E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	17
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f043ash020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Signal Mnemonic	I/O	Description
LED Drivers		
LED	0	Direct LED drive capability. All Port C pins have the capability to drive an LED without any other external components. These pins have programmable drive strengths set by the GPIO block.
On-Chip Debugger		
DBG	I/O	Debug. This signal is the control and data input and output to and from the On-Chip Debugger.
		Caution: The DBG pin is open-drain and requires an external pull-up resistor to ensure proper operation.
Reset		
RESET	I/O	RESET. Generates a reset when asserted (driven Low). Also serves as a reset indicator; the Z8 Encore! forces this pin low when in reset. This pin is open-drain and features an enabled internal pull-up resistor.
Power Supply		
V _{DD}	Ι	Digital power supply.
AV _{DD}	I	Analog power supply.
V _{SS}	Ι	Digital ground.
AVSS	I	Analog ground.

Table 4. Signal Descriptions (Continued)

Program Memory

The eZ8 CPU supports 64KB of program memory address space. The Z8 Encore! F083A Series devices contain 1KB to 12KB of on-chip Flash memory in the program memory address space, depending on the device. Reading from program memory addresses outside the available Flash memory addresses returns FFH. Writing to these unimplemented program memory addresses produces no effect. Table 6 describes the program memory maps for the Z8 Encore! F083A Series products.

Program Memory Address (Hex)	Function				
Z8F083A Products					
0000–0001	Flash Option Bits				
0002–0003	Reset Vector				
0004–003D	Interrupt Vectors*				
003E-1FFF	Program Memory				
Z8F043A Products					
0000–0001	Flash Option Bits				
0002–0003	Reset Vector				
0004–003D	Interrupt Vectors*				
003E-0FFF	Program Memory				
Note: *See <u>Table 34</u> on page 55 for a list of interrupt vectors.					

Table 6. Z8 Encore! F083A Series Program Memory Maps

Data Memory

The Z8 Encore! F083A Series does not use the eZ8 CPU's 64KB data memory address space.

Flash Information Area

Table 7 indicates the Z8 Encore! F083A Series MCUs' Flash information area. This 128byte information area is accessed by setting bit 7 of the Flash Page Select Register to 1. When access is enabled, the Flash information area is mapped into program memory and overlays the 128 bytes at addresses FE00H to FE7FH. When information area access is enabled, all reads from these program memory addresses return information area data rather than program memory data. Access to the Flash information area is read-only.

Address	(Hex) Register Description	Mnemonic	Reset (Hex)	Page #
Trim Bit C	Control			
FF6	Trim Bit Address	TRMADR	00	126
FF7	Trim Data	TRMDR	XX	127
Flash Me	mory Controller			
FF8	Flash Control	FCTL	00	120
FF8	Flash Status	FSTAT	00	121
FF9	Flash Page Select	FPS	00	122
	Flash Sector Protect	FPROT	00	122
FFA	Flash Programming Frequency High Byte	FFREQH	00	123
FFB	Flash Programming Frequency Low Byte	FFREQL	00	123
eZ8 CPU				
FFC	Flags	_	XX	Refer to the
FFD	Register Pointer	RP	XX	<u>eZ8 CPU</u>
FFE	Stack Pointer High Byte	SPH	XX	Manual
FFF	Stack Pointer Low Byte	SPL	XX	<u>(UM0128)</u>
Note: XX :	= Undefined.			

Table 8. Register File Address Map (Continued)

	Reset Characteristics and Latency						
Reset Type	Control Registers	eZ8 CPU	Reset Latency (Delay)				
System Reset	Reset (as applicable)	Reset	About 66 internal precision oscillator cycles.				
System Reset with Crystal Oscillator Enabled	Reset (as applicable)	Reset	About 5000 internal precision oscillator cycles.				
Stop Mode Recovery	Unaffected, except WDT_CTL and OSC_CTL registers	Reset	About 66 internal precision oscillator cycles.				
Stop Mode Recovery with crystal oscillator enabled	Unaffected, except WDT_CTL and OSC_CTL registers	Reset	About 5000 internal precision oscillator cycles.				

Table 9. Reset and Stop Mode Recovery Characteristics and Latency

During a system Reset or Stop Mode Recovery, the Z8 Encore! F083A Series device is held in reset for about 66 cycles of the internal precision oscillator. If the crystal oscillator is enabled in the Flash option bits, the reset period is increased to about 5000 IPO cycles. When a reset occurs because of a low voltage condition or POR, the reset delay is measured from the time the supply voltage first exceeds the POR level (discussed later in this chapter). If the external pin reset remains asserted at the end of the reset period, the device remains in reset until the pin is deasserted.

At the beginning of reset, all GPIO pins are configured as inputs with pull-up resistor disabled, except PDO which is shared with the reset pin. On Reset, the Port DO pin is configured as a bidirectional open-drain reset. This pin is internally driven low during port reset, after which the user code reconfigures this pin as a general purpose output.

During reset, the eZ8 CPU and on-chip peripherals are idle; however, the on-chip crystal oscillator and Watchdog Timer Oscillator continues to run.

On reset, control registers within the Register File that have a defined reset value are loaded with their reset values. Other control registers (including the Stack Pointer, Register Pointer and Flags) and general purpose RAM are undefined following the reset. The eZ8 CPU fetches the reset vector at program memory addresses 0002H and 0003H and loads that value into the program counter. Program execution begins at the reset vector address.

Because the control registers are reinitialized by a system reset, the system clock after reset is always the IPO. User software must reconfigure the oscillator control block, to enable and select the correct system clock source.

General Purpose Input/Output

The Z8 Encore! F083A Series products support a maximum of 23 port pins (Port A–D) for general purpose input/output (GPIO) operations. Each port contains control and data registers. The GPIO control registers determine data direction, open-drain, output drive current, programmable pull-ups, Stop Mode Recovery functionality and alternate pin functions. Each port pin is individually programmable. In addition, the Port C pins are capable of direct LED drive at programmable drive strengths.

GPIO Port Availability by Device

Table 15 lists the port pins available with each device and package type.

Devices	Package	10-Bit ADC	Port A	Port B	Port C	Port D	Total I/O	
Z8F083A, Z8F043A	20-pin	Yes	[7:0]	[3:0]	[3:0]	[0]	17	
Z8F083A, Z8F043A	28-pin	Yes	[7:0]	[5:0]	[7:0]	[0]	23	
Note: 20-pin and 28-pin and 10-bit ADC Enabled or Disabled can be selected via the option bits.								

Table 15. Port Availability by Device and Package Type

Architecture

Figure 8 displays a simplified block diagram of a GPIO port pin. In this figure, the ability to accommodate alternate functions and variable port current drive strength is not displayed.

LED Drive Level High Register

The LED Drive Level High Register, shown in Table 32, contains two control bits for each Port C pin. These two bits selects one of four programmable current drive levels for each Port C pin. Each pin is individually programmable.

Bit	7	6	5	4	3	2	1	0
Field	LEDLVLH[7:0]							
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	F83H							

Table 32. LED Drive Level High Register (LEDLVLH)

Bit	Description
[7:0]	LED Level High Bits
LEDLVLH	{LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each Port C pin.
	00 = 3mA.
	01 = 7 mA.
	10 = 13mA.
	11 = 20mA.

Bit	Description (Continued)
[2:0]	TIMER Mode
TMODE	This field along with the TMODEHI bit in TxCTL0 register determines the operating mode of
	the timer. TMODEHI is the most significant bit of the timer mode selection value.
	0000 = ONE-SHOT Mode.
	0001 = CONTINUOUS Mode.
	0010 = COUNTER Mode.
	0011 = PWM SINGLE OUTPUT Mode.
	0100 = CAPTURE Mode.
	0101 = COMPARE Mode.
	0110 = GATED Mode.
	0111 = CAPTURE/COMPARE Mode.
	1000 = PWM DUAL OUTPUT Mode.
	1001 = CAPTURE RESTART Mode.
	1010 = COMPARATOR COUNTER Mode.

91

96

Watchdog Timer Reload Upper, High and Low Byte Registers

The Watchdog Timer Reload Upper, High and Low Byte (WDTU, WDTH, WDTL) registers, shown in Tables 60 through 62, form the 24-bit reload value{WDTU[7:0], WDTH[7:0]} that is loaded into the Watchdog Timer when a WDT instruction is executed. Writing to these registers sets the appropriate reload value; reading from these registers returns the current Watchdog Timer count value.

Caution: The 24-bit WDT reload value must not be set to a value less than 000004H.

Bit	7	6	5	4	3	2	1	0	
Field	WDTU								
RESET	0	0	0	0	0	0	0	0	
R/W	R/W*								
Address	FF1H								
Note: *R/W = A read returns the current WDT count value; a write sets the appropriate reload value.									

Table 60. Watchdog Timer Reload Upper Byte Register (WDTU)

Bit Description [7:0] WDT Reload Upper Byte WDTH MOD_ Distributed at the Odd WINDT when here here

WDTU MSB, Bits[23:16], of the 24-bit WDT reload value.

7	6	5	4	3	2	1	
			WD	TH			

Table 61. Watchdog Timer Reload High Byte Register (WDTH)

Field		WDTH									
RESET	0	0	0	0	0	1	0	0			
R/W	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*			
Address	FF2H										
Note: *R/\	Note: *R/W = A read returns the current WDT count value; a write sets the appropriate reload value.										

Bit	Description
[7:0]	WDT Reload High Byte
WDTH	Middle byte, bits[15:8] of the 24-bit WDT reload value.

Bit

0

Sample Time Register

The sample time register, shown in Table 67, is used to program the length of active time for the sample after a conversion has begun by setting the START bit in the ADC Control Register. The number of system clock cycles required for the sample time varies from system to system, depending on the clock period used. The system designer must program this register to contain the number of system clocks required to meet a $1 \mu s$ minimum sample time.

Bit	7	6	5	4	3	2	1	0
Field	Rese	erved	ST					
RESET	()	1	1	1	1	1	1
R/W	R/	W	R/W					
Address			F75H					

Table 67.	Sample	Time	(ADCST)
-----------	--------	------	---------

Bit	Description
[7:6]	Reserved These bits are reserved and must be programmed to 00.
[5:0] ST	Sample/Hold Time Measured in number of system clock periods to meet 1µs minimum.

Comparator Control Register Definition

The Comparator Control Register (CMPCTL) configures the comparator inputs and sets the value of the internal voltage reference. The GPIO pin always used as positive comparator input.

Bit	7	6	5	4	3	2	1	0	
Field	Reserved	INNSEL		REFLVL Re				served	
RESET	0	0	0	1	0	1	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address				F9	ЭН				
Bit	Descriptio	n							
[7]	Reserved This bit is re	Reserved This bit is reserved and must be programmed to 0.							
[6] INNSEL	Signal Select for Negative Input 0 = internal reference disabled, GPIO pin used as negative comparator input. 1 = internal reference enabled as negative comparator input.								
[5:2] REFLVL	1 = internal reterence enabled as negative comparator input.Internal Reference Voltage LevelThis reference is independent of the ADC voltage reference. $0000 = 0.0V.$ $0001 = 0.2V.$ $0010 = 0.4V.$ $0011 = 0.6V.$ $0100 = 0.8V.$ $0101 = 1.0V$ (Default). $0110 = 1.2V.$ $0111 = 1.4V.$ $1000 = 1.6V.$ $1001 = 1.8V.$								
[1:0]	Reserved These bits	are reserved	d and must b	be programn	ned to 00.				

Table 69. Comparator Control Register (CMP0)

Note: The bit values used in Table 88 are set at the factory; no calibration is required.

VBO_TRIM	Trigger Voltage Level
000	1.7
001	1.6
101	2.2
110	2.0
100	2.4
111	1.8

Table 89. VBO Trim Definition

The F083A Series' on-chip Flash memory only guarantees write operations with a voltage supply over 2.7V. Write operations below 2.7V may cause unpredictable results.

Trim Bit Address 0006H

Bit	7	6	5	4	3	2	1	0
Field	DivBy4	Reserved	DlyCtl1	DlyCtl2	DlyCtl3	Reserved	FilterSel1	FilterSel0
RESET	0	1	0	0	0	1	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	ss Information Page Memory 0026H							
Note: U = Unchanged by Reset; R/W = Read/Write.								

Table 90. Trim Option Bits at 0006H (TCLKFLT)

Bit	Description
[7]	Output Frequency Selection
DivBy4	0 = Output frequency is input frequency.
	1 = Output frequency is 1/4 of the input frequency.
[6]	Reserved
	This bit is reserved and must be programmed to 1.
[5:3]	Delay Control
DlyCtlx	Filtered 3-bit pulse width selection. For 3.3V operation, see Table 91.
Notes: x in	ndicates bit values 3–1; y indicates bit values 1–0.

>

ister, the user code must wait at least 5000 IPO cycles for the crystal to stabilize. After this, the crystal oscillator may be selected as the system clock.

Figure 22 displays a recommended configuration for connection with an external fundamental-mode, parallel-resonant crystal operating at 20MHz. Recommended 20MHz crystal specifications are provided in Table 101. Resistor R₁ is optional and limits total power dissipation by the crystal. Printed circuit board layout must add no more than 4pF of stray capacitance to either the X_{IN} or X_{OUT} pins. If oscillation does not occur, reduce the values of capacitors C₁ and C₂ to decrease loading.

Figure 22. Recommended 20MHz Crystal Oscillator Configuration

Table 101.	Recommended	Crystal	Oscillator	Specifications
------------	-------------	---------	------------	----------------

Parameter	Value	Units	Comments
Frequency	20	MHz	
Resonance	Parallel		
Mode	Fundamental		
Series Resistance (R _S)	60	Ω	Maximum
Load Capacitance (C _L)	30	pF	Maximum
Shunt Capacitance (C ₀)	7	pF	Maximum
Drive Level	1	mW	Maximum

Table 103. Assembly Language Syntax Example 2

Assembly Language Code	ADD	43H,	R8	(ADD dst, sro	:)
Object Code	04	E8	43	(OPC src, dst)

The Register File size varies, depending on the device type. See the device-specific Z8 Encore! product specification to determine the exact Register File range available.

eZ8 CPU Instruction Notation

In the eZ8 CPU instruction summary and description sections, the operands, condition codes, status flags and address modes are represented by a notational shorthand that is described in Table 104.

Notation	Description	Operand	Range
b	Bit	b	b represents a value from 0 to 7 (000B to 111B).
CC	Condition Code	—	See the condition codes overview in the <u>eZ8 CPU</u> Core User Manual (UM0128).
DA	Direct Address	Addrs	<i>Addrs</i> represents a number in the range of 0000H to FFFFH.
ER	Extended addressing Register	Reg	<i>Reg</i> represents a number in the range of 000H to FFFH.
IM	Immediate Data	#Data	Data is a number between 00H to FFH/
lr	Indirect Working Register	@Rn	n = 0–15.
IR	Indirect Register	@Reg	<i>Reg</i> represents a number in the range of 00H to FFH/
Irr	Indirect Working Register Pair	@RRp	p = 0, 2, 4, 6, 8, 10, 12 or 14.
IRR	Indirect Register Pair	@Reg	<i>Reg</i> represents an even number in the range 00H to FEH.
р	Polarity	р	Polarity is a single bit binary value of either 0B or 1B.
r	Working Register	Rn	n = 0–15.
R	Register	Reg	Reg. represents a number in the range of 00H to FFH.

Table 104. Notational Shorthand

1	72
---	----

Assombly		Add Mo	lress ode	Op Codo(s)			Fla	ags			Fotob	Inctr
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	V	D	Н	Cycles	Cycles
AND dst, src	$dst \gets dst \; AND \; src$	r	r	52	_	*	*	0	-	_	2	3
		r	lr	53	_						2	4
		R	R	54	_						3	3
		R	IR	55	-						3	4
		R	IM	56	-						3	3
		IR	IM	57	-						3	4
ANDX dst, src	$dst \gets dst \ AND \ src$	ER	ER	58	_	*	*	0	_	_	4	3
		ER	IM	59	_						4	3
ATM	Block all interrupt and DMA requests during execution of the next 3 instructions			2F	_	_	_	_	_	_	1	2
BCLR bit, dst	dst[bit] ← 0	r		E2	_	*	*	0	_	_	2	2
BIT p, bit, dst	dst[bit] ← p	r		E2	_	*	*	0	-	_	2	2
BRK	Debugger Break			00	_	_	_	_	_	_	1	1
BSET bit, dst	dst[bit] ← 1	r		E2	_	*	*	0	-	_	2	2
BSWAP dst	dst[7:0] ← dst[0:7]	R		D5	Х	*	*	0	-	_	2	2
BTJ p, bit, src,	if src[bit] = p		r	F6	-	-	-	-	-	-	3	3
dst	$PC \leftarrow PC + X$		lr	F7	_						3	4
BTJNZ bit, src,	if src[bit] = 1		r	F6	-	-	-	-	-	-	3	3
dst	$PC \leftarrow PC + X$		lr	F7	_						3	4
BTJZ bit, src,	if src[bit] = 0		r	F6	-	-	_	_	-	_	3	3
dst	$PC \leftarrow PC + X$		lr	F7	_						3	4

Table 114. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 = Set to 1.

Assembly		Add Mo	lress ode	Op Code(s)			Fla	ags			Fetch	Instr
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	۷	D	Н	Cycles	Cycles
JR dst	$PC \gets PC + X$	DA		8B	-	_	_	-	_	_	2	2
JR cc, dst	if cc is true PC \leftarrow PC + X	DA		0B-FB	_	_	_	-	-	_	2	2
LD dst, rc	dst ← src	r	IM	0C-FC	-	_	_	-	_	_	2	2
		r	X(r)	C7	_						3	3
		X(r)	r	D7	_						3	4
		r	lr	E3	_						2	3
		R	R	E4	_						3	2
		R	IR	E5	-						3	4
		R	IM	E6	-						3	2
		IR	IM	E7	-						3	3
		Ir	r	F3	-						2	3
		IR	R	F5	-						3	3
LDC dst, src	dst ← src	r	Irr	C2	-	_	_	-	-	_	2	5
		lr	Irr	C5	-						2	9
		Irr	r	D2	-						2	5
LDCI dst, src	dst ← src	lr	Irr	C3	-	_	_	-	_	_	2	9
	r ← r + 1 rr ← rr + 1	Irr	lr	D3	-						2	9
LDE dst, src	dst ← src	r	Irr	82	-	_	_	_	_	_	2	5
		Irr	r	92	-						2	5
LDEI dst, src	dst ← src	Ir	Irr	83	-	_	_	-	-	_	2	9
	r ← r + 1 rr ← rr + 1	Irr	lr	93	_						2	9
LDWX dst, src	dst	ER	ER	1FE8	_	_	_	_	_	_	5	4

Table 114. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 = Set to 1.

Hex Address: F05

Table 136. Timer 0 PWM Low Byte Register (T0PWML)

Bit	7	6	5	4	3	2	1	0
Field				PW	/ML			
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				F0	5H			

Hex Address: F06

Table 137. Timer 0 Control Register 0 (T0CTL0)

Bit	7	6	5	4	3	2	1	0
Field	TMODEHI	TICO	NFIG	Reserved		PWMD		INPCAP
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address			·	F06	θH	·		·

Hex Address: F07

Table 138. Timer 0 Control Register 1 (T0CTL1)

Bit	7	6	5	4	3	2	1	0
Field	TEN	TPOL		PRES			TMODE	
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				F0	7H			

Hex Address: F08

Table 139. Timer 1 High Byte Register (T1H)

Bit	7	6	5	4	3	2	1	0
Field				Т	Н			
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				F0	8H			

Hex Address: F0D

Table 144. Timer 1 PWM Low Byte Register (T1PWML)

Bit	7	6	5	4	3	2	1	0
Field				PW	/ML			
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				F0	DH			•

Hex Address: F0E

Table 145. Timer 1 Control Register 0 (T1CTL0)

Bit	7	6	5	4	3	2	1	0
Field	TMODEHI	TICO	NFIG	Reserved		PWMD		INPCAP
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address			•	F0	EH	·		

Hex Address: F0F

Table 146. Timer 1 Control Register 1 (T1CTL1)

Bit	7	6	5	4	3	2	1	0
Field	TEN	TPOL		PRES			TMODE	
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address		·	·	F0	FH	·	·	

Hex Addresses: F10–F6F

This address range is reserved.

Analog-to-Digital Converter (ADC)

For more information about these ADC registers, see the <u>ADC Control Register Defini-</u> tions section on page 102.

Hex Address: F70

Bit	7	6	5	4	3	2	1	0
Field	START	Reserved	REFEN	ADCEN	Reserved		ANAIN[2:0]	
RESET	0	0	0	0	0	0	0	0
R/W	R/W1	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				F7	'0h			
Bit Position	Description	n						
[7] START	ADC Start/ 0 = Writing version. 1 = Writing progres	Busy to 0 has no to 1 starts a s.	effect. Read	ling a 0 indio . Reading a	cates that the	e ADC is av hat a conve	ailable to be rsion is curre	gin a con- ently in
[6]	Reserved This bit is re	eserved and	must be pro	ogrammed t	o 0.			
[5] REFEN	Reference 0 = Internal the ADO 1 = Internal sured o	Enable reference v C. reference v n the VREF	oltage is dis oltage for th pin.	abled, allow e ADC is er	ing an exterr nabled. The i	nal reference nternal refe	e voltage to l rence voltag	be used by e is mea-
[4] ADCEN	ADC Enabl 0 = ADC is 1 = ADC is	le disabled for enabled for	low power o normal use.	operation.				
[3]	Reserved This bit is re	eserved and	must be pro	ogrammed t	o 0.			

Table 147. ADC Control Register 0 (ADCCTL0)

Hex Address: FC5

|--|

Bit	7	6	5	4	3	2	1	0
Field	PA7ENL	PA6CENL	PA5ENL	PA4ENL	PA3ENL	PA2ENL	PA1ENL	PA0ENL
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				FC	5H			

Hex Address: FC6

Table 165. Interrupt Request 2 Register (IRQ2)

Bit	7	6	5	4	3	2	1	0	
Field		Rese	erved		PC3I	PC2I	PC1I	PC0I	
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	FC6H								

Hex Address: FC7

Table 166. IRQ2 Enable High Bit Register (IRQ2ENH)

Bit	7	6	5	4	3	2	1	0		
Field		Rese	erved		C3ENH	C2ENH	C1ENH	C0ENH		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address	FC7H									

Hex Address: FC8

Table 167. IRQ2 Enable Low Bit Register (IRQ2ENL)

Bit	7	6	5	4	3	2	1	0		
Field		Rese	erved		C3ENL	C2ENL	C1ENL	C0ENL		
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address	FC8H									

Hex Address: FDF

Table 185	Port D	Output	Data	Register	(PDOUT)
Table 105.	FUILD	σαιραι	Dala	Negister	

Bit	7	6	5	4	3	2	1	0
Field	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address		*		FD	FH	·		

Hex Addresses: FE0–FEF

This address range is reserved.

Watchdog Timer (WDT)

For more information about the Watchdog Timer registers, see the <u>Watchdog Timer Con-</u> trol Register Definitions section on page 95.

Hex Address: FF0

This register address is shared with the read-only Reset Status Register.

Table 186. Watchdog Timer Control Register (WDTCTL)

Bit	7	6	5	4	3	2	1	0			
Field	WDTUNLK										
RESET	Х	Х	Х	Х	Х	Х	Х	Х			
R/W	W	W	W	W	W	W	W	W			
Address				FF	0H						

Bit	7	6	5	4	3	2	1	0		
Field	POR	STOP	WDT	EXT	Reserved					
RESET	See <u>Table 12</u> on page 29			0	0	0	0	0		
R/W	R	R	R	R	R	R	R	R		
Address	FF0H									

Table 187. Reset Status Register (RSTSTAT)