

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	17
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f083aph020eg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z8 Encore![®] F083A Series Product Specification

Table 179.	Port C GPIO Address Register (PCADDR) 220
Table 180.	Port C Control Registers (PCCTL) 220
Table 181.	Port C Input Data Registers (PCIN) 220
Table 182.	Port C Output Data Register (PCOUT) 221
Table 183.	Port D GPIO Address Register (PDADDR) 221
Table 184.	Port D Control Registers (PDCTL) 221
Table 185.	Port D Output Data Register (PDOUT) 222
Table 186.	Watchdog Timer Control Register (WDTCTL)
Table 187.	Reset Status Register (RSTSTAT) 222
Table 188.	Watchdog Timer Reload Upper Byte Register (WDTU) 223
Table 189.	Watchdog Timer Reload High Byte Register (WDTH) 223
Table 190.	Watchdog Timer Reload Low Byte Register (WDTL) 223
Table 191.	Trim Bit Address Register (TRMADR) 224
Table 192.	Trim Bit Data Register (TRMDR) 224
Table 193.	Flash Control Register (FCTL)
Table 194.	Flash Status Register (FSTAT) 225
Table 195.	Flash Page Select Register (FPS) 225
Table 196.	Flash Sector Protect Register (FPROT) 225
Table 197.	Flash Frequency High Byte Register (FFREQH)
Table 198.	Flash Frequency Low Byte Register (FFREQL)

13

Pin Characteristics

Table 5 provides detailed characteristics of each pin available on the Z8 Encore! F083A Series 20- and 28-pin devices. The data in Table 5 are sorted alphabetically by the pin symbol mnemonic.

Symbol Mnemonic	Direction	Reset Direction	Active Low or Active High	Tristate Output	Internal Pull-up or Pull-down	Schmitt Trigger Input	Open Drain Output	5V Tolerance
AV _{DD}	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
AV _{SS}	N/A	N/A	N/A	N/A	N/A	N/A	N/A	NA
DBG	I/O	I	N/A	Yes	No	Yes	Yes	Yes
PA[7:0]	I/O	I	N/A	Yes	Programma- ble pull-up	Yes	Yes, programma- ble	PA[7:2] only
PB[5:0]	I/O	I	N/A	Yes	Programma- ble pull-up	Yes	Yes, programma- ble	No
PC[7:0]	I/O	I	N/A	Yes	Programma- ble pull-up	Yes	Yes, programma- ble	PC[7:3] only
RESET/ PD0	I/O	I/O (defaults to RESET)	Low (in RESET mode)	Yes (PD0 only)	Programma- ble for PD0; always on for RESET	Yes	Programma- ble for PD0; always on for RESET	Yes
V _{DD}	N/A	N/A	N/A	N/A			N/A	N/A
V _{SS}	N/A	N/A	N/A	N/A			N/A	N/A

Table 5. Pin Characteristics (20- and 28-pin Devices)

Address Space

The eZ8 CPU accesses three distinct address spaces as follows:

- The Register File addresses access for the general purpose registers and the eZ8 CPU, peripheral and GPIO port control registers
- Program Memory addresses access for all of the memory locations having executable code and/or data
- The Data Memory addresses access for all of the memory locations containing only the data

The following sections describe these three address spaces. For more detailed information about the eZ8 CPU and its address space, refer to the <u>eZ8 CPU Core User Manual</u> (<u>UM0128</u>), available for download on <u>www.zilog.com</u>.

Register File

The Register File address space in the Z8 Encore! MCU is 4KB (4096 bytes). The Register File consists of two sections: control registers and general purpose registers. When instructions are executed, registers defined as source are read and registers defined as destinations are written. The architecture of the eZ8 CPU allows all general purpose registers to function as accumulators, address pointers, index registers, stack areas or scratch pad memory.

The upper 256 bytes of the 4KB Register File address space are reserved for control of the eZ8 CPU, on-chip peripherals and the I/O ports. These registers are located at addresses from F00H to FFFH. Some of the addresses within the 256 B Control Register section are reserved (unavailable). Reading from a reserved Register File address returns an undefined value. Writing to reserved Register File addresses is not recommended and produces unpredictable results.

The on-chip RAM always begins at address 000H in the Register File address space. The Z8 Encore! F083A Series devices contain up to 256 B of on-chip RAM. Reading from Register File addresses outside the available RAM addresses (and not within the Control Register address space), returns an undefined value. Writing to these Register File addresses has no effect.

address. Following Stop Mode Recovery, the STOP bit in the Reset Status (RSTSTAT) Register is set to 1. Table 11 lists the Stop Mode Recovery sources and resulting actions. The following sections provide more detailed information about each of the Stop Mode Recovery sources.

Operating Mode	Stop Mode Recovery Source	Action
STOP Mode	WDT time-out when configured for Reset.	Stop Mode Recovery.
	WDT time-out when configured for interrupt.	Stop Mode Recovery followed by interrupt (if interrupts are enabled).
	Data transition on any GPIO port pin enabled as a Stop Mode Recovery source.	Stop Mode Recovery.
	Assertion of external RESET pin.	System reset.
	Debug pin driven Low.	System reset.

Table 11. Stop Mode Recovery Sources and Resulting Action

Stop Mode Recovery using Watchdog Timer Time-Out

If the WDT times out during STOP Mode, the device undergoes a Stop Mode Recovery sequence. In the Reset Status (RSTSTAT) Register, the WDT and STOP bits are set to 1. If the WDT is configured to generate an interrupt upon time-out and the Z8 Encore! F083A Series device is configured to respond to interrupts, the eZ8 CPU services the WDT interrupt request following the normal Stop Mode Recovery sequence.

Stop Mode Recovery using GPIO Port Pin Transition

Each of the GPIO port pins can be configured as a Stop Mode Recovery input source. If any GPIO pin is enabled as a Stop Mode Recovery source, a change in the input pin value (from high to low or from low to high) initiates Stop Mode Recovery. In the Reset Status (RSTSTAT) Register, the STOP bit is set to 1.

Caution: In STOP Mode, the GPIO port input data registers (PxIN) are disabled. The port input data registers record the port transition only if the signal stays on the port pin through the end of the Stop Mode Recovery delay. As a result, short pulses on the port pin initiates Stop Mode Recovery without being written to the port Input Data Register or without initiating an interrupt (if enabled for that pin).

45

Port A–D Stop Mode Recovery Source Enable Subregisters

The Port A–D Stop Mode Recovery Source Enable Subregister, shown in Table 25, is accessed through the Port A–D Control Register by writing 05H to the Port A–D Address Register. Setting the bits in the Port A–D Stop Mode Recovery Source Enable subregisters to1, configures the specified port pins as a Stop Mode Recovery source. During STOP Mode, any logic transition on a port pin enabled as a Stop Mode Recovery source initiates Stop Mode Recovery.

Table 25. Port A–D Stop Mode Recovery Source Enable Subregisters (PxSMRE)

Bit	7	6	5	4	3	2	1	0
Field	PSMRE7	PSMRE6	PSMRE5	PSMRE4	PSMRE3	PSMRE2	PSMRE1	PSMRE0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	If 05H ii	n Port A–D A	Address Reg	gister, acces	sible throug	h the Port A	–D Control I	Register

Bit Description

[7:0] **Port Stop Mode Recovery Source Enable**

PSMREx 0 = The port pin is not configured as a Stop Mode Recovery source. Transitions on this pin during STOP Mode do not initiate Stop Mode Recovery.

1 = The port pin is configured as a Stop Mode Recovery source. Any logic transition on this pin during STOP Mode initiates Stop Mode Recovery.

Note: x indicates the specific GPIO port pin number (7-0).

LED Drive Level High Register

The LED Drive Level High Register, shown in Table 32, contains two control bits for each Port C pin. These two bits selects one of four programmable current drive levels for each Port C pin. Each pin is individually programmable.

Bit	7	6	5	4	3	2	1	0
Field				LEDLV	LH[7:0]			
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				F8	3H			

Table 32. LED Drive Level High Register (LEDLVLH)

Bit	Description
[7:0]	LED Level High Bits
LEDLVLH	{LEDLVLH, LEDLVLL} select one of four programmable current drive levels for each Port C pin.
	00 = 3mA.
	01 = 7 mA.
	10 = 13mA.
	11 = 20mA.

Interrupt Request 1 Register

The Interrupt Request 1 (IRQ1) Register, shown in Table 36, stores interrupt requests for both vectored and polled interrupts. When a request is sent to the Interrupt Controller, the corresponding bit in the IRQ1 Register becomes 1. If interrupts are globally enabled (i.e., vectored interrupts), the Interrupt Controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (i.e., polled interrupts), the eZ8 CPU reads the Interrupt Request 1 Register to determine if any interrupt requests are pending.

Bit	7	6	5	4	3	2	1	0
Field	PA7I	PA6CI	PA5I	PA4I	PA3I	PA2I	PA1I	PA0I
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address				FC	3H			

Table 36. Interrupt Request 1 Register (IRQ1)

Bit	Description	
[7]	Port A7	
PA7I	0 = No interrupt request is pending for GPIO Port A.	
	1 = An interrupt request from GPIO Port A.	
[6]	Port A6 or Comparator Interrupt Request	
PA6CI	0 = No interrupt request is pending for GPIO Port A or comparator.	
	1 = An interrupt request from GPIO Port A or comparator.	
[5]	Port A Pin x Interrupt Request	
PAxI	0 = No interrupt request is pending for GPIO Port A pin x.	
	1 = An interrupt request from GPIO Port A pin x is awaiting service.	
Note: x	indicates the specific GPIO port pin number (5–0).	

Timers

Z8 Encore! F083A Series products contain up to two 16-bit reloadable timers that are used for timing, event counting or generation of pulse width modulated (PWM) signals. The timers features include:

- 16-bit reload counter
- Programmable prescaler with prescale values ranging from 1 to 128
- PWM output generation
- Capture and compare capability
- External input pin for timer input, clock gating or capture signal. External input pin signal frequency is limited to a maximum of one-fourth the system clock frequency
- Timer output pin
- Timer interrupt

Architecture

Figure 10 displays the architecture of the timers.

Flash Memory

The products in the Z8 Encore! F083A Series features either 4KB (4096 bytes with NVDS) or 8KB (8192 bytes with NVDS) of nonvolatile Flash memory with read/write/ erase capability. The Flash memory is programmed and erased in-circuit by either user code or through the On-Chip Debugger.

The Flash memory array is arranged in pages with 512-bytes per page. The 512-byte page is the minimum Flash block size that is erased. Each page is divided into eight rows of 64 bytes.

For program/data protection, Flash memory is also divided into sectors. In the Z8 Encore! F083A Series, each sector maps to one page for 4KB devices and two pages for 8KB devices.

The first two bytes of the Flash program memory are used as Flash option bits. For details, see *the* <u>Flash Option Bits</u> chapter on page 124.

Table 70 describes the Flash memory configuration for each device in the Z8 Encore! F083A Series. Figures 14 and 15 display the Flash memory arrangement.

Part Number	Flash Size KB (Bytes)	Flash Pages	Program Memory Addresses	Flash Sector Size (bytes)
Z8F083A	8 (8196)	16	0000H–1FFFH	1024
Z8F043A	4 (4096)	8	0000H-0FFFH	512

Table 70. Z8 Encore! F083A Series Flash Memory Configurations

Bit	Description (Continued)
[5:4] OSC_SEL	 OSCILLATOR Mode Selection 00 = On-chip oscillator configured for use with external RC networks (<4MHz). 01 = Minimum power for use with very low frequency crystals (32kHz to 1.0MHz). 10 = Medium power for use with medium frequency crystals or ceramic resonators (0.5MHz to 5.0MHz). 11 = Maximum power for use with high frequency crystals (5.0MHz to 20.0MHz). This is the default setting for unprogrammed (erased) Flash.
[3] VBO_AO	 Voltage Brown-Out Protection Always On 0 = VBO protection is disabled in STOP Mode to reduce total power consumption. 1 = VBO protection is always enabled, even during STOP Mode. This is the default setting for unprogrammed (erased) Flash.
[2] FRP	 Flash Read Protect 0 = User program code is inaccessible. Limited control features are available through the On-Chip Debugger. 1 = User program code is accessible. All On-Chip Debugger commands are enabled. This is the default setting for unprogrammed (erased) Flash.
[1]	Reserved This bit is reserved and must be programmed to 1.
[0] FWP	 Flash Write Protect This option bit provides Flash program memory protection. 0 = Programming and erasure disabled for all Flash program memory. Programming, page erase and mass erase through user code is disabled. Mass erase is available using the On-Chip Debugger. 1 = Programming, page erase and mass erase are enabled for all Flash program memory.

Flash Program Memory Address 0001H

Table 83. Flash Options Bits at Program Memory Address 000
--

Bit	7	6	5	4	3	2	1	0	
Field	VBO_RES	Rese	erved	XTLDIS		Rese	erved		
RESET	U	U	U	U	U	U	U	U	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	Program Memory 0001H								
Note: U = Unchanged by Reset; R/W = Read/Write.									

128

Bit	Description
[7] VBO_RES	Voltage Brown-Out Reset 1 = VBO detection causes a system reset. This setting is the default setting for unpro- grammed (erased) Flash.
[6:5]	Reserved These bits are reserved and must be programmed to 11.
[4] XTLDIS	State of the Crystal Oscillator at ResetThis bit only enables the crystal oscillator. Its selection as a system clock must be performed manually.0 = The crystal oscillator is enabled during reset, resulting in longer reset timing.1 = The crystal oscillator is disabled during reset, resulting in shorter reset timing.
[3:0]	Reserved These bits are reserved and must be programmed to 1111.

Trim Bit Address Space

	Function
Address	Function
00h	ADC reference voltage
01h	ADC and comparator
02h	Internal precision oscillator
03h	Oscillator and VBO
06h	ClkFltr

Table 84. Trim Bit Address Space

Trim Bit Address 0000H

Table 85. Trim Option Bits at 0000H (ADCREF)

Bit	7	6	5	4	3	2	1	0	
Field		AI	DCREF_TRI	Reserved					
RESET			U	U					
R/W	R/W								
Address	Information Page Memory 0020H								
Note: U =	te: U = Unchanged by Reset; R/W = Read/Write.								

Bit	Description (Continued)
[2]	Reserved
	This bit is reserved and must be programmed to 1.
[1:0]	Filter Selection
FilterSely	2-bit Clock Filter Mode selection.
	00 = No filter.
	01 = Filter low level noise on high level signal.
	10 = Filter high level noise on low level signal.
	11 = Filter both.
Notes: x in	idicates bit values 3–1; y indicates bit values 1–0.

Note: The bit values used in Table 90 are set at the factory; no calibration is required.

DlyCtl3, DlyCtl2, DlyCtl1	Low-Noise Pulse on High Signal (ns)	High-Noise Pulse on Low Signal (ns)
000	5	5
001	7	7
010	9	9
011	11	11
100	13	13
101	17	17
110	20	20
111	25	25
Note: The variation is about 30%	6.	

Table 91. ClkFlt Delay Control Definition

On-Chip Debugger

Z8 Encore! devices contain an integrated On-Chip Debugger (OCD) that provides the following advanced debugging features:

- Reading and writing of the Register File
- Reading and writing of program and data memory
- Setting of breakpoints and watchpoints
- Executing eZ8 CPU instructions

Architecture

The On-Chip Debugger consists of four primary functional blocks: transmitter, receiver, autobaud detector/generator and debug controller. Figure 17 displays the architecture of the On-Chip Debugger.

Figure 17. On-Chip Debugger Block Diagram

Mnemonic	Operands	Instruction
AND	dst, src	Logical AND
ANDX	dst, src	Logical AND using extended addressing
СОМ	dst	Complement
OR	dst, src	Logical OR
ORX	dst, src	Logical OR using extended addressing
XOR	dst, src	Logical Exclusive OR
XORX	dst, src	Logical Exclusive OR using extended addressing

Table 112. Program Control Instructions

Mnemonic	Operands	Instruction
BRK	_	On-Chip Debugger Break
BTJ	p, bit, src, DA	Bit Test and Jump
BTJNZ	bit, src, DA	Bit Test and Jump if Non-Zero
BTJZ	bit, src, DA	Bit Test and Jump if Zero
CALL	dst	Call Procedure
DJNZ	dst, src, RA	Decrement and Jump Non-Zero
IRET	—	Interrupt Return
JP	dst	Jump
JP cc	dst	Jump Conditional
JR	DA	Jump Relative
JR cc	DA	Jump Relative Conditional
RET	—	Return
TRAP	vector	Software Trap

Op Code Maps

A description of the opcode map data and the abbreviations are provided in Figure 25. Table 115 lists op code map abbreviations.

Figure 25. Op Code Map Cell Description

Table 115. Op Code	Map Abbreviations
--------------------	-------------------

Abbreviation	Description	Abbreviation	Description
b	Bit position	IRR	Indirect Register Pair
сс	Condition code	р	Polarity (0 or 1)
Х	8-bit signed index or displacement	r	4-bit Working Register
DA	Destination address	R	8-bit register
ER	Extended addressing register	r1, R1, Ir1, Irr1, IR1, rr1, RR1, IRR1, ER1	Destination address
IM	Immediate data value	r2, R2, Ir2, Irr2, IR2, rr2, RR2, IRR2, ER2	Source address
Ir	Indirect Working Register	RA	Relative
IR	Indirect register	rr	Working Register Pair
Irr	Indirect Working Register Pair	RR	Register Pair

DC Characteristics

Table 117 lists the DC characteristics of the Z8 Encore! F083A Series products. All voltages are referenced to V_{SS} , the primary system ground.

		T _A	= 0°C +70°C	to	T _A = −40°C to +105°C				
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Units	Conditions
V _{DD}	Supply Voltage				2.7	-	3.6	V	power supply noise not to exceed 100 mV Peak to Peak
V _{IL1}	Low Level Input Voltage				-0.3	_	0.3*V DD	V	For all input pins except RESET.
V _{IL2}	Low Level Input Voltage				-0.3	-	0.8	V	For RESET.
V _{IH1}	High Level Input Voltage				2.0	-	5.5	V	For all input pins without analog or oscillator func- tion.
V _{IH2}	High Level Input Voltage				2.0	-	V _{DD} + 0.3	V	For those pins with analog or oscillator function.
V _{OL1}	Low Level Output Voltage				_	_	0.4	V	$I_{OL} = 2mA; V_{DD} = 3.0 V$ High Output Drive disabled.
V _{OH1}	High Level Output Voltage				2.4	-	-	V	$I_{OH} = -2 \text{ mA}; V_{DD} = 3.0 \text{ V}$ High Output Drive disabled.
V _{OL2}	Low Level Output Voltage				-	-	0.6	V	$I_{OL} = 20$ mA; $V_{DD} = 3.3$ V High Output Drive enabled.
V _{OH2}	High Level Output Voltage				2.4	-	-	V	I_{OH} = -20mA; V_{DD} = 3.3 V High Output Drive enabled.
I _{IL}	Input Leakage Current				-5	-	+5	μA	$V_{DD} = 3.6 \text{V};$ $V_{IN} = V_{DD} \text{ or } V_{SS}^{1}$

Table 117. DC Chara	cteristics
---------------------	------------

Notes:

1. This condition excludes all pins that have on-chip pull-ups, when driven Low.

2. These values are provided for design guidance only and are not tested in production.

3. See <u>Figure 28 on page 187 on page 187 for HALT Mode current and Figure 29 on page 187 for ACTIVE (Nor-</u> mal) Mode current. The typical values are taken from the chart at 20MHz.

4. Inputs are at V_{DD} , AV_{DD} , V_{ss} or AV_{ss} power rails and outputs are floating. Pull-up enabled inputs are driven to V_{DD} or floating.

5. Typicals are at 3.3 V and 27°C.

185

Hex Address: F01

Table 132. Timer 0 Low Byte Register (T0L)

Bit	7	6	5	4	3	2	1	0	
Field				Т	Ľ				
RESET	0	0	0	0	0	0	0	1	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		F01H							

Hex Address: F02

Table 133. Timer 0 Reload High Byte Register (T0RH)

Bit	7	6	5	4	3	2	1	0
Field				TF	RH			
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	F02H							

Hex Address: F03

Table 134. Timer 0 Reload Low Byte Register (T0RL)

Bit	7	6	5	4	3	2	1	0
Field				TF	٦L			
RESET	1	1	1	1	1	1	1	1
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	F03H							

Hex Address: F04

Table 135. Timer 0 PWM High Byte Register (T0PWMH)

Bit	7	6	5	4	3	2	1	0	
Field				PW	MH	-		-	
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		F04H							

Hex Addresses: F77–F7F

This address range is reserved.

Low Power Control

For more information about the Power Control Register, see the <u>Power Control Register</u> <u>Definitions</u> section on page 31.

Hex Address: F80

Bit	7	6	5	4	3	2	1	0
Field		Reserved			Reserved	Reserved	COMP	Reserved
RESET	1	0	0	0	1	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	F80H							

Table 153. Power Control Register 0 (PWRCTL0)

Hex Address: F81

This address is reserved.

LED Controller

For more information about the LED Drive registers, see the <u>GPIO Control Register Definitions</u> section on page 39.

Hex Address: F82

Table 154. LED Drive Enable (LEDEN)

Bit	7	6	5	4	3	2	1	0	
Field		LEDEN[7:0]							
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	F82H								

GPIO Port A

For more information about the GPIO registers, see the <u>GPIO Control Register Definitions</u> section on page 39.

Hex Address: FD0

Table 171. Port A GPIO Address Register (PAADDR)

Bit	7	6	5	4	3	2	1	0		
Field		PADDR[7:0]								
RESET		00H								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address		FD0H								

Hex Address: FD1

Table 172. Port A Control Registers (PACTL)

Bit	7	6	5	4	3	2	1	0	
Field		PCTL							
RESET		00H							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address		FD1H							

Hex Address: FD2

Table 173. Port A Input Data Registers (PAIN)

Bit	7	6	5	4	3	2	1	0	
Field	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0	
RESET	Х	Х	Х	Х	Х	Х	Х	Х	
R/W	R	R	R	R	R	R	R	R	
Address	FD2H								

Hex Address: FD7

Bit	7	6	5	4	3	2	1	0
Field	POUT7	POUT6	POUT5	POUT4	POUT3	POUT2	POUT1	POUT0
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FD7H							

Table 178. Port B Output Data Register (PBOUT)

Hex Address: FD8

Table 179. Port C GPIO Address Register (PCADDR)

Bit	7	6	5	4	3	2	1	0	
Field				PADD	R[7:0]				
RESET		00H							
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	FD8H								

Hex Address: FD9

Table 180. Port C Control Registers (PCCTL)

Bit	7	6	5	4	3	2	1	0		
Field		PCTL								
RESET		00H								
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address	FD9H									

Hex Address: FDA

Table 181. Port C Input Data Registers (PCIN)

Bit	7	6	5	4	3	2	1	0
Field	PIN7	PIN6	PIN5	PIN4	PIN3	PIN2	PIN1	PIN0
RESET	Х	Х	Х	Х	Х	Х	Х	Х
R/W	R	R	R	R	R	R	R	R
Address	FDAH							