

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	17
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f083aph020sg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Tables

Table 1.	Z8 Encore! F083A Series Family Part Selection Guide 2
Table 2.	Acronyms and Expansions
Table 3.	Z8 Encore! F083A Series Package Options
Table 4.	Signal Descriptions
Table 5.	Pin Characteristics (20- and 28-pin Devices) 13
Table 6.	Z8 Encore! F083A Series Program Memory Maps 15
Table 7.	Z8 Encore! F083A Series Flash Memory Information Area Map 16
Table 8.	Register File Address Map 17
Table 9.	Reset and Stop Mode Recovery Characteristics and Latency 22
Table 10.	Reset Sources and Resulting Reset Type
Table 11.	Stop Mode Recovery Sources and Resulting Action 27
Table 12.	POR Indicator Values
Table 13.	Reset Status Register (RSTSTAT)
Table 14.	Power Control Register 0 (PWRCTL0)
Table 15.	Port Availability by Device and Package Type
Table 16.	Port Alternate Function Mapping
Table 17.	GPIO Port Registers and Subregisters
Table 18.	Port A–D GPIO Address Registers (PxADDR)
Table 19.	Port Control Subregister Access
Table 20.	Port A–D Control Registers (PxCTL)
Table 21.	Port A–D Data Direction Subregisters (PxDD) 41
Table 22.	Port A–D Alternate Function Subregisters (PxAF)
Table 23.	Port A–D Output Control Subregisters (PxOC)
Table 24.	Port A–D High Drive Enable Subregisters (PxHDE)
Table 25.	Port A–D Stop Mode Recovery Source Enable Subregisters (PxSMRE) 45
Table 26.	Port A–D Pull-Up Enable Subregisters (PxPUE)
Table 27.	Port A–D Alternate Function Set 1 Subregisters (PxAFS1) 47
Table 28.	Port A–D Alternate Function Set 2 Subregisters (PxAFS2) 48

Pin Description

The Z8 Encore! F083A Series products are available in variety of package styles and pin configurations. This chapter describes the signals and the pin configurations for each of the package styles. For information about the physical package specifications, see the <u>Packaging</u> chapter on page 198.

Available Packages

Table 3 lists the package styles that are available for each device in the Z8 Encore! F083A Series product line.

Part Number	ADC	20-pin QFN	20-pin SOIC	20-pin SSOP	20-pin PDIP	28-pin QFN	28-pin SOIC	28-pin SSOP
Z8F083A	Yes	Х	Х	Х	Х	Х	Х	Х
Z8F043A	Yes	Х	Х	Х	Х	Х	Х	Х

Table 3. Z8 Encore! F083A Series Package Options

Pin Configurations

Figures 2 through 5 display the pin configurations of all of the packages available in the Z8 Encore! F083A Series. For the description of the signals, see <u>Table 4</u> on page 11.

The pin configurations listed are preliminary and subject to change based on manufacturing limitations.

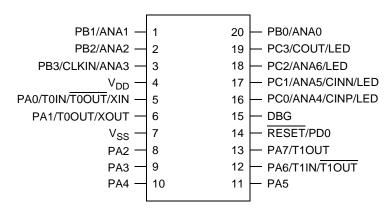


Figure 2. Z8F083A Series in 20-Pin SOIC, SSOP, PDIP Package

Z8 Encore![®] F083A Series Product Specification

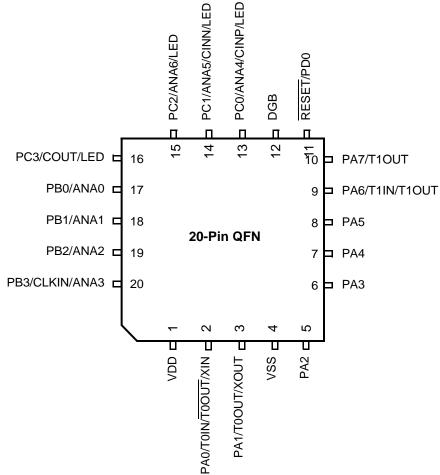


Figure 4. Z8F083A Series in 20-Pin QFN Package

9

Signal Descriptions

Table 4 describes the Z8 Encore! F083A Series signals. To determine the signals available for a specific package style, see the <u>Pin Configurations</u> section on page 7.

Signal Mnemonic	I/O	Description
General-Purpose In	nput/Ou	tput Ports A–D
PA[7:0]	I/O	Port A. These pins are used for GPIO.
PB[5:0]	I/O	Port B. These pins are used for GPIO.
PC[7:0]	I/O	Port C. These pins are used for GPIO.
PD[0]	I/O	Port D. This pin is used for general purpose output only.
Timers		
T0OUT/T1OUT	0	Timer output 0–1. These signals are the output from the timers.
T0OUT/T1OUT	0	Timer complement output 0–1. These signals are output from the timers in PWM DUAL OUTPUT mode.
T0IN/T1IN	I	Timer Input 0–1. These signals are used as the capture, gating and counter inputs. The T0IN signal is multiplexed T0OUT signals.
Comparator		
CINP/CINN	Ι	Comparator inputs. These signals are the positive and negative inputs to the comparator.
COUT	0	Comparator output. This is the output of the comparator.
Analog		
ANA[7:0]	Ι	Analog port. These signals are used as inputs to the Analog-to-Digital Con verter (ADC).
VREF	I/O	ADC reference voltage input. Note: When configuring ADC using external Vref, PB5 is used as VREF in 28-pin package.
Oscillators		
XIN	Ι	External crystal input. This is the input pin to the crystal oscillator. A crystal is connected between it and the XOUT pin to form the oscillator. In addition, this pin is used with external RC networks or external clock drivers to provide the system clock.
XOUT	0	External crystal output. This pin is the output of the crystal oscillator. A crystal is connected between it and the XIN pin to form the oscillator.
Clock Input		
CLKIN	I	Clock input signal. This pin can be used to input a TTL-level signal to be used as the system clock.

	Reset Characteristics and Latency						
Reset Type	Control Registers	eZ8 CPU	Reset Latency (Delay)				
System Reset	Reset (as applicable)	Reset	About 66 internal precision oscillator cycles.				
System Reset with Crystal Oscillator Enabled	Reset (as applicable)	Reset	About 5000 internal precision oscillator cycles.				
Stop Mode Recovery	Unaffected, except WDT_CTL and OSC_CTL registers	Reset	About 66 internal precision oscillator cycles.				
Stop Mode Recovery with crystal oscillator enabled	Unaffected, except WDT_CTL and OSC_CTL registers	Reset	About 5000 internal precision oscillator cycles.				

Table 9. Reset and Stop Mode Recovery Characteristics and Latency

During a system Reset or Stop Mode Recovery, the Z8 Encore! F083A Series device is held in reset for about 66 cycles of the internal precision oscillator. If the crystal oscillator is enabled in the Flash option bits, the reset period is increased to about 5000 IPO cycles. When a reset occurs because of a low voltage condition or POR, the reset delay is measured from the time the supply voltage first exceeds the POR level (discussed later in this chapter). If the external pin reset remains asserted at the end of the reset period, the device remains in reset until the pin is deasserted.

At the beginning of reset, all GPIO pins are configured as inputs with pull-up resistor disabled, except PDO which is shared with the reset pin. On Reset, the Port DO pin is configured as a bidirectional open-drain reset. This pin is internally driven low during port reset, after which the user code reconfigures this pin as a general purpose output.

During reset, the eZ8 CPU and on-chip peripherals are idle; however, the on-chip crystal oscillator and Watchdog Timer Oscillator continues to run.

On reset, control registers within the Register File that have a defined reset value are loaded with their reset values. Other control registers (including the Stack Pointer, Register Pointer and Flags) and general purpose RAM are undefined following the reset. The eZ8 CPU fetches the reset vector at program memory addresses 0002H and 0003H and loads that value into the program counter. Program execution begins at the reset vector address.

Because the control registers are reinitialized by a system reset, the system clock after reset is always the IPO. User software must reconfigure the oscillator control block, to enable and select the correct system clock source.

Port A–D High Drive Enable Subregisters

The Port A–D High Drive Enable Subregister, shown in Table 24, is accessed through the Port A–D Control Register by writing 04H to the Port A–D Address Register. Setting the bits in the Port A–D High Drive Enable subregisters to 1 configures the specified port pins for high-output current drive operation. The Port A–D High Drive Enable Subregister affects the pins directly and, as a result, alternate functions are also affected.

Table 24. Port A–D High Drive Enable Subregisters (PxHDE)

Bit	7	6	5	4	3	2	1	0	
Field	PHDE7	PHDE6	PHDE5	PHDE4	PHDE3	PHDE2	PHDE1	PHDE0	
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	If 04H ir	If 04H in Port A–D Address Register, accessible through the Port A–D Control Register							

Bit Description

[7:0] Port High Drive Enable
 PHDEx 0 = The port pin is configured for standard output current drive.
 1 = The port pin is configured for high output current drive.

Note: x indicates the specific GPIO port pin number (7–0).

45

Port A–D Stop Mode Recovery Source Enable Subregisters

The Port A–D Stop Mode Recovery Source Enable Subregister, shown in Table 25, is accessed through the Port A–D Control Register by writing 05H to the Port A–D Address Register. Setting the bits in the Port A–D Stop Mode Recovery Source Enable subregisters to1, configures the specified port pins as a Stop Mode Recovery source. During STOP Mode, any logic transition on a port pin enabled as a Stop Mode Recovery source initiates Stop Mode Recovery.

Table 25. Port A–D Stop Mode Recovery Source Enable Subregisters (PxSMRE)

Bit	7	6	5	4	3	2	1	0			
Field	PSMRE7	PSMRE6	PSMRE5	PSMRE4	PSMRE3	PSMRE2	PSMRE1	PSMRE0			
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W R/W R/W R/W R/W R/W R/W									
Address	If 05H ir	n Port A–D A	Address Reg	jister, acces	sible throug	h the Port A	–D Control F	Register			

Bit Description

[7:0] **Port Stop Mode Recovery Source Enable**

PSMREx 0 = The port pin is not configured as a Stop Mode Recovery source. Transitions on this pin during STOP Mode do not initiate Stop Mode Recovery.

1 = The port pin is configured as a Stop Mode Recovery source. Any logic transition on this pin during STOP Mode initiates Stop Mode Recovery.

Note: x indicates the specific GPIO port pin number (7-0).

Z8 Encore![®] F083A Series Product Specification

Architecture

Figure 9 displays the Interrupt Controller block diagram.

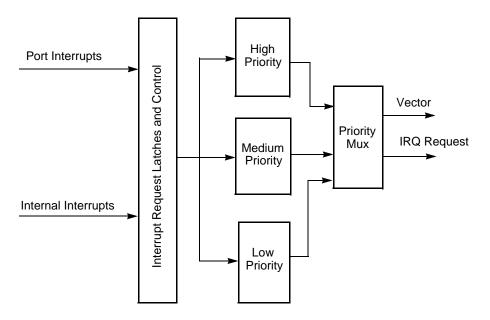


Figure 9. Interrupt Controller Block Diagram

Operation

This section describes the operational aspects of the following functions.

Master Interrupt Enable: see page 56

Interrupt Vectors and Priority: see page 57

Interrupt Assertion: see page 57

Software Interrupt Assertion: see page 58

Master Interrupt Enable

The master interrupt enable bit (IRQE) in the Interrupt Control Register globally enables and disables the interrupts.

Interrupts are globally enabled by any of the following actions:

- Execution of an enable interrupt (EI) instruction
- Execution of an return from interrupt (IRET) instruction

Interrupt Request 0 Register

The Interrupt Request 0 (IRQ0) Register, shown in Table 35, stores the interrupt requests for both vectored and polled interrupts. When a request is sent to the Interrupt Controller, the corresponding bit in the IRQ0 Register becomes 1. If interrupts are globally enabled (vectored interrupts), the Interrupt Controller passes an interrupt request to the eZ8 CPU. If interrupts are globally disabled (polled interrupts), the eZ8 CPU reads the Interrupt Request 0 Register to determine if any interrupt requests are pending.

Bit	7	6	5	4	3	2	1	0			
Field	Reserved T1I T0I Reserved ADCI										
RESET	0	0	0	0	0	0	0	0			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Address		FC0H									
Bit	Description										
[7]	Reserved This bit is reserved and must be programmed to 0.										
[6] T1I	Timer 1 Interrupt Request 0 = No interrupt request is pending for Timer 1. 1 = An interrupt request from timer 1 is awaiting service.										
[5] TOI	0 = No inter	Timer 0 Interrupt Request 0 = No interrupt request is pending for Timer 0. 1 = An interrupt request from timer 0 is awaiting service.									
[4:1]	Reserved These bits are reserved and must be programmed to 0000.										
[0] ADCI	ADC Interr 0 = No inter 1 = An inter	rupt reques									

Table 35. Interrupt Request 0 Register (IRQ0)

Interrupt Edge Select Register

The Interrupt Edge Select (IRQES) Register, shown in Table 47, determines whether an interrupt is generated for the rising edge or falling edge on the selected GPIO Port A or Port D input pin.

Field IES7 IES6 IES5 IES4 IES3 IES2 IES1 IES0 RESET 0 0 0 0 0 0 0 0 0 R/W	Bit	7	6	5	4	3	2	1	0		
R/W R/W <th>Field</th> <th>IES7</th> <th>IES6</th> <th>IES5</th> <th>IES4</th> <th>IES3</th> <th>IES2</th> <th>IES1</th> <th>IES0</th>	Field	IES7	IES6	IES5	IES4	IES3	IES2	IES1	IES0		
	RESET	0	0	0	0	0	0	0	0		
Address FCDH	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
	Address		FCDH								

Table 47. Interrupt Edge Select Register (IRQES)

Bit Description

[7:0]	Interrupt Edge Select	
IESx	0 = An interrupt request is generated on the falling edge of the PAx input or PDx.	
	1 = An interrupt request is generated on the rising edge of the PAx input or PDx.	
NI (-

Note: x indicates register bits 7–0.

- 4. Enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.
- 5. If using the timer output function, configure the associated GPIO port pin for the timer output alternate function.
- 6. Write to the Timer Control Register to enable the timer and initiate counting.

In COMPARE Mode, the system clock always provides the timer input. The compare time is calculated by the following equation:

Compare Mode Time (s) = $\frac{(Compare Value - Start Value) \times Prescale}{System Clock Frequency (Hz)}$

GATED Mode

In GATED Mode, the timer counts only when the timer input signal is in its active state (asserted), as determined by the TPOL bit in the Timer Control Register. When the timer input signal is asserted, counting begins. A timer interrupt is generated when the timer input signal is deasserted or a timer reload occurs. To determine whether the timer input signal deassertion generated the interrupt, read the associated GPIO input value and compare to the value stored in the TPOL bit.

The timer counts up to the 16-bit reload value stored in the Timer Reload High and Low Byte registers. The timer input is the system clock. Upon reaching the reload value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes (assuming the timer input signal remains asserted). Additionally, if the timer output alternate function is enabled, the timer output pin changes state (from Low to High or from High to Low) at timer reset.

Observe the following steps to configure a timer for GATED Mode and to initiate the count.

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for GATED Mode
 - Set the prescale value
- 2. Write to the Timer High and Low Byte registers to set the starting count value. Writing these registers only affects the first pass in GATED Mode. After the first timer reset in GATED Mode, counting always begins at the reset value of 0001H.
- 3. Write to the Timer Reload High and Low Byte registers to set the reload value.
- 4. Enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers. By default, the timer interrupt is generated for both input deasser-

tion and reload events. Therefore, configure the timer interrupt to be generated only at the input deassertion event or the reload event by setting TICONFIG bit of the TxCTL1 Register.

- 5. Configure the associated GPIO port pin for the timer input alternate function.
- 6. Write to the Timer Control Register to enable the timer.
- 7. Assert the timer input signal to initiate the counting.

CAPTURE/COMPARE Mode

In CAPTURE/COMPARE Mode, the timer begins counting on the first external timer input transition. The acceptable transition (rising edge or falling edge) is set by the TPOL bit in the Timer Control Register. The timer input is the system clock.

Every subsequent acceptable transition (after the first) of the timer input signal, captures the current count value. The capture value is written to the timer PWM High and Low Byte registers. When a capture event occurs, an interrupt is generated, the count value in the Timer High and Low Byte registers is reset to 0001H and the counting resumes. The INPCAP bit in the TxCTL1 Register is set to indicate that the timer interrupt is caused by an input capture event.

If no capture event occurs, the timer counts up to the 16-bit compare value stored in the Timer Reload High and Low Byte registers. Upon reaching the compare value, the timer generates an interrupt, the count value in the Timer High and Low Byte registers is reset to 0001H and counting resumes. The INPCAP bit in the TxCTL1 Register is cleared to indicate that the timer interrupt is not caused by an input capture event.

Observe the following steps to configure a timer for CAPTURE/COMPARE Mode and to initiate the count.

- 1. Write to the Timer Control Register to:
 - Disable the timer
 - Configure the timer for CAPTURE/COMPARE Mode
 - Set the prescale value
 - Set the capture edge (rising or falling) for the timer input
- 2. Write to the Timer High and Low Byte registers to set the starting count value (typically 0001H).
- 3. Write to the Timer Reload High and Low Byte registers to set the compare value.
- 4. Enable the timer interrupt and set the timer interrupt priority by writing to the relevant interrupt registers.By default, the timer interrupt is generated for both input capture and reload events. The user must configure the timer interrupt to be generated only at the input capture event or the reload event by setting TICONFIG bit of the TxCTL1 Register.

96

Watchdog Timer Reload Upper, High and Low Byte Registers

The Watchdog Timer Reload Upper, High and Low Byte (WDTU, WDTH, WDTL) registers, shown in Tables 60 through 62, form the 24-bit reload value{WDTU[7:0], WDTH[7:0], WDTL[7:0]} that is loaded into the Watchdog Timer when a WDT instruction is executed. Writing to these registers sets the appropriate reload value; reading from these registers returns the current Watchdog Timer count value.

Caution: The 24-bit WDT reload value must not be set to a value less than 000004H.

Bit	7	6	5	4	3	2	1	0		
Field	WDTU									
RESET	0 0 0 0 0 0 0									
R/W	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*		
Address	FF1H									
Note: *R/W	Note: *R/W = A read returns the current WDT count value; a write sets the appropriate reload value.									

Table 60. Watchdog Timer Reload Upper Byte Register (WDTU)

Bit Description [7:0] WDT Reload Upper Byte WDTH NSR_Bite[22:46] of the 24 bit WDT relead uplue

WDTU MSB, Bits[23:16], of the 24-bit WDT reload value.

Bit	7	6	5	4	3	2	1	0		
Field	WDTH									
RESET	0	0	0	0	0	1	0	0		
R/W	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*	R/W*		
Address	FF2H									
Note: *R/V	Note: *R/W = A read returns the current WDT count value; a write sets the appropriate reload value.									

Table 61. Watchdog Timer Reload High Byte Register (WDTH)

Bit	Description
[7:0]	WDT Reload High Byte
WDTH	Middle byte, bits[15:8] of the 24-bit WDT reload value.

Bit	Description (Continued)
[1] IGADDR	Illegal Address When NVDS byte reads from invalid addresses occur (those exceeding the NVDS array size), this bit is set to 1.
[0]	Reserved This bit is reserved and must be programmed to 0.

Power Failure Protection

The NVDS routines employ error-checking mechanisms to ensure that any power failure will only endanger the most recently written byte. Bytes previously written to the array are not perturbed. For this protection to function, the VBO must be enabled (See *the* Low-Power Modes chapter on page 30) and configured for a threshold voltage of 2.4V or greater (See *the* Trim Bit Address Space section on page 129).

A system reset (such as a pin reset or Watchdog Timer reset) that occurs during a write operation also perturbs the byte currently being written. All other bytes in the array are unperturbed.

Optimizing NVDS Memory Usage for Execution Speed

As Table 94 shows, NVDS read times vary drastically, this discrepancy being a trade-off for minimizing the frequency of writes that require post-write page erases. The NVDS read time of address N is a function of the number of writes to addresses other than N since the most recent write to address N, as well as the number of writes since the most recent page erase. Neglecting effects caused by page erases and results caused by the initial condition in which the NVDS is blank, a rule of thumb is that every write since the most recent page erase causes read times of unwritten addresses to increase by 0.8μ s, up to a maximum of 258μ s.

Operation	Minimum Latency (µs)	Maximum Latency (µs)
Read	71	258
Write	126	136
Illegal Read	6	6
Illegal Write	7	7

Table	94.	NVDS	Read	Time
and	• • •		11044	

```
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \leftarrow 1-65536 data bytes
```

Read Program Memory (0BH). The read program memory command, reads data from program memory. This command is equivalent to the LDC and LDCI instructions. Data is read 1–65536 bytes at a time (65536 bytes are read by setting size to 0). If the device is not in DEBUG Mode or if the Flash read protect option bit is enabled, this command returns FFH for the data.

```
DBG \leftarrow 0BH

DBG \leftarrow Program Memory Address[15:8]

DBG \leftarrow Program Memory Address[7:0]

DBG \leftarrow Size[15:8]

DBG \leftarrow Size[7:0]

DBG \rightarrow 1-65536 data bytes
```

Write Data Memory (0CH). The write data memory command, writes data to data memory. This command is equivalent to the LDE and LDEI instructions. Data is written 1–65536 bytes at a time (65536 bytes are written by setting size to 0). If the device is not in DEBUG Mode or if the Flash read protect option bit is enabled, the data is discarded.

```
DBG \leftarrow 0CH
DBG \leftarrow Data Memory Address[15:8]
DBG \leftarrow Data Memory Address[7:0]
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \leftarrow 1-65536 data bytes
```

• **Read Data Memory (0DH)**—The read data memory command, reads from data memory. This command is equivalent to the LDE and LDEI instructions. Data is read from 1 to 65536 bytes at a time (65536 bytes are read by setting size to 0). If the device is not in DEBUG Mode, this command returns FFH for the data.

```
DBG \leftarrow 0DH
DBG \leftarrow Data Memory Address[15:8]
DBG \leftarrow Data Memory Address[7:0]
DBG \leftarrow Size[15:8]
DBG \leftarrow Size[7:0]
DBG \rightarrow 1-65536 data bytes
```

Read Program Memory CRC (0EH). The read program memory CRC command, computes and returns the cyclic redundancy check (CRC) of program memory using the 16-bit CRC-CCITT polynomial. If the device is not in DEBUG Mode, this command returns FFFFH for the CRC value. Unlike the other OCD read commands, there is a delay from issuing of the command until the OCD returns the data. The OCD reads program memory, calculates the CRC value and returns the result. The delay is a function of program memory size and is approximately equal to the system clock period multiplied by the number of bytes in program memory.

Assembly Language Source Program Example

JP START	; Everything after the semicolon is a comment.
START:	A label called "START". The first instruction (JP START) in this ; example causes program execution to jump to the point within the ; program where the START label occurs.
LD R4, R7	; A Load (LD) instruction with two operands. The first operand, ; Working register R4, is the destination. The second operand, ; Working register R7, is the source. The contents of R7 is ; written into R4.
LD 234H, #%01	; Another Load (LD) instruction with two operands. ; The first operand, extended mode register Address 234H, ; identifies the destination. The second operand, immediate data ; value 01H, is the source. The 01H value is written into the ; register at address 234H.

Assembly Language Syntax

For proper instruction execution, eZ8 CPU assembly language syntax requires that the operands be written as 'destination, source'. After assembly, the object code usually has the operands in the order 'source, destination', but ordering is op code-dependent. The following instruction examples display the format of some basic assembly instructions and the resulting object code produced by the assembler. This binary format must be followed by users that prefer manual program coding or intend to implement their own assembler.

Example 1

If the contents of registers 43H and 08H are added and the result is stored in 43H, the assembly syntax and resulting object code is:

Table 102.	Assembly	Language	Syntax	Example 1
------------	----------	----------	--------	-----------

Assembly Language Code	ADD	43H,	08H	(ADD dst,	src)
Object Code	04	08	43	(OPC src,	dst)

Example 2

In general, when an instruction format requires an 8-bit register address, the address specify any register location in the range 0–255 or, using escaped mode addressing, a working register R0–R15. If the contents of register 43H and working register R8 are added and the result is stored in 43H, the assembly syntax and resulting object code is:

							Lo		ble (He	x)						
	0	1	2	3	4	5	6	7	8	9	A	В	С	D	E	F
0	1.1 BRK	2.2 SRP IM	2.3 ADD r1,r2	2.4 ADD r1,lr2	3.3 ADD R2,R1	3.4 ADD IR2,R1	3.3 ADD R1,IM	3.4 ADD IR1,IM	4.3 ADDX ER2,ER1	4.3 ADDX IM,ER1	2.3 DJNZ r1,X	2.2 JR cc,X	2.2 LD r1,IM	3.2 JP cc,DA	1.2 INC r1	1.2 NOP
1	2.2 RLC R1	2.3 RLC IR1	2.3 ADC r1,r2	2.4 ADC r1,lr2	3.3 ADC R2,R1	3.4 ADC IR2,R1	3.3 ADC R1,IM	3.4 ADC IR1,IM	4.3 ADCX ER2,ER1	4.3 ADCX IM,ER1						See 2nd Op Code Map
2	2.2 INC	2.3 INC	2.3 SUB	2.4 SUB	3.3 SUB	3.4 SUB	3.3 SUB	3.4 SUB	4.3 SUBX	4.3 SUBX						map
3	R1 2.2 DEC	IR1 2.3 DEC	r1,r2 2.3 SBC	r1,Ir2 2.4 SBC	82,R1 3.3 SBC	3.4 SBC	R1,IM 3.3 SBC	3.4 SBC	4.3 SBCX	4.3 SBCX						
4	R1 2.2 DA	IR1 2.3 DA	r1,r2 2.3 OR	r1,Ir2 2.4 OR	R2,R1 3.3 OR	IR2,R1 3.4 OR	R1,IM 3.3 OR	IR1,IM 3.4 OR	4.3 ORX	4.3 ORX						
5	R1 2.2 POP	IR1 2.3 POP	r1,r2 2.3 AND	r1,Ir2 2.4 AND	R2,R1 3.3 AND	IR2,R1 3.4 AND	R1,IM 3.3 AND	IR1,IM 3.4 AND	ER2,ER1 4.3 ANDX	IM,ER1 4.3 ANDX						1.2 WDT
-	R1 2.2	IR1 2.3	r1,r2 2.3	r1,lr2 2.4	R2,R1 3.3	IR2,R1 3.4	R1,IM 3.3	IR1,IM 3.4	ER2,ER1 4.3	IM,ER1 4.3						1.2
6	COM R1 2.2	COM IR1 2.3	TCM r1,r2 2.3	TCM r1,lr2 2.4	TCM R2,R1 3.3	TCM IR2,R1 3.4	TCM R1,IM 3.3	TCM IR1,IM 3.4	TCMX ER2,ER1 4.3	TCMX IM,ER1 4.3						STOP
7	PUSH R2	PUSH IR2	TM r1,r2	TM r1,lr2	TM R2,R1	TM IR2,R1	TM R1,IM	TM IR1,IM	TMX ER2,ER1	TMX IM,ER1						HALT
8	2.5 DECW RR1	2.6 DECW IRR1	2.5 LDE r1,Irr2	2.9 LDEI Ir1,Irr2	3.2 LDX r1,ER2	3.3 LDX Ir1,ER2	3.4 LDX IRR2,R1	3.5 LDX IRR2,IR1	3.4 LDX r1,rr2,X	3.4 LDX rr1,r2,X						1.2 DI
9	2.2 RL R1	2.3 RL IR1	2.5 LDE r2,Irr1	2.9 LDEI lr2,lrr1	3.2 LDX r2,ER1	3.3 LDX Ir2,ER1	3.4 LDX R2,IRR1	3.5 LDX IR2,IRR1	3.3 LEA r1,r2,X	3.5 LEA rr1,rr2,X						1.2 EI
A	2.5 INCW RR1	2.6 INCW IRR1	2.3 CP r1,r2	2.4 CP r1,lr2	3.3 CP R2,R1	3.4 CP IR2,R1	3.3 CP R1,IM	3.4 CP IR1,IM	4.3 CPX ER2,ER1	4.3 CPX IM,ER1						1.4 RET
В	2.2 CLR R1	2.3 CLR IR1	2.3 XOR r1,r2	2.4 XOR r1,lr2	3.3 XOR R2,R1	3.4 XOR IR2,R1	3.3 XOR R1,IM	3.4 XOR IR1,IM	4.3 XORX ER2,ER1	4.3 XORX IM,ER1						1.5 IRET
С	2.2 RRC R1	2.3 RRC IR1	2.5 LDC r1,lrr2	2.9 LDCI lr1,lrr2	2.3 JP IRR1	2.9 LDC lr1,lrr2	,	3.4 LD r1,r2,X	3.2 PUSHX ER2	,						1.2 RCF
D	2.2 SRA R1	2.3 SRA IR1	2.5 LDC r2,Irr1	2.9 LDCI Ir2,Irr1	2.6	2.2 BSWAP R1	3.3 CALL DA	3.4 LD r2,r1,X	3.2 POPX ER1							1.2 SCF
E	2.2 RR R1	2.3 RR IR1	2.2 BIT	2.3 LD	3.2 LD R2,R1	3.3 LD	3.2 LD	3.3 LD	4.2 LDX ER2,ER1	4.2 LDX IM,ER1						1.2 CCF
F	2.2 SWAP	2.3 SWAP	p,b,r1 2.6 TRAP	r1,lr2 2.3 LD	2.8 MULT	1R2,R1 3.3 LD	81,IM 3.3 BTJ	3.4 BTJ	UKZ,EK1	iivi,⊂K I		V			V	
	R1	IR1	Vector	lr1,r2	RR1	R2,IR1	p,b,r1,X	p,b,lr1,X			1	۲	1	1	۲	

Figures 26 and 27 provide operation code mapping information about each of the eZ8 CPU instructions.

Figure 26. First Op Code Map

		Power Consumption			
Category	Block	Typical Maxim 5mA 12m. 4mA 4.5m 350μA 400μ 330μA 450μ 120μA 150μ 2μA 3μA	Maximum		
Logic	CPU/Peripherals @20MHz	5mA			
Flash	Flash@20MHz		12mA		
Analog	ADC@20MHz	4mA	4.5mA		
	IPO@20MHz	350µA	400µA		
	Comparator@10MHz	330µA	450µA		
	POR & VBO	120µA	150µA		
	WDT OSC	2µA	ЗµА		
	OSC@20MHz	600µA	900µA		
	Clock Filter	120µA	150µA		

Table 128. Power Consumption Reference Table

Figure 33. Flash Current Diagram

Hex Address: FC5

Bit	7	6	5	4	3	2	1	0				
Field	PA7ENL	PA6CENL	PA5ENL	PA4ENL	PA3ENL	PA2ENL	PA1ENL	PA0ENL				
RESET	0	0	0	0	0	0	0	0				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Address		FC5H										

Hex Address: FC6

Table 165. Interrupt Request 2 Register (IRQ2)

Bit	7	6	5	4	3	2	1	0
Field	Reserved				PC3I	PC2I	PC1I	PC0I
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FC6H							

Hex Address: FC7

Table 166. IRQ2 Enable High Bit Register (IRQ2ENH)

Bit	7	6	5	4	3	2	1	0
Field	Reserved				C3ENH	C2ENH	C1ENH	C0ENH
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FC7H							

Hex Address: FC8

Table 167. IRQ2 Enable Low Bit Register (IRQ2ENL)

Bit	7	6	5	4	3	2	1	0
Field	Reserved				C3ENL	C2ENL	C1ENL	C0ENL
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FC8H							

Customer Support

To share comments, get your technical questions answered or report issues you may be experiencing with our products, please visit Zilog's Technical Support page at <u>http://support.zilog.com</u>.

To learn more about this product, find additional documentation or to discover other facets about Zilog product offerings, please visit the Zilog Knowledge Base at <u>http://zilog.com/</u><u>kb</u> or consider participating in the Zilog Forum at <u>http://zilog.com/forum</u>.

This publication is subject to replacement by a later edition. To determine whether a later edition exists, please visit the Zilog website at <u>http://www.zilog.com</u>.