



Welcome to E-XFL.COM

#### Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

#### Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

### Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

#### Details

| Product Status          | Active                                                               |
|-------------------------|----------------------------------------------------------------------|
| Туре                    | Floating Point                                                       |
| Interface               | DAI, DPI, EBI/EMI, I <sup>2</sup> C, SCI, SPI, SSP, UART/USART       |
| Clock Rate              | 400MHz                                                               |
| Non-Volatile Memory     | External                                                             |
| On-Chip RAM             | 5Mbit                                                                |
| Voltage - I/O           | 3.30V                                                                |
| Voltage - Core          | 1.05V                                                                |
| Operating Temperature   | -40°C ~ 85°C (TA)                                                    |
| Mounting Type           | Surface Mount                                                        |
| Package / Case          | 324-BGA, CSPBGA                                                      |
| Supplier Device Package | 324-CSPBGA (19x19)                                                   |
| Purchase URL            | https://www.e-xfl.com/product-detail/analog-devices/adsp-21469bbcz-3 |
|                         |                                                                      |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Using the DM bus and PM buses, with one bus dedicated to a memory block, assures single-cycle execution with two data transfers. In this case, the instruction must be available in the cache.

The memory map in Table 3 displays the internal memory address space of the processors. The 48-bit space section describes what this address range looks like to an instruction that retrieves 48-bit memory. The 32-bit section describes what this address range looks like to an instruction that retrieves 32bit memory.

### **On-Chip Memory Bandwidth**

The internal memory architecture allows programs to have four accesses at the same time to any of the four blocks (assuming there are no block conflicts). The total bandwidth is realized using the DMD and PMD buses ( $2 \times 64$ -bits, CCLK speed) and the IOD0/1 buses ( $2 \times 32$ -bit, PCLK speed).

#### Nonsecured ROM

For nonsecured ROM, booting modes are selected using the BOOTCFG pins as shown in Table 8 on Page 10. In this mode, emulation is always enabled, and the IVT is placed on the internal RAM except for the case where BOOTCFGx = 011.

### **ROM-Based Security**

The ROM security feature provides hardware support for securing user software code by preventing unauthorized reading from the internal code when enabled. When using this feature, the processors do not boot-load any external code, executing exclusively from internal ROM. Additionally, the processors are not freely accessible via the JTAG port. Instead, a unique 64-bit key, which must be scanned in through the JTAG or Test Access Port will be assigned to each customer.

### **Digital Transmission Content Protection**

The DTCP specification defines a cryptographic protocol for protecting audio entertainment content from illegal copying, intercepting, and tampering as it traverses high performance digital buses, such as the IEEE 1394 standard. Only legitimate entertainment content delivered to a source device via another approved copy protection system (such as the DVD content scrambling system) is protected by this copy protection system.

| IOP Registers 0x0000 0000-0x0003 FFFF |                                                            |                         |                         |  |  |  |
|---------------------------------------|------------------------------------------------------------|-------------------------|-------------------------|--|--|--|
| Long Word (64 Bits)                   | Extended Precision Normal or<br>Instruction Word (48 Bits) | Normal Word (32 Bits)   | Short Word (16 Bits)    |  |  |  |
| Block 0 ROM (Reserved)                | Block 0 ROM (Reserved)                                     | Block 0 ROM (Reserved)  | Block 0 ROM (Reserved)  |  |  |  |
| 0x0004 0000–0x0004 7FFF               | 0x0008 0000–0x0008 AAA9                                    | 0x0008 0000–0x0008 FFFF | 0x0010 0000–0x0011 FFFF |  |  |  |
| Reserved                              | Reserved                                                   | Reserved                | Reserved                |  |  |  |
| 0x0004 8000-0x0004 8FFF               | 0x0008 AAAA–0x0008 BFFF                                    | 0x0009 0000–0x0009 1FFF | 0x0012 0000–0x0012 3FFF |  |  |  |
| Block 0 SRAM                          | Block 0 SRAM                                               | Block 0 SRAM            | Block 0 SRAM            |  |  |  |
| 0x0004 9000–0x0004 EFFF               | 0x0008 C000–0x0009 3FFF                                    | 0x0009 2000–0x0009 DFFF | 0x0012 4000–0x0013 BFFF |  |  |  |
| Reserved                              | Reserved                                                   | Reserved                | Reserved                |  |  |  |
| 0x0004 F000–0x0004 FFFF               | 0x0009 4000–0x0009 FFFF                                    | 0x0009 E000–0x0009 FFFF | 0x0013 C000–0x0013 FFFF |  |  |  |
| Block 1 ROM (Reserved)                | Block 1 ROM (Reserved)                                     | Block 1 ROM (Reserved)  | Block 1 ROM (Reserved)  |  |  |  |
| 0x0005 0000–0x0005 7FFF               | 0x000A 0000–0x000A AAA9                                    | 0x000A 0000–0x000A FFFF | 0x0014 0000–0x0015 FFFF |  |  |  |
| Reserved                              | Reserved                                                   | Reserved                | Reserved                |  |  |  |
| 0x0005 8000–0x0005 8FFF               | 0x000A AAAA–0x000A BFFF                                    | 0x000B 0000–0x000B 1FFF | 0x0016 0000–0x0016 3FFF |  |  |  |
| Block 1 SRAM                          | Block 1 SRAM                                               | Block 1 SRAM            | Block 1 SRAM            |  |  |  |
| 0x0005 9000–0x0005 EFFF               | 0x000A C000–0x000B 3FFF                                    | 0x000B 2000–0x000B DFFF | 0x0016 4000–0x0017 BFFF |  |  |  |
| Reserved                              | Reserved                                                   | Reserved                | Reserved                |  |  |  |
| 0x0005 F000–0x0005 FFFF               | 0x000B 4000–0x000B FFFF                                    | 0x000B E000–0x000B FFFF | 0x0017 C000–0x0017 FFFF |  |  |  |
| Block 2 SRAM                          | Block 2 SRAM                                               | Block 2 SRAM            | Block 2 SRAM            |  |  |  |
| 0x0006 0000–0x0006 3FFF               | 0x000C 0000-0x000C 5554                                    | 0x000C 0000–0x000C 7FFF | 0x0018 0000–0x0018 FFFF |  |  |  |
| Reserved                              | Reserved                                                   | Reserved                | Reserved                |  |  |  |
| 0x0006 4000– 0x0006 FFFF              | 0x000C 5555–0x000D FFFF                                    | 0x000C 8000–0x000D FFFF | 0x0019 0000–0x001B FFFF |  |  |  |
| Block 3 SRAM                          | Block 3 SRAM                                               | Block 3 SRAM            | Block 3 SRAM            |  |  |  |
| 0x0007 0000–0x0007 3FFF               | 0x000E 0000–0x000E 5554                                    | 0x000E 0000–0x000E 7FFF | 0x001C 0000–0x001C FFFF |  |  |  |
| Reserved                              | Reserved                                                   | Reserved                | Reserved                |  |  |  |
| 0x0007 4000-0x0007 FFFF               | 0x000E 5555–0x0000F FFFF                                   | 0x000E 8000–0x000F FFFF | 0x001D 0000–0x001F FFFF |  |  |  |

Table 3. Internal Memory Space1

<sup>1</sup>Some processors include a customer-definable ROM block. ROM addresses on these models are not reserved as shown in this table. Please contact your Analog Devices sales representative for additional details.

### Table 10. Pin Descriptions (Continued)

|                                                     |                         | State During/After     |                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------|-------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                                                | Туре                    | Reset                  | Description                                                                                                                                                                                                                                                            |
| DDR2_ADDR <sub>15-0</sub>                           | O/T                     | High-Z/<br>driven low  | DDR2 Address. DDR2 address pins.                                                                                                                                                                                                                                       |
| DDR2_BA <sub>2-0</sub>                              | 0/Т                     | High-Z/<br>driven low  | <b>DDR2 Bank Address Input.</b> Defines which internal bank an ACTIVATE, READ, WRITE, or PRECHARGE command is being applied to. BA <sub>2-0</sub> define which mode registers, including MR, EMR, EMR(2), and EMR(3) are loaded during the LOAD MODE REGISTER command. |
| DDR2_CAS                                            | 0/Т                     | High-Z/<br>driven high | <b>DDR2 Column Address Strobe.</b> Connect to DDR2_CAS pin; in conjunction with other DDR2 command pins, defines the operation for the DDR2 to perform.                                                                                                                |
| DDR2_CKE                                            | 0/Т                     | High-Z/<br>driven low  | DDR2 Clock Enable Output to DDR2. Active high signal. Connect to DDR2 CKE signal.                                                                                                                                                                                      |
| DDR2_CS <sub>3-0</sub>                              | 0/Т                     | High-Z/<br>driven high | <b>DDR2 Chip Select.</b> All commands are masked when $\overline{DDR2\_CS}_{3-0}$ is driven high.<br>DDR2_CS <sub>3-0</sub> are decoded memory address lines. Each $\overline{DDR2\_CS}_{3-0}$ line selects the corresponding external bank.                           |
| DDR2_DATA <sub>15-0</sub>                           | I/O/T                   | High-Z                 | DDR2 Data In/Out. Connect to corresponding DDR2_DATA pins.                                                                                                                                                                                                             |
| DDR2_DM <sub>1-0</sub>                              | O/T                     | High-Z/<br>driven high | <b>DDR2 Input Data Mask.</b> Mask for the DDR2 write data if driven high. Sampled on both edges of DDR2_DQS at DDR2 side. DM0 corresponds to DDR2_DATA 7–0 and DM1 corresponds to DDR2_DATA15–8.                                                                       |
| DDR2_DQS <sub>1-0</sub><br>DDR2_DQS <sub>1-0</sub>  | l/O/T<br>(Differential) | High-Z                 | <b>Data Strobe.</b> Output with Write Data. Input with Read Data. DQS0 corresponds to DDR2_DATA 7–0 and DQS1 corresponds to DDR2_DATA 15–8. Based on software control via the DDR2CTL3 register, this pin can be single-ended or differential.                         |
| DDR2_RAS                                            | 0/Т                     | High-Z/<br>driven high | <b>DDR2 Row Address Strobe.</b> Connect to DDR2_RAS pin; in conjunction with other DDR2 command pins, defines the operation for the DDR2 to perform.                                                                                                                   |
| DDR2_WE                                             | 0/Т                     | High-Z/<br>driven high | <b>DDR2 Write Enable.</b> Connect to DDR2_WE pin; in conjunction with other DDR2 command pins, defines the operation for the DDR2 to perform.                                                                                                                          |
| DDR2_CLK0,<br>DDR2_CLK0,<br>DDR2_CLK1,<br>DDR2_CLK1 | O/T<br>(Differential)   | High-Z/<br>driven low  | <b>DDR2 Memory Clocks.</b> Two differential outputs available via software control (DDR2CTL0 register). Free running, minimum frequency not guaranteed during reset.                                                                                                   |
| DDR2_ODT                                            | 0/Т                     | High-Z/<br>driven low  | <b>DDR2 On Die Termination.</b> ODT pin when driven high (along with other requirements) enables the DDR2 termination resistances. ODT is enabled/disabled regardless of read or write commands.                                                                       |

The following symbols appear in the Type column of Table 10: **A** = asynchronous, **I** = input, **O** = output, **S** = synchronous, **A/D** = active drive, **O/D** = open-drain, and **T** = three-state, **ipd** = internal pull-down resistor, **ipu** = internal pull-up resistor.

The internal pull-up (ipu) and internal pull-down (ipd) resistors are designed to hold the internal path from the pins at the expected logic levels. To pull-up or pull-down the external pads to the expected logic levels, use external resistors. Internal pull-up/pull-down resistors cannot be enabled/disabled and the value of these resistors cannot be programmed. The range of an ipu resistor can be between  $26 \text{ k}\Omega$ -

63 k $\Omega$ . The range of an ipd resistor can be between 31 k $\Omega$ -85 k $\Omega$ . The three-state voltage of ipu pads will not reach to full the V<sub>DD\_EXT</sub> level; at typical conditions the voltage is in the range of 2.3 V to 2.7 V.

In this table, the DDR2 pins are SSTL18 compliant. All other pins are LVTTL compliant.

#### Table 10. Pin Descriptions (Continued)

|                         |           | State During/After |                                                                                                                                                                                                                                                                                          |
|-------------------------|-----------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Name                    | Туре      | Reset              | Description                                                                                                                                                                                                                                                                              |
| RESET                   | 1         |                    | <b>Processor Reset.</b> Resets the processor to a known state. Upon deassertion, there is a 4096 CLKIN cycle latency for the PLL to lock. After this time, the core begins program execution from the hardware reset vector address. The RESET input must be asserted (low) at power-up. |
| RESETOUT/<br>RUNRSTIN   | I/O (ipu) |                    | <b>Reset Out/Running Reset In.</b> The default setting on this pin is reset out. This pin also has a second function as RUNRSTIN which is enabled by setting bit 0 of the RUNRSTCTL register. For more information, see the <i>ADSP-214xx SHARC Processor Hardware Reference</i> .       |
| BOOT_CFG <sub>2-0</sub> | I         |                    | <b>Boot Configuration Select.</b> These pins select the boot mode for the processor. The BOOT_CFG pins must be valid before RESET (hardware and software) is de-asserted.                                                                                                                |

The following symbols appear in the Type column of Table 10: **A** = asynchronous, **I** = input, **O** = output, **S** = synchronous, **A/D** = active drive, **O/D** = open-drain, and **T** = three-state, **ipd** = internal pull-down resistor, **ipu** = internal pull-up resistor.

The internal pull-up (ipu) and internal pull-down (ipd) resistors are designed to hold the internal path from the pins at the expected logic levels. To pull-up or pull-down the external pads to the expected logic levels, use external resistors. Internal pull-up/pull-down resistors cannot be enabled/disabled and the value of these resistors cannot be programmed. The range of an ipu resistor can be between  $26 \text{ k}\Omega$ –

63 k $\Omega$ . The range of an ipd resistor can be between 31 k $\Omega$ -85 k $\Omega$ . The three-state voltage of ipu pads will not reach to full the V<sub>DD\_EXT</sub> level; at typical conditions the voltage is in the range of 2.3 V to 2.7 V.

In this table, the DDR2 pins are SSTL18 compliant. All other pins are LVTTL compliant.

### Table 11. Pin List, Power and Ground

| Name                              | Туре | Description                                                            |
|-----------------------------------|------|------------------------------------------------------------------------|
| V <sub>DD_INT</sub>               | Р    | Internal Power                                                         |
| V <sub>DD_EXT</sub>               | Р    | External Power                                                         |
| V <sub>DD_A</sub>                 | Р    | Analog Power for PLL                                                   |
| V <sub>DD_THD</sub>               | Р    | Thermal Diode Power; if thermal diode is not used then this pin can be |
| V <sub>DD_DDR2</sub> <sup>1</sup> | Р    | DDR2 Interface Power                                                   |
| V <sub>REF</sub>                  | Р    | DDR2 Input Voltage Reference                                           |
| GND                               | G    | Ground                                                                 |
| AGND                              | G    | Analog Ground                                                          |

<sup>1</sup>Applies to DDR2 signals.

## **ELECTRICAL CHARACTERISTICS**

|                                   |                                          |                                                                                  | 450 MHz                      | 40  | 0 MHz                        |      |
|-----------------------------------|------------------------------------------|----------------------------------------------------------------------------------|------------------------------|-----|------------------------------|------|
| Parameter <sup>1</sup>            | Description                              | Test Conditions                                                                  | Min Max                      | Min | Max                          | Unit |
| V <sub>OH</sub> <sup>2</sup>      | High Level Output<br>Voltage             | @ $V_{DD_{EXT}} = Min, I_{OH} = -1.0 mA^3$                                       | 2.4                          | 2.4 |                              | V    |
| V <sub>OL</sub> <sup>2</sup>      | Low Level Output<br>Voltage              | $@$ V <sub>DD_EXT</sub> = Min, I <sub>OL</sub> = 1.0 mA <sup>3</sup>             | 0.4                          |     | 0.4                          | V    |
| V <sub>OH_DDR2</sub>              | High Level Output<br>Voltage for DDR2    | $@V_{DD_DDR} = Min, I_{OH} = -13.4 mA$                                           | 1.4                          | 1.4 |                              | V    |
| V <sub>OL_DDR2</sub>              | Low Level Output<br>Voltage for DDR2     | $@V_{DD_DR} = Min, IOL = 13.4 mA$                                                | 0.29                         |     | 0.29                         | V    |
| I <sub>IH</sub> <sup>4, 5</sup>   | High Level Input<br>Current              | @ $V_{DD\_EXT} = Max$ ,<br>$V_{IN} = V_{DD\_EXT} Max$                            | 10                           |     | 10                           | μΑ   |
| I <sub>IL</sub> <sup>4, 6</sup>   | Low Level Input<br>Current               | $@V_{DD\_EXT} = Max, V_{IN} = 0 V$                                               | 10                           |     | 10                           | μΑ   |
| I <sub>ILPU</sub> <sup>5</sup>    | Low Level Input<br>Current Pull-up       | $@V_{DD\_EXT} = Max, V_{IN} = 0 V$                                               | 200                          |     | 200                          | μΑ   |
| I <sub>IHPD</sub> <sup>6</sup>    | High Level Input<br>Current Pull-down    | @ $V_{DD\_EXT} = Max$ ,<br>$V_{IN} = V_{DD\_EXT} Max$                            | 200                          |     | 200                          | μΑ   |
| I <sub>OZH</sub> <sup>7, 8</sup>  | Three-State Leakage<br>Current           | @ $V_{DD_{EXT}}/V_{DD_{DDR}} = Max,$<br>$V_{IN} = V_{DD_{EXT}}/V_{DD_{DDR}} Max$ | 10                           |     | 10                           | μΑ   |
| I <sub>OZL</sub> <sup>7, 9</sup>  | Three-State Leakage<br>Current           | @ $V_{DD_{EXT}}/V_{DD_{DDR}} = Max,$<br>$V_{IN} = 0 V$                           | 10                           |     | 10                           | μA   |
| I <sub>OZLPU</sub> <sup>8</sup>   | Three-State Leakage<br>Current Pull-up   | $@V_{DD\_EXT} = Max, V_{IN} = 0 V$                                               | 200                          |     | 200                          | μΑ   |
| I <sub>OZHPD</sub> 9              | Three-State Leakage<br>Current Pull-down | @ $V_{DD\_EXT} = Max$ ,<br>$V_{IN} = V_{DD\_EXT} Max$                            | 200                          |     | 200                          | μΑ   |
| $I_{DD_{INT}}^{10}$               | Supply Current<br>(Internal)             | f <sub>CCLK</sub> > 0 MHz                                                        | Table 13 +<br>Table 14 × ASF |     | Table 13 +<br>Table 14 × ASF | mA   |
| $I_{DD_A}^{11}$                   | Supply Current<br>(Analog)               | $V_{DD_A} = Max$                                                                 | 10                           |     | 10                           | mA   |
| C <sub>IN</sub> <sup>12, 13</sup> | Input Capacitance                        | T <sub>CASE</sub> = 25°C                                                         | 5                            |     | 5                            | pF   |

<sup>1</sup>Specifications subject to change without notice.

<sup>2</sup>Applies to output and bidirectional pins: AMI\_ADDR23-0, AMI\_DATA7-0, AMI\_RD, AMI\_WR, FLAG3-0, DAI\_Px, DPI\_Px, EMU, TDO.

<sup>3</sup>See Output Drive Currents on Page 62 for typical drive current capabilities.

<sup>4</sup>Applies to input pins: BOOTCFGx, CLKCFGx, TCK, RESET, CLKIN.

<sup>5</sup> Applies to input pins with internal pull-ups: TRST, TMS, TDI.

<sup>6</sup>Applies to input pins with internal pull-downs: MLBCLK

<sup>7</sup>Applies to three-statable pins: all DDR2 pins.

<sup>8</sup>Applies to three-statable pins with pull-ups: DAI\_Px, DPI\_Px, EMU.

<sup>9</sup>Applies to three-statable pins with pull-downs: MLBDAT, MLBSIG, MLBDO, MLBSO, LDAT07-0, LDAT17-0, LCLK0, LCLK1, LACK0, LACK1.

<sup>10</sup>See Engineer-to-Engineer Note EE-348 "Estimating Power Dissipation for ADSP-214xx SHARC Processors" for further information.

<sup>11</sup>Characterized but not tested.

<sup>12</sup>Applies to all signal pins.

<sup>13</sup>Guaranteed, but not tested.

| f <sub>CCLK</sub><br>(MHz) <sup>2</sup> | V <sub>DD_INT</sub> (V) <sup>2</sup> |       |        |        |        |  |
|-----------------------------------------|--------------------------------------|-------|--------|--------|--------|--|
|                                         | 0.95 V                               | 1.0 V | 1.05 V | 1.10 V | 1.15 V |  |
| 100                                     | 78                                   | 82    | 86     | 91     | 98     |  |
| 150                                     | 115                                  | 121   | 130    | 136    | 142    |  |
| 200                                     | 150                                  | 159   | 169    | 177    | 188    |  |
| 250                                     | 186                                  | 197   | 208    | 219    | 231    |  |
| 300                                     | 222                                  | 236   | 249    | 261    | 276    |  |
| 350                                     | 259                                  | 275   | 288    | 304    | 319    |  |
| 400                                     | 293                                  | 309   | 328    | 344    | 361    |  |
| 450                                     | N/A                                  | N/A   | 366    | 385    | 406    |  |

### Table 14. Dynamic Current in CCLK Domain $-I_{DD_{INT}_{DYNAMIC}}$ (mA, with ASF = 1.0)<sup>1</sup>

<sup>1</sup>The values are not guaranteed as standalone maximum specifications. They must be combined with static current per the equations of Electrical Characteristics on Page 20. <sup>2</sup>Valid frequency and voltage ranges are model-specific. See Operating Conditions on Page 19.

### **ABSOLUTE MAXIMUM RATINGS**

Stresses greater than those listed in Table 15 may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

### **PACKAGE INFORMATION**

The information presented in Figure 4 and Table 16 provides details about the package branding for the processor. For a complete listing of product availability, see Ordering Guide on Page 74.

| ANALOG<br>DEVICES      |
|------------------------|
| ADSP-2146x             |
| tppZ-cc                |
| vvvvv.x n.n            |
| yyww country_of_origin |
| SHARC                  |

Figure 4. Typical Package Brand

#### Table 16. Package Brand Information<sup>1</sup>

| Brand Key | Field Description          |
|-----------|----------------------------|
| t         | Temperature Range          |
| рр        | Package Type               |
| Z         | RoHS Compliant Option      |
| сс        | See Ordering Guide         |
| ννννν.χ   | Assembly Lot Code          |
| n.n       | Silicon Revision           |
| #         | RoHS Compliant Designation |
| ууww      | Date Code                  |

<sup>1</sup>Non-automotive only. For branding information specific to automotive products, contact Analog Devices, Inc.

| Table 15.  | Absolute | Maximum        | Ratings  |
|------------|----------|----------------|----------|
| I able 15. | moonute  | 171uAIIII uIII | Itutingo |

| Parameter                                            | Rating                         |
|------------------------------------------------------|--------------------------------|
| Internal (Core) Supply Voltage ( $V_{DD_{INT}}$ )    | –0.3 V to +1.32 V              |
| Analog (PLL) Supply Voltage (V <sub>DD_A</sub> )     | –0.3 V to +1.15 V              |
| External (I/O) Supply Voltage (V <sub>DD_EXT</sub> ) | –0.3 V to +3.6 V               |
| Thermal Diode Supply Voltage                         | –0.3 V to +3.6 V               |
| (V <sub>DD_THD</sub> )                               |                                |
| DDR2 Controller Supply Voltage                       | –0.3 V to +1.9 V               |
| (V <sub>DD_DDR2</sub> )                              |                                |
| DDR2 Input Voltage                                   | –0.3 V to +1.9 V               |
| Input Voltage                                        | –0.3 V to +3.6 V               |
| Output Voltage Swing                                 | –0.3 V to $V_{DD\_EXT}$ +0.5 V |
| Storage Temperature Range                            | –65°C to +150°C                |
| Junction Temperature While Biased                    | 125°C                          |

### **Clock Input**

#### Table 19. Clock Input

|                                  |                                  |                 | 400 MHz <sup>1</sup> |       | 450 MHz <sup>2</sup> |      |
|----------------------------------|----------------------------------|-----------------|----------------------|-------|----------------------|------|
| Parameter                        |                                  | Min             | Max                  | Min   | Max                  | Unit |
| Timing Req                       | quirements                       |                 |                      |       |                      |      |
| t <sub>CK</sub>                  | CLKIN Period                     | 15 <sup>3</sup> | 100                  | 13.26 | 100                  | ns   |
| t <sub>CKL</sub>                 | CLKIN Width Low                  | 7.5             | 45                   | 6.63  | 45                   | ns   |
| t <sub>CKH</sub>                 | CLKIN Width High                 | 7.5             | 45                   | 6.63  | 45                   | ns   |
| t <sub>CKRF</sub>                | CLKIN Rise/Fall (0.4 V to 2.0 V) |                 | 3 <sup>4</sup>       |       | 3 <sup>4</sup>       | ns   |
| t <sub>CCLK</sub> <sup>5</sup>   | CCLK Period                      | 2.5             | 10                   | 2.22  | 10                   | ns   |
| f <sub>VCO</sub> <sup>6</sup>    | VCO Frequency                    | 200             | 900                  | 200   | 900                  | MHz  |
| t <sub>CKJ</sub> <sup>7, 8</sup> | CLKIN Jitter Tolerance           | -250            | +250                 | -250  | +250                 | ps   |

<sup>1</sup>Applies to all 400 MHz models. See Ordering Guide on Page 74.

<sup>2</sup> Applies to all 450 MHz models. See Ordering Guide on Page 74.

<sup>3</sup> Applies only for CLK\_CFG1-0 = 00 and default values for PLL control bits in PMCTL.

<sup>4</sup>Guaranteed by simulation but not tested on silicon.

<sup>5</sup> Any changes to PLL control bits in the PMCTL register must meet core clock timing specification t<sub>CCLK</sub>.

<sup>6</sup>See Figure 5 on Page 24 for VCO diagram.

<sup>7</sup> Actual input jitter should be combined with ac specifications for accurate timing analysis.

<sup>8</sup> Jitter specification is maximum peak-to-peak time interval error (TIE) jitter.



Figure 7. Clock Input

#### **Clock Signals**

The processor can use an external clock or a crystal. See the CLKIN pin description in Table 10. Programs can configure the processor to use its internal clock generator by connecting the necessary components to CLKIN and XTAL. Figure 8 shows the component connections used for a crystal operating in fundamental mode. Note that the clock rate is achieved using a 25 MHz crystal and a PLL multiplier ratio 16:1 (CCLK:CLKIN achieves a clock speed of 400 MHz).

To achieve the full core clock rate, programs need to configure the multiplier bits in the PMCTL register.



**\*TYPICAL VALUES** 

CHOOSE C1 AND C2 BASED ON THE CRYSTAL Y1. CHOOSE R2 TO LIMIT CRYSTAL DRIVE POWER. REFER TO CRYSTAL MANUFACTURER'S SPECIFICATIONS.

Figure 8. Recommended Circuit for Fundamental Mode Crystal Operation

#### Precision Clock Generator (Direct Pin Routing)

This timing is only valid when the SRU is configured such that the precision clock generator (PCG) takes its inputs directly from the DAI pins (via pin buffers) and sends its outputs directly to the DAI pins. For the other cases, where the PCG's inputs and outputs are not directly routed to/from DAI pins (via pin buffers) there is no timing data available. All timing parameters and switching characteristics apply to external DAI pins (DAI\_P01 – DAI\_P20).

#### Table 27. Precision Clock Generator (Direct Pin Routing)

| Parameter             |                                                                            | Min                                       | Max                                      | Unit       |
|-----------------------|----------------------------------------------------------------------------|-------------------------------------------|------------------------------------------|------------|
| Timing Requi          | rements                                                                    |                                           |                                          |            |
| t <sub>PCGIW</sub>    | Input Clock Period                                                         | t <sub>PCLK</sub> × 4                     |                                          | ns         |
| t <sub>STRIG</sub>    | PCG Trigger Setup Before Falling Edge of PCG Input<br>Clock                | 4.5                                       |                                          | ns         |
| t <sub>HTRIG</sub>    | PCG Trigger Hold After Falling Edge of PCG Input<br>Clock                  | 3                                         |                                          | ns         |
| Switching Ch          | aracteristics                                                              |                                           |                                          |            |
| t <sub>DPCGIO</sub>   | PCG Output Clock and Frame Sync Active Edge Delay<br>After PCG Input Clock | 2.5                                       | 10                                       | ns         |
| t <sub>DTRIGCLK</sub> | PCG Output Clock Delay After PCG Trigger                                   | $2.5 + (2.5 \times t_{PCGIP})$            | $10 + (2.5 \times t_{PCGIP})$            | ns         |
| t <sub>DTRIGFS</sub>  | PCG Frame Sync Delay After PCG Trigger                                     | $2.5 + ((2.5 + D - PH) \times t_{PCGIP})$ | $10 + ((2.5 + D - PH) \times t_{PCGIP})$ | ns         |
| t <sub>PCGOW</sub> 1  | Output Clock Period                                                        | 2 × t <sub>PCGIP</sub> – 1                |                                          | ns         |
| D = FSxDIV, F         | PH = FSxPHASE. For more information, see the ADSP-2                        | 214xx SHARC Processor Hardwa              | re Reference, "Precision Clock G         | enerators" |
| chapter.              |                                                                            |                                           |                                          |            |

<sup>1</sup>Normal mode of operation.



Figure 16. Precision Clock Generator (Direct Pin Routing)

### DDR2 SDRAM Read Cycle Timing

| Table 29. | DDR2 SDRAM | Read Cycle Timing | , V <sub>DD DDR2</sub> | Nominal 1.8 V |
|-----------|------------|-------------------|------------------------|---------------|
|-----------|------------|-------------------|------------------------|---------------|

|                    |                                                                  |      | 200 MHz <sup>1</sup> |      | 225 MHz <sup>1</sup> |                 |
|--------------------|------------------------------------------------------------------|------|----------------------|------|----------------------|-----------------|
| Parameter          |                                                                  | Min  | Max                  | Min  | Max                  | Unit            |
| Timing Req         | uirements                                                        |      |                      |      |                      |                 |
| t <sub>AC</sub>    | Access Window of DDR2_DATA to<br>DDR2_CLKx/DDR2_CLKx             | -1.0 | 1.5                  | -1.0 | 1.5                  | ns              |
| t <sub>DQSCK</sub> | Access Window of DDR2_DQSx/DDR2_DQSx to<br>DDR2_CLKx/DDR2_CLKx   | -1.0 | 1.5                  | -1.0 | 1.5                  | ns              |
| t <sub>DQSQ</sub>  | DQS-DATA skew for DDR2_DQSx and Associated<br>DDR2_DATA signals  |      | 0.450                |      | 0.450                | ns              |
| t <sub>QH</sub>    | DDR2_DATA Hold Time From<br>DDR2_DQSx/DDR2_DQSx                  | 1.9  |                      | 1.71 |                      | ns              |
| t <sub>RPRE</sub>  | Read Preamble                                                    | 0.6  |                      | 0.6  |                      | t <sub>CK</sub> |
| t <sub>RPST</sub>  | Read Postamble                                                   | 0.25 |                      | 0.25 |                      | t <sub>CK</sub> |
| Switching C        | Characteristics                                                  |      |                      |      |                      |                 |
| t <sub>CK</sub>    | DDR2_CLKx/DDR2_CLKx Period                                       | 4.8  |                      | 4.22 |                      | ns              |
| t <sub>CH</sub>    | DDR2_CLKx High Pulse Width                                       | 2.35 | 2.75                 | 2.05 | 2.45                 | ns              |
| t <sub>CL</sub>    | DDR2_CLKx Low Pulse Width                                        | 2.35 | 2.75                 | 2.05 | 2.45                 | ns              |
| t <sub>AS</sub>    | DDR2_ADDR and Control Setup Time Relative to<br>DDR2_CLKx Rising | 1.85 |                      | 1.65 |                      | ns              |
| t <sub>AH</sub>    | DDR2_ADDR and Control Hold Time Relative to<br>DDR2_CLKx Rising  | 1.0  |                      | 0.9  |                      | ns              |

<sup>1</sup>In order to ensure proper operation of the DDR2, all the DDR2 guidelines have to be strictly followed (see Engineer-to-Engineer Note EE-349).



Figure 18. DDR2 SDRAM Controller Input AC Timing

### AMI Write

Use these specifications for asynchronous interfacing to memories. Note that timing for AMI\_ACK, AMI\_DATA, AMI\_RD, AMI\_WR, and strobe timing parameters only apply to asynchronous access mode.

#### Table 32. Memory Write

| Parameter           |                                                                        | Min                                    | Max                             | Unit                          |
|---------------------|------------------------------------------------------------------------|----------------------------------------|---------------------------------|-------------------------------|
| Timing Requi        | rements                                                                |                                        |                                 |                               |
| t <sub>DAAK</sub>   | AMI_ACK Delay from Address, Selects <sup>1, 2</sup>                    |                                        | t <sub>DDR2_CLK</sub> – 9.7 + W | ns                            |
| t <sub>DSAK</sub>   | AMI_ACK Delay from AMI_WR Low <sup>1, 3</sup>                          |                                        | W – 6                           | ns                            |
| Switching Cha       | aracteristics                                                          |                                        |                                 |                               |
| t <sub>DAWH</sub>   | Address, Selects to AMI_WR Deasserted <sup>2</sup>                     | $t_{DDR2\_CLK} - 3.1 + W$              |                                 | ns                            |
| t <sub>DAWL</sub>   | Address, Selects to AMI_WR Low <sup>2</sup>                            | t <sub>DDR2_CLK</sub> – 3              |                                 | ns                            |
| t <sub>WW</sub>     | AMI_WR Pulse Width                                                     | W – 1.3                                |                                 | ns                            |
| t <sub>DDWH</sub>   | Data Setup Before AMI_WR High                                          | $t_{DDR2\_CLK} - 3.0 + W$              |                                 | ns                            |
| t <sub>DWHA</sub>   | Address Hold After AMI_WR Deasserted                                   | H + 0.15                               |                                 | ns                            |
| t <sub>DWHD</sub>   | Data Hold After AMI_WR Deasserted                                      | н                                      |                                 | ns                            |
| t <sub>DATRWH</sub> | Data Disable After AMI_WR Deasserted <sup>4</sup>                      | t <sub>DDR2_CLK</sub> – 1.37 + H       | $t_{DDR2\_CLK} + 4.9 + H$       | ns                            |
| t <sub>WWR</sub>    | AMI_WR High to AMI_WR Low <sup>5</sup>                                 | t <sub>DDR2_CLK</sub> – 1.5 + H        |                                 | ns                            |
| t <sub>DDWR</sub>   | Data Disable Before AMI_RD Low                                         | 2t <sub>DDR2_CLK</sub> – 6             |                                 | ns                            |
| t <sub>WDE</sub>    | AMI_WR Low to Data Enabled                                             | t <sub>DDR2_CLK</sub> – 3.5            |                                 | ns                            |
| W = (number         | of wait states specified in AMICTLx register) $\times$ t <sub>DE</sub> | $_{DR2\_CLK}$ , H = (number of hold cy | cles specified in AMICTLx regi  | ster) × t <sub>DDR2_CLK</sub> |

 $^1\mbox{AMI}\xspace{ACK}$  delay/setup: System must meet  $t_{DAAK},$  or  $t_{DSAK},$  for deassertion of AMI\_ACK (low).

<sup>2</sup> The falling edge of  $\overline{\text{AMI}_{MSx}}$  is referenced.

<sup>3</sup>Note that timing for AMI\_ACK, AMI\_DATA, AMI\_RD, AMI\_WR, and strobe timing parameters only applies to asynchronous access mode.

<sup>4</sup>See Test Conditions on Page 62 for calculation of hold times given capacitive and dc loads.

 $^{5}$  For Write to Write: t<sub>DDR2\_CLK</sub> + H, for both same bank and different bank. For Write to Read: (3 × t<sub>DDR2\_CLK</sub>) + H, for the same bank and different banks.



Figure 21. AMI Write

### **Shared Memory Bus Request**

Use these specifications for passing bus mastership between processors (BRx).

### Table 33. Shared Memory Bus Request

| Paramete          | r                            | Min Max                 | Unit |
|-------------------|------------------------------|-------------------------|------|
| Timing Req        | quirements                   |                         |      |
| t <sub>SBRI</sub> | BRx, Setup Before CLKIN High | $2 \times t_{PCLK} + 4$ | ns   |
| t <sub>HBRI</sub> | BRx, Hold After CLKIN High   | 5                       | ns   |
| Switching (       | Characteristics              |                         |      |
| t <sub>DBRO</sub> | BRx Delay After CLKIN High   | 20                      | ns   |
| t <sub>HBRO</sub> | BRx Hold After CLKIN High    | 1 – t <sub>PCLK</sub>   | ns   |



Figure 22. Shared Memory Bus Request

### **Link Ports**

Calculation of link receiver data setup and hold relative to link clock is required to determine the maximum allowable skew that can be introduced in the transmission path length difference between LDATA and LCLK. Setup skew is the maximum

delay that can be introduced in LDATA relative to LCLK: (setup skew =  $t_{LCLKTWH}$  min –  $t_{DLDCH}$  –  $t_{SLDCL}$ ). Hold skew is the maximum delay that can be introduced in LCLK relative to LDATA: (hold skew =  $t_{LCLKTWL}$  min –  $t_{HLDCH}$  –  $t_{HLDCL}$ ).

#### Table 34. Link Ports-Receive

| Parameter            |                                            | Min                      | Max | Unit |
|----------------------|--------------------------------------------|--------------------------|-----|------|
| Timing Requi         | irements                                   |                          |     |      |
| t <sub>SLDCL</sub>   | Data Setup Before LCLK Low                 | 0.5                      |     | ns   |
| t <sub>HLDCL</sub>   | Data Hold After LCLK Low                   | 1.5                      |     | ns   |
| t <sub>LCLKIW</sub>  | LCLK Period                                | t <sub>LCLK</sub> (6 ns) |     | ns   |
| t <sub>LCLKRWL</sub> | LCLK Width Low                             | 2.6                      |     | ns   |
| t <sub>LCLKRWH</sub> | LCLK Width High                            | 2.6                      |     | ns   |
| Switching Ch         | aracteristics                              |                          |     |      |
| t <sub>DLALC</sub>   | LACK Low Delay After LCLK Low <sup>1</sup> | 5                        | 12  | ns   |

<sup>1</sup>LACK goes low with t<sub>DLALC</sub> relative to the fall of LCLK after first byte, but does not go low if the receiver's link buffer is not about to fill.





The data in Table 35 and timing information in Figure 24 apply when the LSYNC\_EN bit (bit 6 in the LCTLx register) is cleared.

| Table 35. Link Ports—Trai | nsmit (Bit 6 Cleared) |
|---------------------------|-----------------------|
|---------------------------|-----------------------|

| Parameter           |                                | Min                                    | Max                          | Unit |
|---------------------|--------------------------------|----------------------------------------|------------------------------|------|
| Timing Requiren     | nents                          |                                        |                              |      |
| t <sub>SLACH</sub>  | LACK Setup Before LCLK Low     | 8.5                                    |                              | ns   |
| t <sub>HLACH</sub>  | LACK Hold After LCLK Low       | 0                                      |                              | ns   |
| Switching Chard     | cteristics                     |                                        |                              |      |
| t <sub>DLDCH</sub>  | Data Delay After LCLK High     |                                        | 1                            | ns   |
| t <sub>HLDCH</sub>  | Data Hold After LCLK High      | -1                                     |                              | ns   |
| <b>t</b> LCLKTWL    | LCLK Width Low                 | $0.5 	imes t_{LCLK} - 0.4$             | $0.6 	imes t_{LCLK} + 0.4^1$ | ns   |
| <b>t</b> LCLKTWH    | LCLK Width High                | $0.4 \times t_{\text{LCLK}} - 0.4^{1}$ | $0.5 	imes t_{LCLK} + 0.4$   | ns   |
| t <sub>DLACLK</sub> | LCLK Low Delay After LACK High | 4                                      | t <sub>LCLK</sub> + 8        | ns   |

 $^1$  For 1:2.5 ratio. For other ratios this specification is 0.5  $\times$  t<sub>LCLK</sub> – 1.



The  $t_{sLACH}$  and  $t_{HLACH}$  specifications apply only to the LACK falling edge. If these specifications are met, LCLK would extend and the dotted LCLK falling edge would not occur as shown. The position of the dotted falling edge can be calculated using the  $t_{LCLKTWH}$  specification.  $t_{LCLKTWH}$  Min should be used for  $t_{sLACH}$  and  $t_{LCLKTWH}$  Max for  $t_{HLACH}$ . The  $t_{sLACH}$  and  $t_{HLACH}$  requirement apply to the falling edge of LCLK only for the first byte transmitted.

Figure 24. Link Ports—Transmit (Bit 6 Cleared)

The data in Table 36 and timing information in Figure 25 apply when the LSYNC\_EN bit (bit 6 in the LCTLx register) is set.

#### Table 36. Link Ports—Transmit (Bit 6 Set)

| Parameter            |                                | Min                                | Мах                          | Unit |
|----------------------|--------------------------------|------------------------------------|------------------------------|------|
| Timing Require       | nents                          |                                    |                              |      |
| t <sub>SLACH</sub>   | LACK Setup Before LCLK High    | 8.5                                |                              | ns   |
| t <sub>HLACH</sub>   | LACK Hold After LCLK High      | 0                                  |                              | ns   |
| Switching Char       | acteristics                    |                                    |                              |      |
| t <sub>DLDCH</sub>   | Data Delay After LCLK High     |                                    | 1                            | ns   |
| t <sub>HLDCH</sub>   | Data Hold After LCLK High      | -1                                 |                              | ns   |
| t <sub>LCLKTWL</sub> | LCLK Width Low                 | $0.5 \times t_{\text{LCLK}} - 0.4$ | $0.6 	imes t_{LCLK} + 0.4^1$ | ns   |
| t <sub>LCLKTWH</sub> | LCLK Width High                | $0.4 \times t_{LCLK} - 0.4^1$      | $0.5 	imes t_{LCLK} + 0.4$   | ns   |
| t <sub>DLACLK</sub>  | LCLK Low Delay After LACK High | $0.5 \times t_{LCLK} + 4$          | $1.5 \times t_{LCLK} + 4$    | ns   |

 $^1$  For 1:2.5 ratio. For other ratios this specification is 0.5  $\times$  t<sub>LCLK</sub> – 1.

#### Table 39. Serial Ports—Enable and Three-State

| Parameter                       |                                          | Min | Мах  | Unit |
|---------------------------------|------------------------------------------|-----|------|------|
| Switching Cl                    | haracteristics                           |     |      |      |
| t <sub>DDTEN</sub> 1            | Data Enable from External Transmit SCLK  | 2   |      | ns   |
| t <sub>DDTTE</sub> <sup>1</sup> | Data Disable from External Transmit SCLK |     | 11.5 | ns   |
| t <sub>DDTIN</sub> 1            | Data Enable from Internal Transmit SCLK  | -1  |      | ns   |

<sup>1</sup>Referenced to drive edge.





### Parallel Data Acquisition Port (PDAP)

The timing requirements for the PDAP are provided in Table 43. PDAP is the parallel mode operation of channel 0 of the IDP. For details on the operation of the PDAP, see the PDAP chapter of the *ADSP-214xx SHARC Processor Hardware Reference.* 

### Table 43. Parallel Data Acquisition Port (PDAP)

| Parameter                      |                                                                  | Min                              | Мах | Unit |
|--------------------------------|------------------------------------------------------------------|----------------------------------|-----|------|
| Timing Requireme               | nts                                                              |                                  |     |      |
| t <sub>SPHOLD</sub> 1          | PDAP_HOLD Setup Before PDAP_CLK Sample Edge                      | 2.5                              |     | ns   |
| t <sub>HPHOLD</sub> 1          | PDAP_HOLD Hold After PDAP_CLK Sample Edge                        | 2.5                              |     | ns   |
| t <sub>PDSD</sub> <sup>1</sup> | PDAP_DAT Setup Before Serial Clock PDAP_CLK Sample Edge          | 3.85                             |     | ns   |
| t <sub>PDHD</sub> <sup>1</sup> | PDAP_DAT Hold After Serial Clock PDAP_CLK Sample Edge            | 2.5                              |     | ns   |
| t <sub>PDCLKW</sub>            | Clock Width                                                      | $(t_{PCLK} \times 4) \div 2 - 3$ |     | ns   |
| t <sub>PDCLK</sub>             | Clock Period                                                     | $t_{PCLK} \times 4$              |     | ns   |
| Switching Charact              | teristics                                                        |                                  |     |      |
| t <sub>PDHLDD</sub>            | Delay of PDAP Strobe After Last PDAP_CLK Capture Edge for a Word | $2 \times t_{PCLK} + 3$          |     | ns   |
| t <sub>PDSTRB</sub>            | PDAP Strobe Pulse Width                                          | $2 \times t_{PCLK} - 1$          |     | ns   |

<sup>1</sup> The 20 bits of external PDAP data can be provided through the AMI\_ADDR23-4 or DAI pins. Source pins for serial clock and frame sync are 1) AMI\_ADDR3-2 pins, 2) DAI pins.



Figure 31. PDAP Timing

### JTAG Test Access Port and Emulation

| Table 57. | JTAG Test Access Port and Emulation |
|-----------|-------------------------------------|
|-----------|-------------------------------------|

| Parameter                      | ameter Min Max                      |                   |                     |    |
|--------------------------------|-------------------------------------|-------------------|---------------------|----|
| Timing Requirements            |                                     |                   |                     |    |
| t <sub>TCK</sub>               | TCK Period                          | 20                |                     | ns |
| t <sub>STAP</sub>              | TDI, TMS Setup Before TCK High      | 5                 |                     | ns |
| t <sub>HTAP</sub>              | TDI, TMS Hold After TCK High        | 6                 |                     | ns |
| t <sub>SSYS</sub> <sup>1</sup> | System Inputs Setup Before TCK High | 7                 |                     | ns |
| t <sub>HSYS</sub> <sup>1</sup> | System Inputs Hold After TCK High   | 18                |                     | ns |
| t <sub>TRSTW</sub>             | TRST Pulse Width                    | $4 \times t_{CK}$ |                     | ns |
| Switching Chara                | cteristics                          |                   |                     |    |
| t <sub>DTDO</sub>              | TDO Delay from TCK Low              |                   | 10                  | ns |
| t <sub>DSYS</sub> <sup>2</sup> | System Outputs Delay After TCK Low  |                   | $t_{CK} \div 2 + 7$ | ns |

<sup>1</sup>System Inputs = AMI\_DATA, DDR2\_DATA, CLKCFG1-0, BOOTCFG2-0 RESET, DAI, DPI, FLAG3-0.

<sup>2</sup>System Outputs = AMI\_ADDR/DATA, DDR2\_ADDR/DATA, AMI\_CTRL, DDR2\_CTRL, DAI, DPI, FLAG3-0, EMU.



Figure 45. IEEE 1149.1 JTAG Test Access Port

### **TEST CONDITIONS**

The ac signal specifications (timing parameters) appear in Table 20 on Page 27 through Table 57 on Page 61. These include output disable time, output enable time, and capacitive loading. The timing specifications for the SHARC apply for the voltage reference levels in Figure 46.

Timing is measured on signals when they cross the  $V_{MEAS}$  level as described in Figure 47. All delays (in nanoseconds) are measured between the point that the first signal reaches  $V_{MEAS}$  and the point that the second signal reaches  $V_{MEAS}$ . The value of  $V_{MEAS}$  is 1.5 V for non-DDR pins and 0.9 V for DDR pins.



NOTES:

THE WORST-CASE TRANSMISSION LINE DELAY IS SHOWN AND CAN BE USED FOR THE OUTPUT TIMING ANALYSIS TO REFLECT THE TRANSMISSION LINE EFFECT AND MUST BE CONSIDERED. THE TRANSMISSION LINE (TD) IS FOR LOAD ONLY AND DOES NOT AFFECT THE DATA SHEET TIMING SPECIFICATIONS.

ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING FOR A GIVEN SYSTEM REQUIREMENT. IF NECESSARY, A SYSTEM MAY INCORPORATE EXTERNAL DRIVERS TO COMPENSATE FOR ANY TIMING DIFFERENCES.

Figure 46. Equivalent Device Loading for AC Measurements (Includes All Fixtures)



Figure 47. Voltage Reference Levels for AC Measurements

### **OUTPUT DRIVE CURRENTS**

Figure 48 and Figure 49 shows typical I-V characteristics for the output drivers of the processor, and Table 58 shows the pins associated with each driver. The curves represent the current drive capability of the output drivers as a function of output voltage.

| Tabl | le 58. | Driver | Types |
|------|--------|--------|-------|
|      |        |        |       |

| Driver Type | Associated Pins                              |
|-------------|----------------------------------------------|
| A           | LACK1-0,LDAT0[7:0],LDAT1[7:0],MLBCLK,MLBDAT, |
|             | MLBDO, MLBSIG, MLBSO, AMI_ACK,               |
|             | AMI_ADDR23–0, AMI_DATA7–0, AMI_MS1–0,        |
|             | AMI_RD, AMI_WR, DAI_P, DPI_P, EMU, FLAG3–0,  |
|             | RESETOUT, TDO                                |
| В           | LCLK1–0                                      |
| С           | DDR2_ADDR15-0, DDR2_BA2-0, DDR2_CAS,         |
|             | DDR2_CKE, DDR2_CS3-0, DDR2_DATA15-0,         |
|             | DDR2_DM1-0, DDR2_ODT, DDR2_RAS, DDR2_WE      |
| D (TRUE)    | DDR2_CLK1-0, DDR2_DQS1-0                     |
| D (COMP)    | DDR2_CLK1-0, DDR2_DQS1-0                     |



*Figure 48. Output Buffer Characteristics (Worst-Case Non-DDR2)* 

| Table 61. CS | SP_BGA Ball A | ssignment (Al | phabetical by S | Signal) (Continued) |
|--------------|---------------|---------------|-----------------|---------------------|
|--------------|---------------|---------------|-----------------|---------------------|

| Signal | Ball No. | Signal               | Ball No. | Signal                                | Ball No. | Signal              | Ball No. |
|--------|----------|----------------------|----------|---------------------------------------|----------|---------------------|----------|
| GND    | G09      | GND                  | N17      | TMS                                   | K16      | V <sub>DD_INT</sub> | E08      |
| GND    | G10      | GND                  | P05      | TRST                                  | N15      | V <sub>DD_INT</sub> | E09      |
| GND    | G11      | GND                  | P07      | VDD_A                                 | H01      | V <sub>DD_INT</sub> | E14      |
| GND    | G12      | GND                  | P09      | V <sub>DD_DDR2</sub>                  | C05      | V <sub>DD_INT</sub> | E15      |
| GND    | G15      | GND                  | P11      | V <sub>DD_DDR2</sub>                  | C12      | V <sub>DD_INT</sub> | F06      |
| GND    | H04      | GND                  | P13      | V <sub>DD_DDR2</sub>                  | D03      | V <sub>DD_INT</sub> | F07      |
| GND    | H07      | GND                  | V01      | V <sub>DD_DDR2</sub>                  | D06      | V <sub>DD_INT</sub> | F08      |
| GND    | H08      | GND                  | V18      | V <sub>DD_DDR2</sub>                  | D08      | V <sub>DD_INT</sub> | F09      |
| GND    | H09      | GND                  | R09      | V <sub>DD_DDR2</sub>                  | D18      | V <sub>DD_INT</sub> | F10      |
| GND    | H10      | GND/ID0 <sup>1</sup> | G03      | V <sub>DD_DDR2</sub>                  | E02      | V <sub>DD_INT</sub> | F11      |
| GND    | H11      | GND/ID1 <sup>1</sup> | G04      | V <sub>DD_DDR2</sub>                  | E04      | V <sub>DD_INT</sub> | F12      |
| GND    | H12      | LACK_0               | K17      | V <sub>DD_DDR2</sub>                  | E07      | V <sub>DD_INT</sub> | F13      |
| GND    | J01      | LACK_1               | P17      | V <sub>DD_DDR2</sub>                  | E10      | V <sub>DD_INT</sub> | G06      |
| GND    | J07      | LCLK_0               | J18      | V <sub>DD_DDR2</sub>                  | E11      | V <sub>DD_INT</sub> | G13      |
| GND    | J08      | LCLK_1               | N18      | V <sub>DD_DDR2</sub>                  | E17      | V <sub>DD_INT</sub> | H05      |
| GND    | J09      | LDAT0_0              | E18      | V <sub>DD_DDR2</sub>                  | F03      | V <sub>DD_INT</sub> | H06      |
| GND    | J10      | LDAT0_1              | F17      | V <sub>DD_DDR2</sub>                  | F05      | V <sub>DD_INT</sub> | H13      |
| GND    | J11      | LDAT0_2              | F18      | V <sub>DD_DDR2</sub>                  | F15      | V <sub>DD_INT</sub> | H14      |
| GND    | J12      | LDAT0_3              | G17      | V <sub>DD_DDR2</sub>                  | G14      | V <sub>DD_INT</sub> | J06      |
| GND    | J14      | LDAT0_4              | G18      | V <sub>DD_DDR2</sub>                  | G16      | V <sub>DD_INT</sub> | J13      |
| GND    | J17      | LDAT0_5              | H16      | V <sub>DD_EXT</sub>                   | H15      | V <sub>DD_INT</sub> | K06      |
| GND    | K05      | LDAT0_6              | H17      | V <sub>DD_EXT</sub>                   | H18      | V <sub>DD_INT</sub> | K13      |
| GND    | K07      | LDAT0_7              | J16      | V <sub>DD_EXT</sub>                   | J05      | V <sub>DD_INT</sub> | L06      |
| GND    | K08      | LDAT1_0              | K18      | V <sub>DD_EXT</sub>                   | J15      | V <sub>DD_INT</sub> | L13      |
| GND    | K09      | LDAT1_1              | L16      | V <sub>DD_EXT</sub>                   | K14      | V <sub>DD_INT</sub> | M06      |
| GND    | K10      | LDAT1_2              | L17      | V <sub>DD_EXT</sub>                   | L05      | V <sub>DD_INT</sub> | M13      |
| GND    | K11      | LDAT1_3              | L18      | V <sub>DD_EXT</sub>                   | M14      | V <sub>DD_INT</sub> | N06      |
| GND    | K12      | LDAT1_4              | M16      | V <sub>DD_EXT</sub>                   | M18      | V <sub>DD_INT</sub> | N07      |
| GND    | L07      | LDAT1_5              | M17      | V <sub>DD_EXT</sub>                   | N05      | V <sub>DD_INT</sub> | N08      |
| GND    | L08      | LDAT1_6              | N16      | V <sub>DD_EXT</sub>                   | P06      | V <sub>DD_INT</sub> | N09      |
| GND    | L09      | LDAT1_7              | P16      | V <sub>DD_EXT</sub>                   | P08      | V <sub>DD_INT</sub> | N13      |
| GND    | L10      | MLBCLK               | K03      | V <sub>DD_EXT</sub>                   | P10      | V <sub>DD_THD</sub> | N10      |
| GND    | L11      | MLBDAT               | K04      | V <sub>DD_EXT</sub>                   | P12      | V <sub>REF</sub>    | D04      |
| GND    | L12      | MLBDO                | L04      | V <sub>DD_EXT</sub>                   | P14      | V <sub>REF</sub>    | D11      |
| GND    | L14      | MLBSIG               | L02      | V <sub>DD_EXT</sub>                   | P15      | XTAL                | K01      |
| GND    | M05      | MLBSO                | L03      | V <sub>DD_EXT</sub>                   | T08      |                     |          |
| GND    | M07      | RESET                | M01      | V <sub>DD_EXT</sub>                   | T09      |                     |          |
| GND    | M08      | RESETOUT/RUNRSTIN    | M02      | V <sub>DD_EXT</sub>                   | U09      |                     |          |
| GND    | M09      | ТСК                  | K15      | V <sub>DD_EXT</sub>                   | V09      |                     |          |
| GND    | M10      | TDI                  | L15      | V <sub>DD_EXT</sub> /BR1 <sup>1</sup> | V08      |                     |          |
| GND    | M11      | TDO                  | M15      | V <sub>DD_EXT</sub> /BR2 <sup>1</sup> | U08      |                     |          |
| GND    | M12      | THD_M                | N12      | V <sub>DD_INT</sub>                   | D12      |                     |          |
| GND    | N14      | THD_P                | N11      | V <sub>DD_INT</sub>                   | E06      |                     |          |

<sup>1</sup> This pin can be used for shared DDR2 memory between two processors. If shared memory functionality is not used then BRx pins should be tied to V<sub>DD\_EXT</sub> and IDx pins should be tied to GND. Table 10 on Page 14 for appropriate connections.





# CSP\_BGA BALL ASSIGNMENT—STANDARD MODELS

Table 62 lists the standard model CSP\_BGA ball assignments by signal.

| Table 62. | CSP | BGA | Ball | Assignmen | t (Alı | phabetica | ıl by | Signa | l) |
|-----------|-----|-----|------|-----------|--------|-----------|-------|-------|----|
|           |     |     |      |           | - (    |           |       |       | -, |

| Signal     | Ball No. | Signal      | Ball No. | Signal      | Ball No. | Signal  | Ball No. |
|------------|----------|-------------|----------|-------------|----------|---------|----------|
| AGND       | H02      | BOOT_CFG2   | H03      | DDR2_BA0    | C18      | DPI_P03 | T01      |
| AMI_ACK    | R10      | CLK_CFG0    | G01      | DDR2_BA1    | C17      | DPI_P04 | R01      |
| AMI_ADDR0  | V16      | CLK_CFG1    | G02      | DDR2_BA2    | B18      | DPI_P05 | P01      |
| AMI_ADDR01 | U16      | CLKIN       | L01      | DDR2_CAS    | C07      | DPI_P06 | P02      |
| AMI_ADDR02 | T16      | DAI_P01     | R06      | DDR2_CKE    | E01      | DPI_P07 | P03      |
| AMI_ADDR03 | R16      | DAI_P02     | V05      | DDR2_CLK0   | A07      | DPI_P08 | P04      |
| AMI_ADDR04 | V15      | DAI_P03     | R07      | DDR2_CLK0   | B07      | DPI_P09 | N01      |
| AMI_ADDR05 | U15      | DAI_P04     | R03      | DDR2_CLK1   | A13      | DPI_P10 | N02      |
| AMI_ADDR06 | T15      | DAI_P05     | U05      | DDR2_CLK1   | B13      | DPI_P11 | N03      |
| AMI_ADDR07 | R15      | DAI_P06     | T05      | DDR2_CS0    | C01      | DPI_P12 | N04      |
| AMI_ADDR08 | V14      | DAI_P07     | V06      | DDR2_CS1    | D01      | DPI_P13 | M03      |
| AMI_ADDR09 | U14      | DAI_P08     | V02      | DDR2_CS2    | C02      | DPI_P14 | M04      |
| AMI_ADDR10 | T14      | DAI_P09     | R05      | DDR2_CS3    | D02      | EMU     | K02      |
| AMI_ADDR11 | R14      | DAI_P10     | V04      | DDR2_DATA0  | B02      | FLAG0   | R08      |
| AMI_ADDR12 | V13      | DAI_P11     | U04      | DDR2_DATA01 | A02      | FLAG1   | V07      |
| AMI_ADDR13 | U13      | DAI_P12     | T04      | DDR2_DATA02 | B03      | FLAG2   | U07      |
| AMI_ADDR14 | T13      | DAI_P13     | U06      | DDR2_DATA03 | A03      | FLAG3   | T07      |
| AMI_ADDR15 | R13      | DAI_P14     | U02      | DDR2_DATA04 | B05      | GND     | A01      |
| AMI_ADDR16 | V12      | DAI_P15     | R04      | DDR2_DATA05 | A05      | GND     | A18      |
| AMI_ADDR17 | U12      | DAI_P16     | V03      | DDR2_DATA06 | B06      | GND     | C04      |
| AMI_ADDR18 | T12      | DAI_P17     | U03      | DDR2_DATA07 | A06      | GND     | C06      |
| AMI_ADDR19 | R12      | DAI_P18     | T03      | DDR2_DATA08 | B08      | GND     | C08      |
| AMI_ADDR20 | V11      | DAI_P19     | T06      | DDR2_DATA09 | A08      | GND     | D05      |
| AMI_ADDR21 | U11      | DAI_P20     | T02      | DDR2_DATA10 | B09      | GND     | D07      |
| AMI_ADDR22 | T11      | DDR2_ADDR0  | D13      | DDR2_DATA11 | A09      | GND     | D09      |
| AMI_ADDR23 | R11      | DDR2_ADDR01 | C13      | DDR2_DATA12 | A11      | GND     | D10      |
| AMI_DATA0  | U18      | DDR2_ADDR02 | D14      | DDR2_DATA13 | B11      | GND     | D17      |
| AMI_DATA1  | T18      | DDR2_ADDR03 | C14      | DDR2_DATA14 | A12      | GND     | E03      |
| AMI_DATA2  | R18      | DDR2_ADDR04 | B14      | DDR2_DATA15 | B12      | GND     | E05      |
| AMI_DATA3  | P18      | DDR2_ADDR05 | A14      | DDR2_DM0    | C03      | GND     | E12      |
| AMI_DATA4  | V17      | DDR2_ADDR06 | D15      | DDR2_DM1    | C11      | GND     | E13      |
| AMI_DATA5  | U17      | DDR2_ADDR07 | C15      | DDR2_DQS0   | A04      | GND     | E16      |
| AMI_DATA6  | T17      | DDR2_ADDR08 | B15      | DDR2_DQS0   | B04      | GND     | F01      |
| AMI_DATA7  | R17      | DDR2_ADDR09 | A15      | DDR2_DQS1   | A10      | GND     | F02      |
| AMI_MS0    | T10      | DDR2_ADDR10 | D16      | DDR2_DQS1   | B10      | GND     | F04      |
| AMI_MS1    | U10      | DDR2_ADDR11 | C16      | DDR2_ODT    | B01      | GND     | F14      |
| AMI_RD     | J04      | DDR2_ADDR12 | B16      | DDR2_RAS    | C09      | GND     | F16      |
| AMI_WR     | V10      | DDR2_ADDR13 | A16      | DDR2_WE     | C10      | GND     | G05      |
| BOOT_CFG0  | J02      | DDR2_ADDR14 | B17      | DPI_P01     | R02      | GND     | G07      |
| BOOT_CFG1  | J03      | DDR2_ADDR15 | A17      | DPI_P02     | U01      | GND     | G08      |

## **OUTLINE DIMENSIONS**

The processors are available in a 19 mm by 19 mm CSP\_BGA lead-free package.



Figure 62. 324-Ball Chip Scale Package, Ball Grid Array [CSP\_BGA] (BC-324-1) Dimensions shown in millimeters

### SURFACE-MOUNT DESIGN

The following table is provided as an aid to PCB design. For industry-standard design recommendations, refer to IPC-7351, *Generic Requirements for Surface-Mount Design and Land Pattern Standard.* 

|                             |                          | Package Solder Mask |                       |
|-----------------------------|--------------------------|---------------------|-----------------------|
| Package                     | Package Ball Attach Type | Opening             | Package Ball Pad Size |
| 324-Ball CSP_BGA (BC-324-1) | Solder Mask Defined      | 0.43 mm diameter    | 0.6 mm diameter       |