E·XFL

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Obsolete
Туре	Floating Point
Interface	DAI, DPI, EBI/EMI, I ² C, SCI, SPI, SSP, UART/USART
Clock Rate	400MHz
Non-Volatile Memory	External
On-Chip RAM	5Mbit
Voltage - I/O	3.30V
Voltage - Core	1.05V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	324-BGA, CSPBGA
Supplier Device Package	324-CSPBGA (19x19)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-21469bbc-3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

As shown in Figure 1 on Page 1, the processor uses two computational units to deliver a significant performance increase over the previous SHARC processors on a range of DSP algorithms. With its SIMD computational hardware, the processors can perform 2.7 GFLOPS running at 450 MHz and 2.4 GFLOPS running at 400 MHz.

FAMILY CORE ARCHITECTURE

The processors are code compatible at the assembly level with the ADSP-2137x, ADSP-2136x, ADSP-2126x, ADSP-21160, and ADSP-21161, and with the first generation ADSP-2106x SHARC processors. The ADSP-21467/ADSP-21469 processors share architectural features with the ADSP-2126x, ADSP-2136x, ADSP-2137x, and ADSP-2116x SIMD SHARC processors, as shown in Figure 2 and detailed in the following sections.

SIMD Computational Engine

The processor contains two computational processing elements that operate as a single-instruction, multiple-data (SIMD) engine. The processing elements are referred to as PEX and PEY and each contains an ALU, multiplier, shifter, and register file. PEX is always active, and PEY may be enabled by setting the PEYEN mode bit in the MODE1 register. When this mode is enabled, the same instruction is executed in both processing elements, but each processing element operates on different data. This architecture is efficient at executing math intensive DSP algorithms.

Entering SIMD mode also has an effect on the way data is transferred between memory and the processing elements. When in SIMD mode, twice the data bandwidth is required to sustain computational operation in the processing elements. Because of this requirement, entering SIMD mode also doubles the bandwidth between memory and the processing elements. When using the DAGs to transfer data in SIMD mode, two data values are transferred with each access of memory or the register file.

Independent, Parallel Computation Units

Within each processing element is a set of computational units. The computational units consist of an arithmetic/logic unit (ALU), multiplier, and shifter. These units perform all operations in a single cycle. The three units within each processing element are arranged in parallel, maximizing computational throughput. Single multifunction instructions execute parallel ALU and multiplier operations. In SIMD mode, the parallel ALU and multiplier operations occur in both processing elements. These computation units support IEEE 32-bit singleprecision floating-point, 40-bit extended precision floating-point, and 32-bit fixed-point data formats.

Timer

A core timer that can generate periodic software interrupts. The core timer can be configured to use FLAG3 as a timer expired signal.

Data Register File

A general-purpose data register file is contained in each processing element. The register files transfer data between the computation units and the data buses, and store intermediate results. These 10-port, 32-register (16 primary, 16 secondary) register files, combined with the processor's enhanced Harvard architecture, allow unconstrained data flow between computation units and internal memory. The registers in PEX are referred to as R0-R15 and in PEY as S0-S15.

Context Switch

Many of the processor's registers have secondary registers that can be activated during interrupt servicing for a fast context switch. The data registers in the register file, the DAG registers, and the multiplier result registers all have secondary registers. The primary registers are active at reset, while the secondary registers are activated by control bits in a mode control register.

Universal Registers

These registers can be used for general-purpose tasks. The USTAT (4) registers allow easy bit manipulations (Set, Clear, Toggle, Test, XOR) for all system registers (control/status) of the core.

The data bus exchange register (PX) permits data to be passed between the 64-bit PM data bus and the 64-bit DM data bus, or between the 40-bit register file and the PM/DM data buses. These registers contain hardware to handle the data width difference.

Single-Cycle Fetch of Instruction and Four Operands

The processors feature an enhanced Harvard Architecture in which the data memory (DM) bus transfers data and the program memory (PM) bus transfers both instructions and data (see Figure 2). With the its separate program and data memory buses and on-chip instruction cache, the processor can simultaneously fetch four operands (two over each data bus) and one instruction (from the cache), all in a single cycle.

Instruction Cache

The processors contain an on-chip instruction cache that enables three-bus operation for fetching an instruction and four data values. The cache is selective—only the instructions whose fetches conflict with PM bus data accesses are cached. This cache allows full speed execution of core, looped operations such as digital filter multiply-accumulates, and FFT butterfly processing.

Data Address Generators With Zero-Overhead Hardware Circular Buffer Support

The two data address generators (DAGs) are used for indirect addressing and implementing circular data buffers in hardware. Circular buffers allow efficient programming of delay lines and other data structures required in digital signal processing, and are commonly used in digital filters and Fourier transforms. The two DAGs of the processors contain sufficient registers to allow the creation of up to 32 circular buffers (16 primary register sets, 16 secondary). The DAGs automatically handle address pointer wraparound, reduce overhead, increase performance, and simplify implementation. Circular buffers can start and end at any memory location.

Designing an Emulator-Compatible DSP Board (Target)

For embedded system test and debug, Analog Devices provides a family of emulators. On each JTAG DSP, Analog Devices supplies an IEEE 1149.1 JTAG Test Access Port (TAP). In-circuit emulation is facilitated by use of this JTAG interface. The emulator accesses the processor's internal features via the processor's TAP, allowing the developer to load code, set breakpoints, and view variables, memory, and registers. The processor must be halted to send data and commands, but once an operation is completed by the emulator, the DSP system is set to run at full speed with no impact on system timing. The emulators require the target board to include a header that supports connection of the DSP's JTAG port to the emulator.

For details on target board design issues including mechanical layout, single processor connections, signal buffering, signal termination, and emulator pod logic, see the *EE-68: Analog Devices JTAG Emulation Technical Reference* on the Analog Devices website (www.analog.com)—use site search on "EE-68." This document is updated regularly to keep pace with improvements to emulator support.

ADDITIONAL INFORMATION

This data sheet provides a general overview of the ADSP-21467/ ADSP-21469 architecture and functionality. For detailed information on the core architecture and instruction set, refer to the SHARC Processor Programming Reference.

RELATED SIGNAL CHAINS

A *signal chain* is a series of signal-conditioning electronic components that receive input (data acquired from sampling either real-time phenomena or from stored data) in tandem, with the output of one portion of the chain supplying input to the next. Signal chains are often used in signal processing applications to gather and process data or to apply system controls based on analysis of real-time phenomena. For more information about this term and related topics, see the "signal chain" entry in Wikipedia or the Glossary of EE Terms on the Analog Devices website.

Analog Devices eases signal processing system development by providing signal processing components that are designed to work together well. A tool for viewing relationships between specific applications and related components is available on the www.analog.com website.

The Application Signal Chains page in the Circuits from the Lab[™] site (http://www.analog.com/signal chains) provides:

- Graphical circuit block diagram presentation of signal chains for a variety of circuit types and applications
- Drill down links for components in each chain to selection guides and application information
- Reference designs applying best practice design techniques

SPECIFICATIONS

OPERATING CONDITIONS

		450 MHz		400 MHz				
Parameter ¹	Description	Min	Nom	Max	Min	Nom	Max	Unit
V _{DD_INT}	Internal (Core) Supply Voltage	1.05	1.1	1.15	1.0	1.05	1.1	V
V _{DD_EXT}	External (I/O) Supply Voltage	3.13	3.3	3.47	3.13	3.3	3.47	V
$V_{DD_A}^2$	Analog Power Supply Voltage	1.05	1.1	1.15	1.0	1.05	1.1	V
V _{DD_DDR2} ^{3, 4}	DDR2 Controller Supply Voltage	1.7	1.8	1.9	1.7	1.8	1.9	V
V _{DD_THD}	Thermal Diode Supply Voltage	3.13	3.3	3.47	3.13	3.3	3.47	V
V _{REF}	DDR2 Reference Voltage	0.84	0.9	0.96	0.84	0.9	0.96	V
V _{IH} ⁵	High Level Input Voltage @	2.0			2.0			V
	$V_{DD_{EXT}} = Max$							
V _{IL} ⁵	Low Level Input Voltage @			0.8			0.8	V
	$V_{DD_{EXT}} = Min$							
V _{IH_CLKIN} ⁶	High Level Input Voltage @	2.0			2.0			V
	$V_{DD_{EXT}} = Max$							
V _{IL_CLKIN} ⁶	Low Level Input Voltage @			1.32			1.32	V
	$V_{DD_{EXT}} = Min$							
V _{IL_DDR2} (DC)	DC Low Level Input Voltage			V _{REF} – 0.125			V _{REF} – 0.125	V
V _{IH_DDR2} (DC)	DC High Level Input Voltage	V _{REF} + 0.125			$V_{REF} + 0.125$			V
V _{IL_DDR2} (AC)	AC Low Level Input Voltage			V _{REF} – 0.25			V _{REF} – 0.25	V
V _{IH_DDR2} (AC)	AC High Level Input Voltage	V _{REF} + 0.25			$V_{REF} + 0.25$			V
TJ	Junction Temperature 324-Lead	0		115	0		110	°C
	CSP_BGA @ T _{AMBIENT} 0°C to							
	+70°C							
Тj	Junction Temperature 324-Lead	N/A		N/A	-40		125	°C
	CSP_BGA @ T _{AMBIENT} -40°C to							
	+85°C							

¹Specifications subject to change without notice.

² See Figure 3 on Page 11 for an example filter circuit.

³Applies to DDR2 signals.

⁴ If unused, see Table 9 on Page 13.

⁵ Applies to input and bidirectional pins: AMI_ADDR23-0, AMI_DATA7-0, FLAG3-0, DAI_Px, DPI_Px, BOOTCFGx, CLKCFGx, (RUNRSTIN), RESET, TCK, TMS, TDI, TRST.

⁶Applies to input pin CLKIN.

f _{CCLK} (MHz) ²	V _{DD_INT} (V) ²						
	0.95 V	1.0 V	1.05 V	1.10 V	1.15 V		
100	78	82	86	91	98		
150	115	121	130	136	142		
200	150	159	169	177	188		
250	186	197	208	219	231		
300	222	236	249	261	276		
350	259	275	288	304	319		
400	293	309	328	344	361		
450	N/A	N/A	366	385	406		

Table 14. Dynamic Current in CCLK Domain $-I_{DD_{INT}_{DYNAMIC}}$ (mA, with ASF = 1.0)¹

¹The values are not guaranteed as standalone maximum specifications. They must be combined with static current per the equations of Electrical Characteristics on Page 20. ²Valid frequency and voltage ranges are model-specific. See Operating Conditions on Page 19.

ABSOLUTE MAXIMUM RATINGS

Stresses greater than those listed in Table 15 may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PACKAGE INFORMATION

The information presented in Figure 4 and Table 16 provides details about the package branding for the processor. For a complete listing of product availability, see Ordering Guide on Page 74.

ANALOG DEVICES
ADSP-2146x
tppZ-cc
vvvvv.x n.n
yyww country_of_origin
SHARC

Figure 4. Typical Package Brand

Table 16. Package Brand Information¹

Brand Key	Field Description
t	Temperature Range
рр	Package Type
Z	RoHS Compliant Option
сс	See Ordering Guide
ννννν.χ	Assembly Lot Code
n.n	Silicon Revision
#	RoHS Compliant Designation
ууww	Date Code

¹Non-automotive only. For branding information specific to automotive products, contact Analog Devices, Inc.

Table 15.	Absolute	Maximum	Ratings
I able 15.	moonute	171uAIIII uIII	Itutingo

Parameter	Rating
Internal (Core) Supply Voltage ($V_{DD_{INT}}$)	–0.3 V to +1.32 V
Analog (PLL) Supply Voltage (V _{DD_A})	–0.3 V to +1.15 V
External (I/O) Supply Voltage (V _{DD_EXT})	–0.3 V to +3.6 V
Thermal Diode Supply Voltage	–0.3 V to +3.6 V
(V _{DD_THD})	
DDR2 Controller Supply Voltage	–0.3 V to +1.9 V
(V _{DD_DDR2})	
DDR2 Input Voltage	–0.3 V to +1.9 V
Input Voltage	–0.3 V to +3.6 V
Output Voltage Swing	–0.3 V to V_{DD_EXT} +0.5 V
Storage Temperature Range	–65°C to +150°C
Junction Temperature While Biased	125°C

Power-Up Sequencing

The timing requirements for processor startup are given in Table 18. While no specific power-up sequencing is required between V_{DD_EXT} , V_{DD_DDR2} , and V_{DD_INT} , there are some considerations that system designs should take into account.

- No power supply should be powered up for an extended period of time (> 200 ms) before another supply starts to ramp up.
- If V_{DD_INT} power supply comes up after V_{DD_EXT}, any pin, such as RESETOUT and RESET, may actually drive momentarily until the V_{DD INT} rail has powered up.

Systems sharing these signals on the board must determine if there are any issues that need to be addressed based on this behavior.

Note that during power-up, when the V_{DD_INT} power supply comes up after V_{DD_EXT} , a leakage current of the order of threestate leakage current pull-up, pull-down may be observed on any pin, even if that pin is an input only (for example the RESET pin) until the V_{DD_INT} rail has powered up.

Table 18.	Power-U	p Sequenci	ng Timing R	equirements	(Processor Startup)
-----------	---------	------------	-------------	-------------	---------------------

Parameter		Min	Max	Unit
Timing Requiremer	nts			
t _{RSTVDD}	$\overline{\text{RESET}} \text{ Low Before V}_{\text{DD}_{\text{INT}}} \text{ or V}_{\text{DD}_{\text{EXT}}} \text{ or V}_{\text{DD}_{\text{DDR2}}} \text{ On}$	0		ms
t _{IVDD-EVDD}	V _{DD_INT} On Before V _{DD_EXT}	-200	+200	ms
t _{EVDD_DDR2VDD}	V _{DD_EXT} On Before V _{DD_DDR2}	-200	+200	ms
t _{CLKVDD} ¹	CLKIN Valid After V_{DD_INT} or V_{DD_EXT} or V_{DD_DDR2} Valid	0	200	ms
t _{CLKRST}	CLKIN Valid Before RESET Deasserted	10 ²		μs
t _{PLLRST}	PLL Control Setup Before RESET Deasserted	20 ³		μs
Switching Characte	pristic			
t _{CORERST}	Core Reset Deasserted After RESET Deasserted	$4096 \times t_{CK} + 2 \times t_{CCL}$	К ^{4, 5}	

¹Valid V_{DD_INT} assumes that the supply is fully ramped to its nominal value. Voltage ramp rates can vary from microseconds to hundreds of milliseconds depending on the design of the power supply subsystem.

² Assumes a stable CLKIN signal, after meeting worst-case startup timing of crystal oscillators. Refer to your crystal oscillator manufacturer's data sheet for startup time. Assume a 25 ms maximum oscillator startup time if using the XTAL pin and internal oscillator circuit in conjunction with an external crystal.

³Based on CLKIN cycles.

⁴ Applies after the power-up sequence is complete. Subsequent resets require a minimum of four CLKIN cycles for RESET to be held low in order to properly initialize and propagate default states at all I/O pins.

⁵ The 4096 cycle count depends on t_{SRST} specification in Table 20. If setup time is not met, one additional CLKIN cycle may be added to the core reset time, resulting in 4097 cycles maximum.

Figure 6. Power-Up Sequencing

Clock Input

Table 19. Clock Input

			400 MHz ¹		450 MHz ²	
Parameter		Min	Max	Min	Max	Unit
Timing Req	quirements					
t _{CK}	CLKIN Period	15 ³	100	13.26	100	ns
t _{CKL}	CLKIN Width Low	7.5	45	6.63	45	ns
t _{CKH}	CLKIN Width High	7.5	45	6.63	45	ns
t _{CKRF}	CLKIN Rise/Fall (0.4 V to 2.0 V)		3 ⁴		3 ⁴	ns
t _{CCLK} ⁵	CCLK Period	2.5	10	2.22	10	ns
f _{VCO} ⁶	VCO Frequency	200	900	200	900	MHz
t _{CKJ} ^{7, 8}	CLKIN Jitter Tolerance	-250	+250	-250	+250	ps

¹Applies to all 400 MHz models. See Ordering Guide on Page 74.

² Applies to all 450 MHz models. See Ordering Guide on Page 74.

³ Applies only for CLK_CFG1-0 = 00 and default values for PLL control bits in PMCTL.

⁴Guaranteed by simulation but not tested on silicon.

⁵ Any changes to PLL control bits in the PMCTL register must meet core clock timing specification t_{CCLK}.

⁶See Figure 5 on Page 24 for VCO diagram.

⁷ Actual input jitter should be combined with ac specifications for accurate timing analysis.

⁸ Jitter specification is maximum peak-to-peak time interval error (TIE) jitter.

Figure 7. Clock Input

Clock Signals

The processor can use an external clock or a crystal. See the CLKIN pin description in Table 10. Programs can configure the processor to use its internal clock generator by connecting the necessary components to CLKIN and XTAL. Figure 8 shows the component connections used for a crystal operating in fundamental mode. Note that the clock rate is achieved using a 25 MHz crystal and a PLL multiplier ratio 16:1 (CCLK:CLKIN achieves a clock speed of 400 MHz).

To achieve the full core clock rate, programs need to configure the multiplier bits in the PMCTL register.

***TYPICAL VALUES**

CHOOSE C1 AND C2 BASED ON THE CRYSTAL Y1. CHOOSE R2 TO LIMIT CRYSTAL DRIVE POWER. REFER TO CRYSTAL MANUFACTURER'S SPECIFICATIONS.

Figure 8. Recommended Circuit for Fundamental Mode Crystal Operation

Timer PWM_OUT Cycle Timing

The following timing specification applies to Timer0 and Timer1 in PWM_OUT (pulse-width modulation) mode. Timer signals are routed to the DPI_P14-1 pins through the DPI SRU. Therefore, the timing specifications provided below are valid at the DPI_P14-1 pins.

Table 24. Timer PWM_OUT Timing

Parameter		Min	Max	Unit
Switching Charac	teristic			
t _{PWMO}	Timer Pulse Width Output	$2 \times t_{PCLK} - 1.2$	$2\times(2^{31}-1)\times t_{PCLK}$	ns

Figure 13. Timer PWM_OUT Timing

Timer WDTH_CAP Timing

The following timing specification applies to Timer0 and Timer1 in WDTH_CAP (pulse width count and capture) mode. Timer signals are routed to the DPI_P14-1 pins through the SRU. Therefore, the timing specifications provided below are valid at the DPI_P14-1 pins.

Table 25. Timer Width Capture Timing

Parameter		Min	Max	Unit
Timing Requirem	ent			
t _{PWI}	Timer Pulse Width	$2 \times t_{PCLK}$	$2 \times (2^{31} - 1) \times t_{PCLK}$	ns

Figure 14. Timer Width Capture Timing

Flags

The timing specifications provided below apply to AMI_ADDR23-0 and AMI_DATA7-0 when configured as FLAGS. See Table 10 on Page 14 for more information on flag use.

Table 28. Flags

Parameter		Min	Max	Unit
Timing Requirem	ent			
t _{FIPW}	DPI_P14–1, AMI_ADDR23–0, AMI_DATA7–0, FLAG3–0 IN Pulse Width	$2 \times t_{PCLK} + 3$		ns
Switching Charac	teristic			
t _{FOPW}	DPI_P14–1, AMI_ADDR23–0, AMI_DATA7–0, FLAG3–0 OUT Pulse Width	$2 \times t_{PCLK} - 3$		ns

Figure 17. Flags

NOTES

Figure 25. Link Ports—Transmit (Bit 6 Set)

The t_{sLACH} and t_{HLACH} specifications apply only to the LACK falling edge. If these specifications are met, LCLK would extend and the dotted LCLK falling edge would not occur as shown. The t_{sLACH} and t_{HLACH} requirement apply to the falling edge of LCLK only for the first byte transmitted.

Serial Ports

In slave transmitter mode and master receiver mode the maximum serial port frequency is $f_{PCLK}/8$. To determine whether communication is possible between two devices at clock speed *n*, the following specifications must be confirmed: 1) frame sync delay and frame sync setup and hold, 2) data delay and data setup and hold, and 3) serial clock (SCLK) width. Serial port signals are routed to the DAI_P20-1 pins using the SRU. Therefore, the timing specifications provided below are valid at the DAI_P20-1 pins. In Figure 26 either the rising edge or the falling edge of SCLK (external or internal) can be used as the active sampling edge.

Table 37. Serial Ports—External Clock

Parameter		Min	Max	Unit
Timing Req	uirements			
t _{SFSE} ¹	Frame Sync Setup Before SCLK (Externally Generated Frame Sync in either Transmit or Receive Mode)	2.5		ns
t _{HFSE} ¹	Frame Sync Hold After SCLK (Externally Generated Frame Sync in either Transmit or Receive Mode)	2.5		ns
t _{SDRE} ¹	Receive Data Setup Before Receive SCLK	1.9		ns
t _{HDRE} 1	Receive Data Hold After SCLK	2.5		ns
t _{SCLKW}	SCLK Width	$(t_{PCLK} \times 4) \div 2 - 1.2$		ns
t _{SCLK}	SCLK Period	$t_{PCLK} \times 4$		ns
Switching C	Characteristics			
t _{DFSE} ²	Frame Sync Delay After SCLK (Internally Generated Frame Sync in either Transmit or Receive Mode)		10.25	ns
t _{HOFSE} ²	Frame Sync Hold After SCLK (Internally Generated Frame Sync in either Transmit or Receive Mode)	2		ns
t _{DDTE} ²	Transmit Data Delay After Transmit SCLK		8.5	ns
t _{HDTE} ²	Transmit Data Hold After Transmit SCLK	2		ns

¹Referenced to sample edge.

²Referenced to drive edge.

Table 38. Serial Ports—Internal Clock

Parameter		Min	Max	Unit
Timing Req	uirements			
t _{SFSI} 1	Frame Sync Setup Before SCLK (Externally Generated Frame Sync in either Transmit or Receive Mode)	7		ns
t _{HFSI} 1	Frame Sync Hold After SCLK (Externally Generated Frame Sync in either Transmit or Receive Mode)	2.5		ns
t _{SDRI} 1	Receive Data Setup Before SCLK	7		ns
t _{HDRI} 1	Receive Data Hold After SCLK	2.5		ns
Switching C	haracteristics			
t _{DFSI} ²	Frame Sync Delay After SCLK (Internally Generated Frame Sync in Transmit Mode)		4	ns
t _{HOFSI} 2	Frame Sync Hold After SCLK (Internally Generated Frame Sync in Transmit Mode)	-1.0		ns
t _{DFSIR} ²	Frame Sync Delay After SCLK (Internally Generated Frame Sync in Receive Mode)		9.75	ns
t _{HOFSIR} ²	Frame Sync Hold After SCLK (Internally Generated Frame Sync in Receive Mode)	-1.0		ns
t _{DDTI} ²	Transmit Data Delay After SCLK		3.25	ns
t _{HDTI} ²	Transmit Data Hold After SCLK	-1.25		ns
t _{SCLKIW}	Transmit or Receive SCLK Width	$2 \times t_{PCLK} - 1.2$	$2 \times t_{PCLK} + 1.5$	ns

¹Referenced to the sample edge.

²Referenced to drive edge.

Table 39. Serial Ports—Enable and Three-State

Parameter	Parameter Min Max		Unit	
Switching Cl	haracteristics			
t _{DDTEN} 1	Data Enable from External Transmit SCLK	2		ns
t _{DDTTE} ¹	Data Disable from External Transmit SCLK		11.5	ns
t _{DDTIN} 1	Data Enable from Internal Transmit SCLK	-1		ns

¹Referenced to drive edge.

Input Data Port (IDP)

The timing requirements for the IDP are given in Table 42. IDP signals are routed to the DAI_P20-1 pins using the SRU. Therefore, the timing specifications provided below are valid at the DAI_P20-1 pins.

Table 42. Input Data Port (IDP)

Parameter		Min	Мах	Unit
Timing Requ	rements			
t _{SISFS} 1	Frame Sync Setup Before Serial Clock Rising Edge	3.8		ns
t _{SIHFS} ¹	Frame Sync Hold After Serial Clock Rising Edge	2.5		ns
t _{SISD} ¹	Data Setup Before Serial Clock Rising Edge	2.5		ns
t _{SIHD} 1	Data Hold After Serial Clock Rising Edge	2.5		ns
t _{IDPCLKW}	Clock Width	$(t_{PCLK} \times 4) \div 2$	2 – 1	ns
t _{IDPCLK}	Clock Period	$t_{PCLK} \times 4$		ns

¹ The serial clock, data, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync signals can also come via PCG or SPORTs. The PCG's input can be either CLKIN or any of the DAI pins.

Figure 30. IDP Master Timing

Parallel Data Acquisition Port (PDAP)

The timing requirements for the PDAP are provided in Table 43. PDAP is the parallel mode operation of channel 0 of the IDP. For details on the operation of the PDAP, see the PDAP chapter of the *ADSP-214xx SHARC Processor Hardware Reference.*

Table 43. Parallel Data Acquisition Port (PDAP)

Parameter		Min	Мах	Unit
Timing Requireme	nts			
t _{SPHOLD} 1	PDAP_HOLD Setup Before PDAP_CLK Sample Edge	2.5		ns
t _{HPHOLD} 1	PDAP_HOLD Hold After PDAP_CLK Sample Edge	2.5		ns
t _{PDSD} ¹	PDAP_DAT Setup Before Serial Clock PDAP_CLK Sample Edge	3.85		ns
t _{PDHD} ¹	PDAP_DAT Hold After Serial Clock PDAP_CLK Sample Edge	2.5		ns
t _{PDCLKW}	Clock Width	$(t_{PCLK} \times 4) \div 2 - 3$		ns
t _{PDCLK}	Clock Period	$t_{PCLK} \times 4$		ns
Switching Charact	teristics			
t _{PDHLDD}	Delay of PDAP Strobe After Last PDAP_CLK Capture Edge for a Word	$2 \times t_{PCLK} + 3$		ns
t _{PDSTRB}	PDAP Strobe Pulse Width	$2 \times t_{PCLK} - 1$		ns

¹ The 20 bits of external PDAP data can be provided through the AMI_ADDR23-4 or DAI pins. Source pins for serial clock and frame sync are 1) AMI_ADDR3-2 pins, 2) DAI pins.

Figure 31. PDAP Timing

Table 49. S/PDIF Transmitter Left-Justified Mode

Parameter		Nominal	Unit
Timing Requirement			
t _{LJD}	LRCLK to MSB Delay in Left-Justified Mode	0	SCLK

Figure 37. Left-Justified Mode

S/PDIF Transmitter Input Data Timing

The timing requirements for the S/PDIF transmitter are given in Table 50. Input signals are routed to the DAI_P20-1 pins using the SRU. Therefore, the timing specifications provided below are valid at the DAI_P20-1 pins.

Table 50.	S/PDIF	Transmitter	Input	Data	Timing
-----------	--------	-------------	-------	------	--------

Parameter Min Max		Max	Unit	
Timing Requirer	Timing Requirements			
t _{SISFS} 1	Frame Sync Setup Before Serial Clock Rising Edge	3		ns
t _{SIHFS} ¹	Frame Sync Hold After Serial Clock Rising Edge	3		ns
t _{SISD} 1	Data Setup Before Serial Clock Rising Edge	3		ns
t _{SIHD} 1	Data Hold After Serial Clock Rising Edge	3		ns
t _{SITXCLKW}	Transmit Clock Width	9		ns
t _{SITXCLK}	Transmit Clock Period	20		ns
t _{SISCLKW}	Clock Width	36		ns
t _{SISCLK}	Clock Period	80		ns

¹The serial clock, data, and frame sync signals can come from any of the DAI pins. The serial clock and frame sync signals can also come via PCG or SPORTs. The PCG's input can be either CLKIN or any of the DAI pins.

Media Local Bus

All the numbers given are applicable for all speed modes (1024 FS, 512 FS, and 256 FS for 3-pin; 512 FS and 256 FS for 5-pin) unless otherwise specified. Please refer to MediaLB specification document rev 3.0 for more details.

Table 55. MLB Interface, 3-Pin Specifications

Paramete	r	Min	Тур	Max	Unit
3-Pin Chard	acteristics				
t _{MLBCLK}	MLB Clock Period 1024 FS		20.3		ns
	512 FS 256 FS		40 81		ns ns
t _{MCKL}	MLBCLK Low Time 1024 FS 512 FS 256 FS	6.1 14 30			ns ns ns
t _{MCKH}	MLBCLK High Time 1024 FS 512 FS 256 FS	9.3 14 30			ns ns ns
t _{MCKR}	MLBCLK Rise Time (V _{IL} to V _{IH}) 1024 FS 512 FS/256 FS			1 3	ns ns
t _{MCKF}	MLBCLK Fall Time (V _{IH} to V _{IL}) 1024 FS 512 FS/256 FS			1 3	ns ns
T _{MPWV} ¹	MLBCLK Pulse Width Variation 1024 FS 512 FS/256 FS			0.7 2.0	ns p-p ns p-p
t _{DSMCF}	DAT/SIG Input Setup Time	1			ns
t _{DHMCF}	DAT/SIG Input Hold Time	1			ns
t _{MCFDZ}	DAT/SIG Output Time to Three-state	0		15	ns
t _{MCDRV} t _{MDZH} ²	DAT/SIG Output Data Delay From MLBCLK Rising Edge Bus Hold Time			8	ns
	1024 FS 512 FS/256 FS	2 4			ns ns
C _{MLB}	DAT/SIG Pin Load 1024 FS 512 FS/256 FS			40 60	pf pf

¹ Pulse width variation is measured at 1.25 V by triggering on one edge of MLBCLK and measuring the spread on the other edge, measured in nanoseconds peak-to-peak (ns p-p).
² The board must be designed to ensure that the high impedance bus does not leave the logic state of the final driven bit for this time period. Therefore, coupling must be minimized while meeting the maximum capacitive load listed.

JTAG Test Access Port and Emulation

Table 57.	JTAG Test Access Port and Emulation
-----------	-------------------------------------

Parameter	Parameter Min Max		Unit	
Timing Requiren	nents			
t _{TCK}	TCK Period	20		ns
t _{STAP}	TDI, TMS Setup Before TCK High	5		ns
t _{HTAP}	TDI, TMS Hold After TCK High	6		ns
t _{SSYS} ¹	System Inputs Setup Before TCK High	7		ns
t _{HSYS} ¹	System Inputs Hold After TCK High	18		ns
t _{TRSTW}	TRST Pulse Width	$4 \times t_{CK}$		ns
Switching Chara	cteristics			
t _{DTDO}	TDO Delay from TCK Low		10	ns
t _{DSYS} ²	System Outputs Delay After TCK Low		$t_{CK} \div 2 + 7$	ns

¹System Inputs = AMI_DATA, DDR2_DATA, CLKCFG1-0, BOOTCFG2-0 RESET, DAI, DPI, FLAG3-0.

²System Outputs = AMI_ADDR/DATA, DDR2_ADDR/DATA, AMI_CTRL, DDR2_CTRL, DAI, DPI, FLAG3-0, EMU.

Figure 45. IEEE 1149.1 JTAG Test Access Port

Figure 57. Typical Output Rise/Fall Delay DDR Pad D (V_{DD EXT} = Min)

Figure 58. Typical Output Rise/Fall Delay DDR Pad C (V_{DD EXT} = Max)

Figure 59. Typical Output Rise/Fall Delay DDR Pad D $(V_{DD_EXT} = Max)$

THERMAL CHARACTERISTICS

The processors are rated for performance over the temperature range specified in Operating Conditions on Page 19.

Table 59 airflow measurements comply with JEDEC standards JESD51-2 and JESD51-6, and the junction-to-board measurement complies with JESD51-8. Test board design complies with JEDEC standards JESD51-7 (CSP_BGA). The junction-to-case measurement complies with MIL- STD-883. All measurements use a 2S2P JEDEC test board.

To determine the junction temperature of the device while on the application PCB use:

$$T_{I} = T_{CASE} + (\Psi_{IT} \times P_{D})$$

where:

 T_I = junction temperature (°C)

 T_{CASE} = case temperature (°C) measured at the top center of the package

 Ψ_{JT} = junction-to-top (of package) characterization parameter is the typical value from Table 59.

 P_D = power dissipation

Values of θ_{JA} are provided for package comparison and PCB design considerations. θ_{JA} can be used for a first order approximation of T_J by the equation:

$$T_J \;=\; T_A + (\,\theta_{JA} \times P_D)$$

where:

 T_A = ambient temperature °C

Values of θ_{JC} are provided for package comparison and PCB design considerations when an external heat sink is required.

CSP_BGA BALL ASSIGNMENT—STANDARD MODELS

Table 62 lists the standard model CSP_BGA ball assignments by signal.

Table 62.	CSP	BGA	Ball	Assignmen	t (Alı	phabetica	ıl by	Signa	l)
					- (-,

Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.
AGND	H02	BOOT_CFG2	H03	DDR2_BA0	C18	DPI_P03	T01
AMI_ACK	R10	CLK_CFG0	G01	DDR2_BA1	C17	DPI_P04	R01
AMI_ADDR0	V16	CLK_CFG1	G02	DDR2_BA2	B18	DPI_P05	P01
AMI_ADDR01	U16	CLKIN	L01	DDR2_CAS	C07	DPI_P06	P02
AMI_ADDR02	T16	DAI_P01	R06	DDR2_CKE	E01	DPI_P07	P03
AMI_ADDR03	R16	DAI_P02	V05	DDR2_CLK0	A07	DPI_P08	P04
AMI_ADDR04	V15	DAI_P03	R07	DDR2_CLK0	B07	DPI_P09	N01
AMI_ADDR05	U15	DAI_P04	R03	DDR2_CLK1	A13	DPI_P10	N02
AMI_ADDR06	T15	DAI_P05	U05	DDR2_CLK1	B13	DPI_P11	N03
AMI_ADDR07	R15	DAI_P06	T05	DDR2_CS0	C01	DPI_P12	N04
AMI_ADDR08	V14	DAI_P07	V06	DDR2_CS1	D01	DPI_P13	M03
AMI_ADDR09	U14	DAI_P08	V02	DDR2_CS2	C02	DPI_P14	M04
AMI_ADDR10	T14	DAI_P09	R05	DDR2_CS3	D02	EMU	K02
AMI_ADDR11	R14	DAI_P10	V04	DDR2_DATA0	B02	FLAG0	R08
AMI_ADDR12	V13	DAI_P11	U04	DDR2_DATA01	A02	FLAG1	V07
AMI_ADDR13	U13	DAI_P12	T04	DDR2_DATA02	B03	FLAG2	U07
AMI_ADDR14	T13	DAI_P13	U06	DDR2_DATA03	A03	FLAG3	T07
AMI_ADDR15	R13	DAI_P14	U02	DDR2_DATA04	B05	GND	A01
AMI_ADDR16	V12	DAI_P15	R04	DDR2_DATA05	A05	GND	A18
AMI_ADDR17	U12	DAI_P16	V03	DDR2_DATA06	B06	GND	C04
AMI_ADDR18	T12	DAI_P17	U03	DDR2_DATA07	A06	GND	C06
AMI_ADDR19	R12	DAI_P18	T03	DDR2_DATA08	B08	GND	C08
AMI_ADDR20	V11	DAI_P19	T06	DDR2_DATA09	A08	GND	D05
AMI_ADDR21	U11	DAI_P20	T02	DDR2_DATA10	B09	GND	D07
AMI_ADDR22	T11	DDR2_ADDR0	D13	DDR2_DATA11	A09	GND	D09
AMI_ADDR23	R11	DDR2_ADDR01	C13	DDR2_DATA12	A11	GND	D10
AMI_DATA0	U18	DDR2_ADDR02	D14	DDR2_DATA13	B11	GND	D17
AMI_DATA1	T18	DDR2_ADDR03	C14	DDR2_DATA14	A12	GND	E03
AMI_DATA2	R18	DDR2_ADDR04	B14	DDR2_DATA15	B12	GND	E05
AMI_DATA3	P18	DDR2_ADDR05	A14	DDR2_DM0	C03	GND	E12
AMI_DATA4	V17	DDR2_ADDR06	D15	DDR2_DM1	C11	GND	E13
AMI_DATA5	U17	DDR2_ADDR07	C15	DDR2_DQS0	A04	GND	E16
AMI_DATA6	T17	DDR2_ADDR08	B15	DDR2_DQS0	B04	GND	F01
AMI_DATA7	R17	DDR2_ADDR09	A15	DDR2_DQS1	A10	GND	F02
AMI_MS0	T10	DDR2_ADDR10	D16	DDR2_DQS1	B10	GND	F04
AMI_MS1	U10	DDR2_ADDR11	C16	DDR2_ODT	B01	GND	F14
AMI_RD	J04	DDR2_ADDR12	B16	DDR2_RAS	C09	GND	F16
AMI_WR	V10	DDR2_ADDR13	A16	DDR2_WE	C10	GND	G05
BOOT_CFG0	J02	DDR2_ADDR14	B17	DPI_P01	R02	GND	G07
BOOT_CFG1	J03	DDR2_ADDR15	A17	DPI_P02	U01	GND	G08

©2013 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D07900-0-3/13(B)

www.analog.com

Rev. B | Page 76 of 76 | March 2013