E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	17
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VQFN Exposed Pad
Supplier Device Package	20-QFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f043aqh020eg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Address (Hex) Register Description	Mnemonic	Reset (Hex)	Page #
Analog-to-Dig	ital Converter (cont'd.)			
F74	ADC Sample Settling Time	ADCSST	0F	105
F75	ADC Sample Time	ADCST	3F	106
F76	ADC Clock Prescale	ADCCP	00	107
F77–F7F	Reserved	_	XX	
Low Power Co	ontrol			
F80	Power Control 0	PWRCTL0	88	32
F81	Reserved	_	XX	
LED Controlle	er			
F82	LED Drive Enable	LEDEN	00	51
F83	LED Drive Level High	LEDLVLH	00	52
F84	LED Drive Level Low	LEDLVLL	00	53
F85	Reserved	_	XX	
Oscillator Cor	ntrol			
F86	Oscillator Control	OSCCTL	A0	154
F87–F8F	Reserved	_	XX	
Comparator 0				
F90	Comparator 0 Control	CMP0	14	109
F91–FBF	Reserved	_	XX	
Interrupt Cont	troller			
FC0	Interrupt Request 0	IRQ0	00	59
FC1	IRQ0 Enable High Bit	IRQ0ENH	00	62
FC2	IRQ0 Enable Low Bit	IRQ0ENL	00	62
FC3	Interrupt Request 1	IRQ1	00	60
FC4	IRQ1 Enable High Bit	IRQ1ENH	00	63
FC5	IRQ1 Enable Low Bit	IRQ1ENL	00	64
FC6	Interrupt Request 2	IRQ2	00	61
FC7	IRQ2 Enable High Bit	IRQ2ENH	00	65
FC8	IRQ2 Enable Low Bit	IRQ2ENL	00	65
FC9–FCC	Reserved	_	XX	
FCD	Interrupt Edge Select	IRQES	00	67
FCE	Shared Interrupt Select	IRQSS	00	67

Table 8. Register File Address Map (Continued)

Note: XX = Undefined.

General Purpose Input/Output

The Z8 Encore! F083A Series products support a maximum of 23 port pins (Port A–D) for general purpose input/output (GPIO) operations. Each port contains control and data registers. The GPIO control registers determine data direction, open-drain, output drive current, programmable pull-ups, Stop Mode Recovery functionality and alternate pin functions. Each port pin is individually programmable. In addition, the Port C pins are capable of direct LED drive at programmable drive strengths.

GPIO Port Availability by Device

Table 15 lists the port pins available with each device and package type.

Devices	Package	10-Bit ADC	Port A	Port B	Port C	Port D	Total I/O	
Z8F083A, Z8F043A	20-pin	Yes	[7:0]	[3:0]	[3:0]	[0]	17	
Z8F083A, Z8F043A	28-pin	Yes	[7:0]	[5:0]	[7:0]	[0]	23	
Note: 20-pin and 28-pin and 10-bit ADC Enabled or Disabled can be selected via the option bits.								

Table 15. Port Availability by Device and Package Type

Architecture

Figure 8 displays a simplified block diagram of a GPIO port pin. In this figure, the ability to accommodate alternate functions and variable port current drive strength is not displayed.

Figure 8. GPIO Port Pin Block Diagram

GPIO Alternate Functions

Many of the GPIO port pins are used for general purpose input/output and access to onchip peripheral functions such as the timers and serial communication devices. The Port A–D alternate function subregisters configure these pins for either GPIO or Alternate Function operation. When a pin is configured for alternate function, control of the port pin direction (input/output) is passed from the Port A–D data direction registers to the alternate function assigned to this pin. Table 16 on page 36 lists the alternate functions possible with each port pin. The alternate function associated at a pin is defined through alternate function subregisters AFS1 and AFS2.

The crystal oscillator functionality is not controlled by the GPIO block. When the crystal oscillator is enabled in the oscillator control block, the GPIO functionality of PA0 and PA1 is overridden. In that case, pins PA0 and PA1 functions as input and output for the crystal oscillator.

PA0 and PA6 contain two different timer functions, a timer input and a complementary timer output. Both of these functions require the same GPIO configuration, the selection between the two is based on the TIMER mode. For more details, see the <u>Timers</u> chapter on page 69.

Interrupt Controller

The Interrupt Controller on the Z8 Encore! F083A Series products prioritizes the interrupt requests from the on-chip peripherals and the GPIO port pins. The features of the Interrupt Controller include the following:

- Seventeen interrupt sources using sixteen unique interrupt vectors
 - Twelve GPIO port pin interrupt sources
 - Five on-chip peripheral interrupt sources (the comparator output interrupt shares one interrupt vector with PA6)
- Flexible GPIO interrupts
 - Eight selectable rising- and falling-edge GPIO interrupts
 - Four dual-edge interrupts
- Three levels of individually-programmable interrupt priority
- Watchdog Timer is configured to generate an interrupt

Interrupt requests (IRQs) allow peripheral devices to suspend CPU operation in an orderly manner and force the CPU to start an interrupt service routine (ISR). Usually, this interrupt service routine is involved with the exchange of data, status information or control information between the CPU and the interrupting peripheral. When the service routine is completed, the CPU returns to the operation from which it was interrupted.

The eZ8 CPU supports both vectored and polled interrupt handling. For polled interrupts, the Interrupt Controller has no effect on operation. For more information regarding interrupt servicing by the eZ8 CPU, refer to the <u>eZ8 CPU Core User Manual (UM0128)</u>, available for download on <u>www.zilog.com</u>.

Interrupt Vector Listing

Table 34 lists the interrupts available in order of priority. The interrupt vector is stored with the most-significant byte (MSB) at the even program memory address and the least-significant byte (LSB) at the odd program memory address.

Note: Some port interrupts are not available on the 20-pin and 28-pin packages. The ADC interrupt is unavailable on devices not containing an ADC.

>

ADC Data Low Bits Register

The ADC Data Low Bits Register, shown in Table 65, contain the lower bits of the ADC output as well as an overflow status bit. Access to the ADC Data Low Bits Register is read-only. Reading the ADC Data High Byte Register latches lower bits of the ADC in the ADC Low Bits Register.

Bit	7	6	5	4	3	2	1	0
Field	ADC	CDL	Reserved					
RESET)	<			>	<		
R/W	F	२	R					
Address	F73H							

Bit	Description
[7:6]	ADC Low Bits 00–11b = These bits are the two least significant bits of the 10-bit ADC output. These bits are undefined after a reset. The low bits are latched into this register whenever the ADC Data High Byte Register is read.
[5:0]	Reserved These bits are reserved and must be programmed to 000000.

Z8 Encore![®] F083A Series Product Specification

114

Figure 16. Flash Controller Operation Flow Chart

Flash Operation Timing Using the Flash Frequency Registers

Before performing either a Program or Erase operation on Flash memory, the user must first configure the Flash frequency High and Low Byte registers. The Flash frequency registers allow programming and erasing of the Flash with system clock frequencies ranging from 10kHz to 20MHz.

The Flash frequency High and Low Byte registers combine to form a 16-bit value, FFREQ, to control the timing for Flash Program and Erase operations. The 16-bit binary Flash frequency value must contain the system clock frequency (in kHz). This value is calculated using the following equation:

 $FFREQ[15:0] = \frac{System Clock Frequency (Hz)}{1000}$

Caution: Flash programming and erasure are not supported for system clock frequencies below 10kHz or above 20MHz. The Flash frequency High and Low Byte registers must be loaded with the correct value to ensure operation of the Z8 Encore! F083A Series devices.

Flash Code Protection Against External Access

The user code contained within Flash memory is protected against external access by using the On-Chip Debugger. Programming the FRP Flash option bit prevents reading of the user code using the On-Chip Debugger. For more details, see the <u>Flash Option Bits</u> chapter on page 124 and the <u>On-Chip Debugger</u> chapter on page 139.

Flash Code Protection Against Accidental Program and Erasure

Z8 Encore! F083A Series devices provide several levels of protection against accidental program and erasure of the Flash memory contents. This protection is provided by a combination of the Flash option bits, the register locking mechanism, the page select redundancy and the sector level protection control of the Flash Controller.

Flash Code Protection using the Flash Option Bits

The FHSWP and FWP Flash option bits combine to provide three levels of Flash program memory protection as listed in Table 72. For more details, see the <u>Flash Option Bits</u> chapter on page 124.

write operations. Writing a value other than 5EH to the Flash Control Register deselects the Flash Sector Protect Register and reenables access to the Page Select Register. Observe the following procedure to setup the Flash Sector Protect Register from user code:

- 1. Write 00H to the Flash Control Register to reset the Flash Controller.
- 2. Write 5EH to the Flash Control Register to select the Flash Sector Protect Register.
- 3. Read and/or write the Flash Sector Protect Register which is now at Register File address FF9H.
- 4. Write 00H to the Flash Control Register to return the Flash Controller to its reset state.

The Sector Protect Register is initialized to 0 upon reset, putting each sector into an unprotected state. When a bit in the Sector Protect Register is written to 1, the corresponding sector is no longer be written or erased. After setting a bit in the Sector Protect Register, the bit cannot be cleared by the user.

Byte Programming

The Flash memory is enabled for byte programming after unlocking the Flash Controller and successfully enabling either mass erase or page erase. When the Flash Controller is unlocked and mass erase is successfully enabled, all of the program memory locations are available for byte programming. In contrast, when the Flash Controller is unlocked and page erase is successfully enabled, only the locations of the selected page are available for byte programming. An erased Flash byte contains all 1's (FFH). The programming operation is used only to change bits from 1 to 0. To change a Flash bit (or multiple bits) from 0 to 1 requires execution of either the page erase or mass erase commands.

Byte programming is accomplished using the On-Chip Debugger's write memory command or eZ8 CPU execution of the LDC or LDCI instructions. For the description of the LDC and LDCI instructions, refer to the <u>eZ8 CPU Core User Manual (UM0128)</u>, available for download on <u>www.zilog.com</u>. While the Flash Controller programs Flash memory, the eZ8 CPU idles, but the system clock and on-chip peripherals continue to operate. To exit programming mode and lock the Flash, write any value to the Flash Control Register, except the mass erase or page erase commands.

Caution: The byte at each Flash memory address cannot be programmed (any bits written to 0) more than twice before an erase cycle occurs.

Flash Frequency High and Low Byte Registers

The Flash Frequency High and Low Byte registers, shown in Tables 77 and 78, combine to form a 16-bit value, FFREQ, to control timing for Flash Program and Erase operations. The 16-bit binary Flash frequency value must contain the system clock frequency (in kHz) and is calculated using the following equation.

 $FFREQ[15:0] = \{FFREQH[7:0], FFREQL[7:0]\} = \frac{System Clock Frequency}{1000}$

Caution: Flash programming and erasure is not supported for system clock frequencies below 10kHz or above 20 MHz. The Flash frequency High and Low Byte registers must be loaded with the correct value to ensure proper operation of the device.

Bit	7	6	5	4	3	2	1	0	
Field	FFREQH								
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		FFAH							

Table 77. Flasl	n Frequency	High Byte	Register	(FFREQH)
-----------------	-------------	-----------	----------	----------

Bit	Description
[7:0]	Flash Frequency High Byte
FFREQH	The high byte of the 16-bit Flash frequency value.

Table 78. Flash Frequency Low Byte Register (FFREQL)

Bit	7	6	5	4	3	2	1	0
Field	FFREQL							
RESET	0							
R/W	R/W							
Address	FFBH							

Bit	Description
[7:0]	Flash Frequency Low Byte
FFREQL	The low byte of the 16-bit Flash frequency value.

figurations. The information contained in these first two bytes is lost when page 0 of program memory is erased.

Trim Option Bits

The trim option bits are contained in the information page of Flash memory. These bits are factory programmed values required to optimize the operation of onboard analog circuitry and cannot be permanently altered by the user. Program memory may be erased without endangering these values. It is possible to alter working values of these bits by accessing the trim bit address and data registers, but these working values are lost after a power loss.

There are 32-bytes of trim data. To modify one of these values, the user code must first write a value between 00H and 1FH into the trim bit Address Register. The next write to the trim bit data register changes the working value of the target trim data byte.

Reading the trim data requires the user code to write a value between 00H and 1FH into the trim bit Address Register. The next read from the trim bit data register returns the working value of the target trim data byte.

Note: The trim address range is from information address 20–3F only. The remainder of the information page is not accessible through the trim bit address and data registers.

During reset, the first 43 system clock cycles perform 43 Flash accesses. The six bits of the counter provide the lower six bits of the Flash memory address. All other address bits are set to 0. The option bit registers use the 6-bit address from the counter as an address and latch the data from the Flash on the positive edge of the IPO clock, allowing for a maximum of 344 bits (43 bytes) of option information to be read from Flash memory.

Because option information is stored in both the first two bytes of program memory and in the information area of Flash memory, the data must be placed in specific locations to be read correctly. In this case, the first two bytes at address 0 and 1 in program memory are read and the remainder of the bytes are read from the Flash information area.

Trim Bit Address 0002H

Table 87. Trim Option Bits at 0002H (TIPO)

Bit	7	6	5	4	3	2	1	0		
Field	IPO_TRIM									
RESET	U									
R/W				R/	W					
Address	Information Page Memory 0022H									
Note: U = Unchanged by Reset; R/W = Read/Write.										
Bit	Descrip	tion								

[7:0]	Internal Precision Oscillator Trim Byte
IPO_TRIM	Contains trimming bits for internal precision oscillator

Note: The bit values used in Table 87 are set at the factory; no calibration is required.

Trim Bit Address 0003H

Table 88. Trim Option Bits at 0003H (TVBO)

Bit	7	6	5	4	3	2	0				
Field				VBO_TRIM							
RESET			U	U							
R/W				R/W							
Address		Information Page Memory 0023H									
Note: U = Unchanged by Reset; R/W = Read/Write.											

Bit	Description
[7:3]	Reserved
	These bits are reserved and must be programmed to 1111.
[2:0]	VBO Trim Values
VBO_TRIM	Contains factory-trimmed values for the oscillator and the VBO. See Table 89.

>

the Watchdog Timer failure is detected. A very slow system clock results in very slow detection times.

Caution: It is possible to disable the clock failure detection circuitry as well as all functioning clock sources. In this case, the Z8 Encore! F083A Series device ceases functioning and is recovered only by power-on-reset.

Oscillator Control Register Definitions

The following section provides the bit definitions for the Oscillator Control Register.

Oscillator Control Register

The Oscillator Control Register (OSCCTL), shown in Table 100, enables/disables the various oscillator circuits, enables/disables the failure detection/recovery circuitry and selects the primary oscillator, which becomes the system clock.

The Oscillator Control Register must be unlocked before writing. Writing the two step sequence E7H followed by 18H to the Oscillator Control Register unlocks it. The register is locked at successful completion of a register write to the OSCCTL. Figure 21 on page 156 displays the oscillator control clock switching flow. To determine the waiting times of various oscillator circuits, see <u>Table 118</u> on page 188.

Bit	7	6	5	4	3	2	1	0			
Field	INTEN	XTLEN	WDTEN	POFEN	WDFEN	SCKSEL					
RESET	1	0	1	0	0	0	0				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Address				F8	6H						

Table 100. Oscillator Control Register (OSCCTL)

Bit	Description
[7] INTEN	Internal Precision Oscillator Enable 1 = Internal precision oscillator is enabled. 0 = Internal precision oscillator is disabled.
[6] XTLEN	Crystal Oscillator Enable This setting overrides the GPIO register control for PA0 and PA1. 1 = Crystal oscillator is enabled. 0 = Crystal oscillator is disabled.

Table 103. Assembly Language Syntax Example 2

Assembly Language Code	ADD	43H,	R8	(ADD dst, sro	:)
Object Code	04	E8	43	(OPC src, dst)

The Register File size varies, depending on the device type. See the device-specific Z8 Encore! product specification to determine the exact Register File range available.

eZ8 CPU Instruction Notation

In the eZ8 CPU instruction summary and description sections, the operands, condition codes, status flags and address modes are represented by a notational shorthand that is described in Table 104.

Notation	Description	Operand	Range
b	Bit	b	b represents a value from 0 to 7 (000B to 111B).
CC	Condition Code	—	See the condition codes overview in the <u>eZ8 CPU</u> Core User Manual (UM0128).
DA	Direct Address	Addrs	<i>Addrs</i> represents a number in the range of 0000H to FFFFH.
ER	Extended addressing Register	Reg	<i>Reg</i> represents a number in the range of 000H to FFFH.
IM	Immediate Data	#Data	Data is a number between 00H to FFH/
lr	Indirect Working Register	@Rn	n = 0–15.
IR	Indirect Register	@Reg	<i>Reg</i> represents a number in the range of 00H to FFH/
Irr	Indirect Working Register Pair	@RRp	p = 0, 2, 4, 6, 8, 10, 12 or 14.
IRR	Indirect Register Pair	@Reg	<i>Reg</i> represents an even number in the range 00H to FEH.
р	Polarity	р	Polarity is a single bit binary value of either 0B or 1B.
r	Working Register	Rn	n = 0–15.
R	Register	Reg	Reg. represents a number in the range of 00H to FFH.

Table 104. Notational Shorthand

1	74
---	----

Accombly		Add Mc	ress ode	Op Codo(s)			Fla	ags			Fotob	Inctr
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	V	D	Н	Cycles	Cycles
DA dst	$dst \gets DA(dst)$	R		40	*	*	*	Х	-	_	2	2
		IR		41	_						2	3
DEC dst	dst ← dst - 1	R		30	_	*	*	*	_	_	2	2
		IR		31	_						2	3
DECW dst	dst ← dst - 1	RR		80	_	*	*	*	_	_	2	5
		IRR		81	_						2	6
DI	IRQCTL[7] ← 0			8F	_	_	_	-	-	_	1	2
DJNZ dst, RA	$dst \leftarrow dst - 1$ if dst $\neq 0$ PC \leftarrow PC + X	r		0A-FA	_	_	_	_	_	_	2	3
EI	IRQCTL[7] ← 1			9F	_	_	_	-	_	_	1	2
HALT	HALT Mode			7F	_	_	_	-	_	_	1	2
INC dst	dst ← dst + 1	R		20	-	*	*	-	_	_	2	2
		IR		21	_						2	3
		r		0E-FE	_						1	2
INCW dst	dst ← dst + 1	RR		A0	_	*	*	*	_	_	2	5
		IRR		A1	_						2	6
IRET	$FLAGS \leftarrow @SP$ $SP \leftarrow SP + 1$ $PC \leftarrow @SP$ $SP \leftarrow SP + 2$ $IRQCTL[7] \leftarrow 1$			BF	*	*	*	*	*	*	1	5
JP dst	PC ← dst	DA		8D	_	_	_	-	_	_	3	2
		IRR		C4	-						2	3
JP cc, dst	if cc is true PC ← dst	DA		0D-FD	-	-	_	-	-	_	3	2

Table 114. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 =Set to 1.

							Le	ower Nil	ble (He	x)						
	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
0	1.1 BRK	2.2 SRP IM	2.3 ADD r1,r2	2.4 ADD r1,lr2	3.3 ADD R2,R1	3.4 ADD IR2,R1	3.3 ADD R1,IM	3.4 ADD IR1,IM	4.3 ADDX ER2,ER1	4.3 ADDX IM,ER1	2.3 DJNZ r1,X	2.2 JR cc,X	2.2 LD r1,IM	3.2 JP cc,DA	1.2 INC r1	1.2 NOP
1	2.2 RLC R1	2.3 RLC IR1	2.3 ADC r1,r2	2.4 ADC r1,lr2	3.3 ADC R2,R1	3.4 ADC IR2,R1	3.3 ADC R1,IM	3.4 ADC IR1,IM	4.3 ADCX ER2,ER1	4.3 ADCX IM,ER1						See 2nd Op Code Map
2	2.2 INC R1	2.3 INC IR1	2.3 SUB r1,r2	2.4 SUB r1,lr2	3.3 SUB R2,R1	3.4 SUB IR2,R1	3.3 SUB R1,IM	3.4 SUB IR1,IM	4.3 SUBX ER2,ER1	4.3 SUBX IM,ER1						
3	2.2 DEC R1	2.3 DEC	2.3 SBC r1 r2	2.4 SBC r1 lr2	3.3 SBC B2 B1	3.4 SBC	3.3 SBC R1 IM	3.4 SBC	4.3 SBCX FR2 FR1	4.3 SBCX						
4	2.2 DA R1	2.3 DA	2.3 OR r1.r2	2.4 OR r1.1r2	3.3 OR R2 R1	3.4 OR	3.3 OR R1 IM	3.4 OR IR1 IM	4.3 ORX ER2 ER1	4.3 ORX						
5	2.2 POP R1	2.3 POP	2.3 AND r1.r2	2.4 AND r1.1r2	3.3 AND R2 R1	3.4 AND	3.3 AND R1 IM	3.4 AND	4.3 ANDX ER2 ER1	4.3 ANDX						1.2 WDT
6	2.2 COM R1	2.3 COM	2.3 TCM	2.4 TCM r1 lr2	3.3 TCM R2 R1	3.4 TCM	3.3 TCM R1 IM	3.4 TCM	4.3 TCMX FR2 FR1	4.3 TCMX						1.2 STOP
7	2.2 PUSH R2	2.3 PUSH IR2	2.3 TM r1.r2	2.4 TM r1.lr2	3.3 TM R2.R1	3.4 TM IR2.R1	3.3 TM R1.IM	3.4 TM IR1.IM	4.3 TMX ER2.ER1	4.3 TMX IM.ER1						1.2 HALT
8	2.5 DECW RR1	2.6 DECW IRR1	2.5 LDE r1,lrr2	2.9 LDEI lr1,lrr2	3.2 LDX r1,ER2	3.3 LDX Ir1,ER2	3.4 LDX IRR2,R1	3.5 LDX IRR2,IR1	3.4 LDX r1,rr2,X	3.4 LDX rr1,r2,X						1.2 DI
9	2.2 RL R1	2.3 RL IR1	2.5 LDE r2,Irr1	2.9 LDEI Ir2,Irr1	3.2 LDX r2,ER1	3.3 LDX Ir2,ER1	3.4 LDX R2,IRR1	3.5 LDX IR2,IRR1	3.3 LEA r1,r2,X	3.5 LEA rr1,rr2,X						1.2 El
А	2.5 INCW RR1	2.6 INCW IRR1	2.3 CP r1,r2	2.4 CP r1,lr2	3.3 CP R2,R1	3.4 CP IR2,R1	3.3 CP R1,IM	3.4 CP IR1,IM	4.3 CPX ER2,ER1	4.3 CPX IM,ER1						1.4 RET
в	2.2 CLR R1	2.3 CLR IR1	2.3 XOR r1,r2	2.4 XOR r1,lr2	3.3 XOR R2,R1	3.4 XOR IR2,R1	3.3 XOR R1,IM	3.4 XOR IR1,IM	4.3 XORX ER2,ER1	4.3 XORX IM,ER1						1.5 IRET
с	2.2 RRC R1	2.3 RRC IR1	2.5 LDC r1,lrr2	2.9 LDCI lr1,lrr2	2.3 JP IRR1	2.9 LDC lr1,lrr2		3.4 LD r1,r2,X	3.2 PUSHX ER2							1.2 RCF
D	2.2 SRA R1	2.3 SRA IR1	2.5 LDC r2,Irr1	2.9 LDCI lr2,lrr1	2.6 CALL IRR1	2.2 BSWAP R1	3.3 CALL DA	3.4 LD r2,r1,X	3.2 POPX ER1							1.2 SCF
E	2.2 RR R1	2.3 RR IR1	2.2 BIT p,b,r1	2.3 LD r1,lr2	3.2 LD R2,R1	3.3 LD IR2,R1	3.2 LD R1,IM	3.3 LD IR1,IM	4.2 LDX ER2,ER1	4.2 LDX IM,ER1						1.2 CCF
F	2.2 SWAP R1	2.3 SWAP IR1	2.6 TRAP Vector	2.3 LD lr1,r2	2.8 MULT RR1	3.3 LD R2,IR1	3.3 BTJ p,b,r1,X	3.4 BTJ p,b,lr1,X			V	V	V	▼	V	

Figures 26 and 27 provide operation code mapping information about each of the eZ8 CPU instructions.

Figure 26. First Op Code Map

Figure 28 displays the typical current consumption while operating at 25°C and 3.3 V versus the system clock frequency in HALT Mode.

Figure 28. I_{CC} versus System Clock Frequency (HALT Mode)

Figure 29 displays the typical current consumption versus the system clock frequency in NORMAL Mode.

Figure 29. I_{CC} versus System Clock Frequency (NORMAL Mode)

	V _{DD} T _A =	= 2.7V to = 0°C to +7	3.6V 70°C	V _{DD} = T _A =	= 2.7V to 40°C to +	3.6V 105°C		
Parameter	Min	Тур	Max	Min	Тур	Max	Units	Notes
NVDS Byte Read Time				71	-	258	μs	With system clock at 20MHz
NVDS Byte Program Time				126	-	136	μs	With system clock at 20MHz
Data Retention				10	_	-	years	25°C
Endurance				100,000	-	-	cycles	Cumulative write cycles for entire memory

Table 122. Nonvolatile Data Storage

Note: For every 200 writes, a maintenance operation is necessary. In this rare occurrence, the write takes up to 58ms to complete.

Table 123. Analog-to-Digital Converter Electrical Characteristics and Timing

		V _{DD} = 2.7V to 3.6V T _A = 0°C to +70°C			V _{DD} T _A = -	= 2.7V t 40°C to	o 3.6V +105°C		
Symbol	Parameter	Min	Тур	Max	Min	Тур	Мах	Units	Conditions
Ν	Resolution				_	10	-	bits	
DNL	Differential Nonlinearity ¹				-1	-	+4	LSB	
INL	Integral Nonlinearity ¹				-5	-	+5	LSB	
	Gain Error					15		LSB	
	Offset Error				-15	_	15	LSB	PDIP package
	-				-9	_	9	LSB	Other packages
V _{REF}	On chip reference				1.9	2.0	2.1	V	
I _{DD} ADC	ADC Active Current					4		mA	

Note:

1. When the input voltage is lower than 20 mV, the conversion error is out of specification tolerance.

Packaging

Zilog's F083A Series of MCUs includes the Z8F043A and Z8F083A devices, which are available in the following packages:

- 20-Pin Quad Flat No-Lead Package (QFN)
- 20-pin Small Outline Integrated Circuit Package (SOIC)
- 20-pin Plastic Dual-Inline Package (PDIP)
- 20-pin Small Shrink Outline Package (SSOP)
- 28-Pin Quad Flat No-Lead Package (QFN)
- 28-pin Small Outline Integrated Circuit Package (SOIC)
- 28-pin Plastic Dual-Inline Package (PDIP)
- 28-pin Small Shrink Outline Package (SSOP)

Current diagrams for each of these packages are published in Zilog's <u>Packaging Product</u> <u>Specification (PS0072)</u>, which is available free for download from the Zilog website.

Bit	
Position	Description (Continued)
[2:0]	Analog Input Select
ANAIN	000 = ANA0 input is selected for analog-to-digital conversion.
	001 = ANA1 input is selected for analog-to-digital conversion.
	010 = ANA2 input is selected for analog-to-digital conversion.
	011 = ANA3 input is selected for analog-to-digital conversion.
	100 = ANA4 input is selected for analog-to-digital conversion.
	101 = ANA5 input is selected for analog-to-digital conversion.
	110 = ANA6 input is selected for analog-to-digital conversion.
	111 = ANA7 input is selected for analog-to-digital conversion.

Hex Address: F71

This address range is reserved.

Hex Address: F72

Table 148. ADC Data High Byte Register (ADCD_H)

Bit	7	6	5	4	3	2	1	0		
Field	ADCDH									
RESET	X									
R/W	R									
Address	F72H									

Bit	
Position	Description
[7:0]	ADC High Byte
	00h–FFh = The last conversion output is held in the data registers until the next ADC conver-
	sion is completed.

GPIO Port A

For more information about the GPIO registers, see the <u>GPIO Control Register Definitions</u> section on page 39.

Hex Address: FD0

Table 171. Port A GPIO Address Register (PAADDR)

Bit	7	6	5	4	3	2	1	0		
Field	PADDR[7:0]									
RESET	00H									
R/W	R/W	R/W R/W R/W R/W R/W R/W								
Address	FD0H									

Hex Address: FD1

Table 172. Port A Control Registers (PACTL)

Bit	7	6	5	4	3	2	1	0		
Field	PCTL									
RESET	00H									
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W								
Address	FD1H									

Hex Address: FD2

Table 173. Port A Input Data Registers (PAIN)

Bit	7	6	5	4	3	2	1	0	
Field	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0	
RESET	Х	Х	Х	Х	Х	Х	Х	Х	
R/W	R	R	R	R	R	R	R	R	
Address	FD2H								