO}


communicating with slower peripheral devices. All timing is shown with respect to 20% V_{DD} and 70% V_{DD} , unless noted, and 100 pF load on all SPI pins. All timing assumes high drive strength is enabled for SPI output pins.

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	f _{Bus} /2048	f _{Bus} /2	Hz	f _{Bus} is the bus clock
2	t _{SPSCK}	SPSCK period	2 x t _{Bus}	2048 x t _{Bus}	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1/2	_	t _{SPSCK}	_
4	t _{Lag}	Enable lag time	1/2	_	t _{SPSCK}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	1024 x t _{Bus}	ns	_
6	t _{SU}	Data setup time (inputs)	15	_	ns	_
7	t _{HI}	Data hold time (inputs)	0	_	ns	_
8	t _v	Data valid (after SPSCK edge)	_	25	ns	_
9	t _{HO}	Data hold time (outputs)	0	_	ns	_
10	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	_
	t _{Fl}	Fall time input				

25

ns

Table 16. SPI master mode timing

^{1.} If configured as an output.

Rise time output

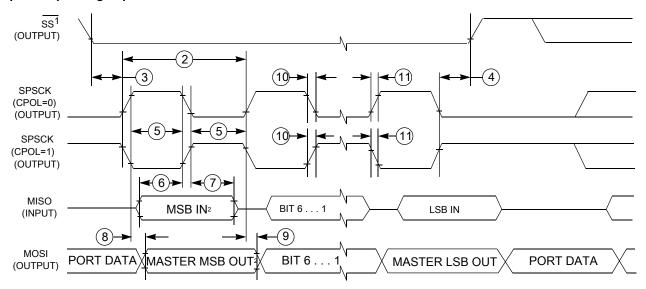

Fall time output

Figure 17. SPI master mode timing (CPHA=0)

^{2.} LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

reripheral operating requirements and behaviors

1.If configured as output

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 18. SPI master mode timing (CPHA=1)

Table 17. SPI slave mode timing

Nu m.	Symbol	Description	Min.	Max.	Unit	Comment
1	f _{op}	Frequency of operation	0	f _{Bus} /4	Hz	f _{Bus} is the bus clock as defined in .
2	t _{SPSCK}	SPSCK period	4 x t _{Bus}	_	ns	$t_{Bus} = 1/f_{Bus}$
3	t _{Lead}	Enable lead time	1	_	t _{Bus}	_
4	t _{Lag}	Enable lag time	1	_	t _{Bus}	_
5	t _{WSPSCK}	Clock (SPSCK) high or low time	t _{Bus} - 30	_	ns	_
6	t _{SU}	Data setup time (inputs)	15	_	ns	_
7	t _{HI}	Data hold time (inputs)	25	_	ns	_
8	t _a	Slave access time	_	t _{Bus}	ns	Time to data active from high-impedance state
9	t _{dis}	Slave MISO disable time	_	t _{Bus}	ns	Hold time to high- impedance state
10	t _v	Data valid (after SPSCK edge)	_	25	ns	_
11	t _{HO}	Data hold time (outputs)	0	_	ns	_
12	t _{RI}	Rise time input	_	t _{Bus} - 25	ns	_
	t _{Fl}	Fall time input				
13	t _{RO}	Rise time output	_	25	ns	_
	t _{FO}	Fall time output				

Table 19. Pin availability by package pin-count

	Pin N	umber		Lowest Priority <> Highest						
64-LQFP 64-QFP	48-LQFP	44-LQFP	32-LQFP	Port Pin	Alt 1	Alt 2	Alt 3	Alt 4		
1	1	1	1	PTD1 ¹	KBI1P1	FTM2CH3	MOSI1	_		
2	2	2	2	PTD0 ¹	KBI1P0	FTM2CH2	SPSCK1	_		
3	_	_	_	PTH7	_	_	_	_		
4	_	_	_	PTH6	_	_	_	_		
5	3	3	_	PTE7	_	TCLK2	_	_		
6	4	4	_	PTH2	_	BUSOUT	_	_		
7	5	5	3	_	_	_	_	V_{DD}		
8	6	6	4	_	_	_	V_{DDA}	V _{REFH}		
9	7	7	5	_	_	_	V _{SSA}	V _{REFL}		
10	8	8	6	_	_	_	_	V _{SS}		
11	9	9	7	PTB7	_	SCL	_	EXTAL		
12	10	10	8	PTB6	_	SDA	_	XTAL		
13	11	11	_	_	_	_	_	V _{SS}		
14	_	_	_	PTH1 ¹	_	FTM2CH1	_	_		
15	_	_	_	PTH0 ¹	_	FTM2CH0	_	_		
16	12	_	_	PTE6	_	_	_	_		
17	13	_	_	PTE5	_	_	_	_		
18	14	12	9	PTB5 ¹	FTM2CH5	SS0	_	_		
19	15	13	10	PTB4 ¹	FTM2CH4	MISO0	_	_		
20	16	14	11	PTC3	FTM2CH3	_	ADP11	_		
21	17	15	12	PTC2	FTM2CH2	_	ADP10	_		
22	18	16	_	PTD7	KBI1P7	TXD2	_	_		
23	19	17	_	PTD6	KBI1P6	RXD2	_	_		
24	20	18	_	PTD5	KBI1P5	_	_	_		
25	21	19	13	PTC1	_	FTM2CH1	ADP9	TSI7		
26	22	20	14	PTC0	_	FTM2CH0	ADP8	TSI6		
27	_	_	_	PTF7	_	_	ADP15	_		
28	_	_	_	PTF6	_	_	ADP14	_		
29	_	_	_	PTF5	_	_	ADP13	_		
30	_	_	_	PTF4	_	_	ADP12	_		
31	23	21	15	PTB3	KBI0P7	MOSI0	ADP7	TSI5		
32	24	22	16	PTB2	KBI0P6	SPSCK0	ADP6	TSI4		
33	25	23	17	PTB1	KBI0P5	TXD0	ADP5	TSI3		
34	26	24	18	PTB0	KBI0P4	RXD0	ADP4	TSI2		
35	_	_	_	PTF3	_	_	_	TSI15		
36	_	_	_	PTF2	_	_	_	TSI14		
37	27	25	19	PTA7	FTM2FAULT2	_	ADP3	TSI1		

already enabled can cause spurious edges to the lower priority module. Disable all modules that share a pin before enabling another module.

8.2 Device pin assignment

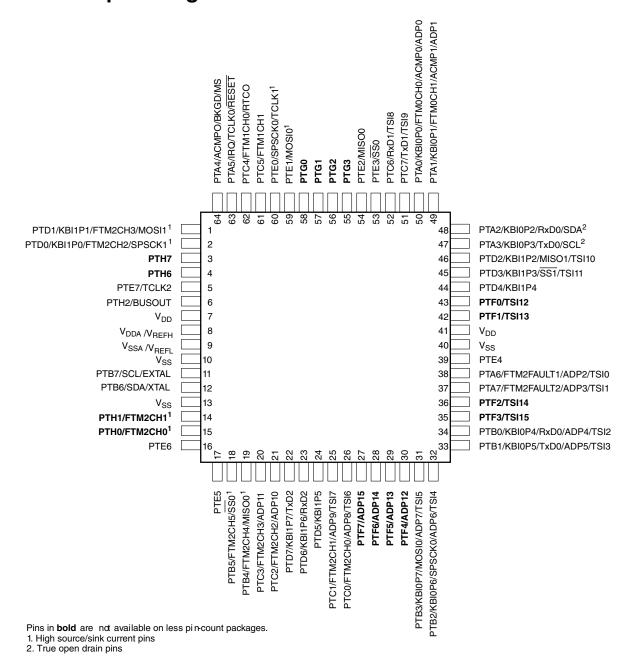


Figure 21. MC9S08PT60 64-pin QFP and LQFP package

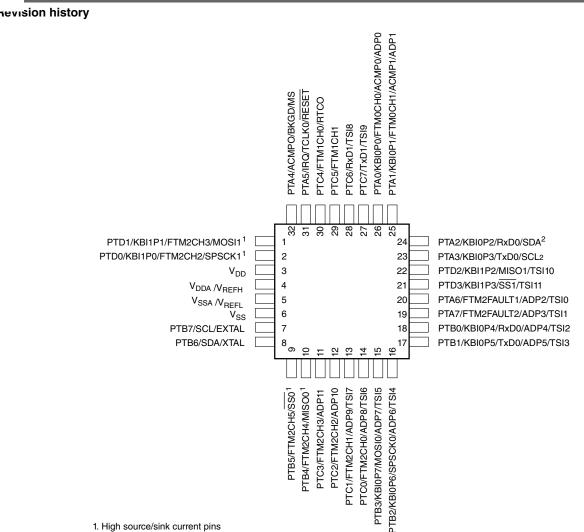


Figure 24. MC9S08PT60 32-pin LQFP package

Revision history

1. High source/sink current pins 2. True open drain pins

The following table provides a revision history for this document.

Table 20. Revision history

Rev. No.	Date	Substantial Changes	
1	10/2011	Initial public revision.	
2	11/2011	 Updated some TBDs Updated LVD and POR data Updated ADC data Updated SPI data Updated TSI data. 	
3	4/2012	Finished all the TBDsUpdated package information	
4	09/2014	Updated V _{HBM} in ESD handling ratings	

How to Reach Us:

Home Page:

freescale.com

Web Support:

freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. All rights reserved

© 2011-2015 Freescale Semiconductor, Inc.

