E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	eZ8
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, LED, POR, PWM, WDT
Number of I/O	17
Program Memory Size	8KB (8K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 7x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z8f083ash020eg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of Figures

Figure 1.	Z8 Encore! F083A Series Block Diagram
Figure 2.	Z8F083A Series in 20-Pin SOIC, SSOP, PDIP Package
Figure 3.	Z8F083A Series in 28-Pin SOIC and SSOP Packages
Figure 4.	Z8F083A Series in 20-Pin QFN Package
Figure 5.	Z8F083A Series in 28-Pin QFN Package 10
Figure 6.	Power-On Reset Operation
Figure 7.	Voltage Brown-Out Reset Operation
Figure 8.	GPIO Port Pin Block Diagram
Figure 9.	Interrupt Controller Block Diagram
Figure 10.	Timer Block Diagram
Figure 11.	Analog-to-Digital Converter Block Diagram
Figure 12.	ADC Timing Diagram 100
Figure 13.	ADC Convert Timing
Figure 14.	4K Flash with NVDS 111
Figure 15.	8K Flash with NVDS 112
Figure 16.	Flash Controller Operation Flow Chart 114
Figure 17.	On-Chip Debugger Block Diagram
Figure 18.	Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface, # 1 of 2
Figure 19.	Interfacing the On-Chip Debugger's DBG Pin with an RS-232 Interface, #2 of 2
Figure 20.	OCD Data Format
Figure 21.	Oscillator Control Clock Switching Flow Chart
Figure 22.	Recommended 20MHz Crystal Oscillator Configuration 158
Figure 23.	Connecting the On-Chip Oscillator to an External RC Network 159
Figure 24.	Typical RC Oscillator Frequency as a Function of the External Capacitance with a 45 KΩ Resistor
Figure 25.	Op Code Map Cell Description
Figure 26.	First Op Code Map

Register Map

Table 8 provides an address map for the Z8 Encore! F083A Series register file. Consider registers for unimplemented peripherals to be reserved.

Address (Hex)	Register Description	Mnemonic	Reset (Hex)	Page #	
General Purpo	se RAM				
000–0FF	General Purpose Register File RAM		XX		
100–EFF	Reserved		XX		
Timer 0					
F00	Timer 0 High Byte	ТОН	00	84	
F01	Timer 0 Low Byte	TOL	01	84	
F02	Timer 0 Reload High Byte	TORH	FF	85	
F03	Timer 0 Reload Low Byte	TORL	FF	85	
F04	Timer 0 PWM High Byte	TOPWMH	00	86	
F05	Timer 0 PWM Low Byte	TOPWML	00	86	
F06	Timer 0 Control 0	TOCTLO	00	87	
F07	Timer 0 Control 1	T0CTL1	00	88	
Timer 1					
F08	Timer 1 High Byte	T1H	00	84	
F09	Timer 1 Low Byte	T1L	01	84	
F0A	Timer 1 Reload High Byte	T1RH	FF	85	
F0B	Timer 1 Reload Low Byte	T1RL	FF	85	
F0C	Timer 1 PWM High Byte	T1PWMH	00	86	
F0D	Timer 1 PWM Low Byte	T1PWML	00	86	
F0E	Timer 1 Control 0	T1CTL0	00	87	
F0F	Timer 1 Control 1	T1CTL1	00	84	
F10–F6F	Reserved	_	XX		
Analog-to-Digi	ital Converter				
F70	ADC Control 0	ADCCTL0	00	102	
F71	Reserved		XX		
F72	ADC Data High Byte	ADCD_H	XX	103	
F73	ADC Data Low Bits	ADCD_L	XX	104	

Table 8. Register File Address Map

Note: XX = Undefined.

	Reset Characteristics and Latency					
Reset Type	Control Registers	eZ8 CPU	Reset Latency (Delay)			
System Reset	Reset (as applicable)	Reset	About 66 internal precision oscillator cycles.			
System Reset with Crystal Oscillator Enabled	Reset (as applicable)	Reset	About 5000 internal precision oscillator cycles.			
Stop Mode Recovery	Unaffected, except WDT_CTL and OSC_CTL registers	Reset	About 66 internal precision oscillator cycles.			
Stop Mode Recovery with crystal oscillator enabled	Unaffected, except WDT_CTL and OSC_CTL registers	Reset	About 5000 internal precision oscillator cycles.			

Table 9. Reset and Stop Mode Recovery Characteristics and Latency

During a system Reset or Stop Mode Recovery, the Z8 Encore! F083A Series device is held in reset for about 66 cycles of the internal precision oscillator. If the crystal oscillator is enabled in the Flash option bits, the reset period is increased to about 5000 IPO cycles. When a reset occurs because of a low voltage condition or POR, the reset delay is measured from the time the supply voltage first exceeds the POR level (discussed later in this chapter). If the external pin reset remains asserted at the end of the reset period, the device remains in reset until the pin is deasserted.

At the beginning of reset, all GPIO pins are configured as inputs with pull-up resistor disabled, except PDO which is shared with the reset pin. On Reset, the Port DO pin is configured as a bidirectional open-drain reset. This pin is internally driven low during port reset, after which the user code reconfigures this pin as a general purpose output.

During reset, the eZ8 CPU and on-chip peripherals are idle; however, the on-chip crystal oscillator and Watchdog Timer Oscillator continues to run.

On reset, control registers within the Register File that have a defined reset value are loaded with their reset values. Other control registers (including the Stack Pointer, Register Pointer and Flags) and general purpose RAM are undefined following the reset. The eZ8 CPU fetches the reset vector at program memory addresses 0002H and 0003H and loads that value into the program counter. Program execution begins at the reset vector address.

Because the control registers are reinitialized by a system reset, the system clock after reset is always the IPO. User software must reconfigure the oscillator control block, to enable and select the correct system clock source.

Figure 6. Power-On Reset Operation

Voltage Brown-Out Reset

The devices in the Z8 Encore! F083A Series provide low VBO protection. The VBO circuit forces the device to the Reset state, when the supply voltage drops below the VBO threshold voltage (unsafe level). While the supply voltage remains below the POR threshold voltage (V_{POR}), the VBO circuit holds the device in reset.

After the supply voltage exceeds the POR threshold voltage, the device progresses through a full system reset sequence, as described in the POR section. Following POR, the POR status bit in the reset status (RSTSTAT) Register is set to 1. Figure 7 displays VBO operation. For the VBO and POR threshold voltages (V_{VBO} and V_{POR}), see the <u>Electrical</u> <u>Characteristics</u> chapter on page 184.

The POR level is greater than the VBO level as determined by the specified hysteresis value. As a result, the devices is ensured to undergo a POR after recovering from a VBO condition.

General Purpose Input/Output

The Z8 Encore! F083A Series products support a maximum of 23 port pins (Port A–D) for general purpose input/output (GPIO) operations. Each port contains control and data registers. The GPIO control registers determine data direction, open-drain, output drive current, programmable pull-ups, Stop Mode Recovery functionality and alternate pin functions. Each port pin is individually programmable. In addition, the Port C pins are capable of direct LED drive at programmable drive strengths.

GPIO Port Availability by Device

Table 15 lists the port pins available with each device and package type.

Devices	Package	10-Bit ADC	Port A	Port B	Port C	Port D	Total I/O	
Z8F083A, Z8F043A	20-pin	Yes	[7:0]	[3:0]	[3:0]	[0]	17	
Z8F083A, Z8F043A	28-pin	Yes	[7:0]	[5:0]	[7:0]	[0]	23	
Note: 20-pin and 28-pin and 10-bit ADC Enabled or Disabled can be selected via the option bits.								

Table 15. Port Availability by Device and Package Type

Architecture

Figure 8 displays a simplified block diagram of a GPIO port pin. In this figure, the ability to accommodate alternate functions and variable port current drive strength is not displayed.

Port	Pin	Mnemonic	Alternate Function Description	Alternate Function Set Register AFS1				
Port B	PB0	Reserved		AFS1[0]: 0				
		ANA0	ADC analog input	AFS1[0]: 1				
	PB1	Reserved		AFS1[1]: 0				
		ANA1	ADC analog input	AFS1[1]: 1				
	PB2	Reserved		AFS1[2]: 0				
		ANA2	ADC analog input	AFS1[2]: 1				
	PB3	CLKIN	External input clock	AFS1[3]: 0				
		ANA3	ADC analog input	AFS1[3]: 1				
	PB4	Reserved		AFS1[4]: 0				
		ANA7	ADC analog input	AFS1[4]: 1				
	PB5	Reserved		AFS1[5]: 0				
		VREF	ADC reference voltage	AFS1[5]: 1				
	PB6	Reserved		AFS1[6]: 0				
		Reserved		AFS1[6]: 1				
	PB7	Reserved		AFS1[7]: 0				
		Reserved		AFS1[7]: 1				

Table 16. Port Alternate Function Mapping (Continued)

Note: Because there is only a single alternate function for each Port A and Port D (PD0) pin, the Alternate Function Set registers are not implemented for Port A and Port D (PD0). Enabling alternate function selections (as described in the Port A–D Alternate Function Subregisters section on page 42) automatically enables the associated alternate function.

Shared Interrupt Select Register

The Shared Interrupt Select (IRQSS) Register, shown in Table 48, determines the source of the PADxS interrupts. The Shared Interrupt Select Register selects between Port A and alternate sources for the individual interrupts.

Because these shared interrupts are edge-triggered, it is possible to generate an interrupt just by switching from one shared source to another. For this reason, an interrupt must be disabled before switching between sources.

Bit	7	6	5	4	3	2	1	0	
Field	Reserved	PA6CS		Reserved					
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	FCEH								

Table 48. Shared Interrupt Select Register (IRQSS)

Bit	Description
[7]	Reserved This bit is reserved and must be programmed to 0.
[6] PA6CS	 PA6/Comparator Selection 0 = PA6 is used for the interrupt caused by PA6CS interrupt request. 1 = The comparator is used for the interrupt caused by PA6CS interrupt request.
[5:0]	Reserved These bits are reserved and must be programmed to 000000.

Interrupt Control Register

The Interrupt Control (IRQCTL) Register, shown in Table 49, contains the master enable bit for all interrupts.

Bit	7	6	5	4	3	2	1	0	
Field	IRQE		Reserved						
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R	R	R	R	R	R	R	
Address	FCFH								

Table 49. Interrupt Control Register (IRQCTL)

Bit	Description
[7] IRQE	 Interrupt Request Enable This bit is set to 1 by executing an EI (enable interrupts) or IRET (interrupt return) instruction or by a direct register write of 1 to this bit. It is reset to 0 by executing a DI instruction, eZ8 CPU acknowledgement of an interrupt request, reset or by a direct register write of a 0 to this bit. 0 = Interrupts are disabled. 1 = Interrupts are enabled.
[6:0]	Reserved These bits are reserved and must be programmed to 0000000.

Timer 0–1 PWM High and Low Byte Registers

The Timer 0–1 PWM High and Low Byte (TxPWMH and TxPWML) registers, shown in Tables 54 and 55, control PWM operations. These registers also store the capture values for the CAPTURE and CAPTURE/COMPARE modes.

Bit	7	6	5	4	3	2	1	0	
Field	PWMH								
RESET	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Address	F04H, F0CH								

Table 54. Timer 0–1 PWM High Byte Register (TxPWMH)

Table 55. Timer 0–1 PWM Low Byte Register (TxPWML)

Bit	7	6	5	4	3	2	1	0		
Field	PWML									
RESET	0	0	0	0	0	0	0	0		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Address	F05H, F0DH									

Bit	Description
[7:0]	Pulse width modulator High and Low Bytes
PWMH, PWML	These two bytes, {PWMH[7:0], PWML[7:0]}, form a 16-bit value that is compared to the current 16-bit timer count. When a match occurs, the PWM output changes state. The PWM output value is set by the TPOL bit in the Timer Control Register (TxCTL1). The TxPWMH and TxPWML registers also store the 16-bit captured timer value when operating in capture or CAPTURE/COMPARE modes.

Bit	Description (Continued)
[6] TPOL (cont'd.)	 PWM DUAL OUTPUT Mode 0 = Timer output is forced low (0) and timer output complement is forced high (1), when the timer is disabled. When enabled and the PWM count matches, the timer output is forced high (1) and forced low (0) when enabled and reloaded. When enabled and the PWM count matches, the timer output complement is forced low (0) and forced high (1) when enabled and reloaded. 1 = Timer output is forced high (1) and timer output complement is forced low (0) when the timer is disabled. When enabled and the PWM count matches, the timer output is forced high (1) when enabled and reloaded. When enabled and forced high (1) when enabled and reloaded. When enabled and forced high (1) when enabled and reloaded. When enabled and the PWM count matches, the timer output complement is forced high (1) and forced low (0) when the timer is disabled. The PWMD field in the TxCTL0 register determiners an optional added delay on the assertion (low to high) transition of both timer output and timer output complement for deadband generation. CAPTURE RESTART Mode 0 = Count is captured on the rising edge of the timer input signal. 1 = Count is captured on the falling edge of the timer input signal. 1 = Count is captured on the falling edge of the timer input signal. When the timer is disabled, the timer output signal is set to the value of this bit. When the timer is enabled, the timer output signal is complemented on timer reload. When the timer output alternate function TxOUT on a GPIO port pin is enabled, TxOUT will change to whatever state the TPOL bit is in. The timer is not required to be enabled for that to
	happen. Additionally, the port data direction sub register is not needed to be set to output on TxOUT. Changing the TPOL bit when the timer is enabled and running does not immediately change the polarity TxOUT.
[5:3] PRES	Prescale Value The timer input clock is divided by 2 ^{PRES} , where PRES is set from 0 to 7. The prescaler is reset each time the timer is disabled. This reset ensures proper clock division each time the timer is restarted. 000 = Divide by 1. 001 = Divide by 2. 010 = Divide by 4. 011 = Divide by 8. 100 = Divide by 16. 101 = Divide by 32

- 101 = Divide by 32.110 = Divide by 64.
- 111 = Divide by 128.

ADC Data Low Bits Register

The ADC Data Low Bits Register, shown in Table 65, contain the lower bits of the ADC output as well as an overflow status bit. Access to the ADC Data Low Bits Register is read-only. Reading the ADC Data High Byte Register latches lower bits of the ADC in the ADC Low Bits Register.

Bit	7	6	5	4	3	2	1	0
Field	ADCDL		Reserved					
RESET)	<	>			<		
R/W	F	२		R				
Address			F73H					

Bit	Description
[7:6]	ADC Low Bits 00–11b = These bits are the two least significant bits of the 10-bit ADC output. These bits are undefined after a reset. The low bits are latched into this register whenever the ADC Data High Byte Register is read.
[5:0]	Reserved These bits are reserved and must be programmed to 000000.

Z8 Encore![®] F083A Series Product Specification

1 555 4		 Page 15	1FFFH
	Sector 7	Page 14	1DFFH 1C00H
1C00H 18FFH		 Page 13	1BFFH 1A00H
	Sector 6	 Page 12	19FFH 1800H
1800H 17FFH		 Page 11	17FFH 1600H
1400H	Sector 5	Page 10	15FFH 1400H
13FFH		 Page 9	13FFH
	Sector 4	 Page 8	1200H 11FFH
1C00H 0FFFH	Sector 2	 Page 7	0FFFH
0C00H	Seciol S	Page 6	0E00H 0DFFH
0BFFH	0 1 0	Page 5	0C00H 0BFFH
0800H	Sector 2	Page 4	0A00H 09FFH
07FFH		Page 3	0800H 07FFH
0400H	Sector 1	 Page 2	0600H
03FFH	Sector 0	Page 1	0400H 03FFH
0000H		 Page 0	0200H
			UUUUH

Figure 15. 8K Flash with NVDS

Data Memory Address Space

The Flash information area, including the Zilog Flash option bits, is located in the data memory address space. The Z8 Encore! F083A Series devices are configured by the Zilog Flash option bits to prevent the user from writing to the eZ8 CPU data memory address space.

Flash Information Area

The Flash information area is physically separate from program memory and is mapped to the address range FE00H to FE7FH. Not all of these addresses are user-accessible. Factory trim values for the VBO and internal precision oscillator, and factory calibration data for the ADC, are stored here.

Z8 Encore![®] F083A Series Product Specification

114

Figure 16. Flash Controller Operation Flow Chart

Flash Frequency High and Low Byte Registers

The Flash Frequency High and Low Byte registers, shown in Tables 77 and 78, combine to form a 16-bit value, FFREQ, to control timing for Flash Program and Erase operations. The 16-bit binary Flash frequency value must contain the system clock frequency (in kHz) and is calculated using the following equation.

 $FFREQ[15:0] = \{FFREQH[7:0], FFREQL[7:0]\} = \frac{System Clock Frequency}{1000}$

Caution: Flash programming and erasure is not supported for system clock frequencies below 10kHz or above 20 MHz. The Flash frequency High and Low Byte registers must be loaded with the correct value to ensure proper operation of the device.

Bit	7	6	5	4	3	2	1	0
Field	FFREQH							
RESET	0	0	0	0	0	0	0	0
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Address	FFAH							

Fable 77. Flasł	n Frequency	High Byte	Register	(FFREQH)
-----------------	-------------	-----------	----------	----------

Bit	Description
[7:0]	Flash Frequency High Byte
FFREQH	The high byte of the 16-bit Flash frequency value.

Table 78. Flash Frequency Low Byte Register (FFREQL)

Bit	7	6	5	4	3	2	1	0
Field	FFREQL							
RESET	0							
R/W	R/W							
Address	FFBH							

Bit	Description
[7:0]	Flash Frequency Low Byte
FFREQL	The low byte of the 16-bit Flash frequency value.

If the OCD receives a serial break (nine or more continuous bits low), the autobaud detector/generator resets. Reconfigure the autobaud detector/generator by sending 80H.

OCD Serial Errors

The On-Chip Debugger detects any of the following error conditions on the DBG pin:

- Serial break (a minimum of nine continuous bits Low)
- Framing error (received Stop bit is Low)
- Transmit collision (simultaneous transmission by OCD and host detected by the OCD)

When the OCD detects one of these errors, it aborts any command currently in progress, transmits a four character long serial break back to the host and resets the autobaud detector/generator. A framing error or transmit collision may be caused by the host sending a serial break to the OCD. As a result of the open-drain nature of the interface, returning a serial break back to the host only extends the length of the serial break if the host releases the serial break early.

The host transmits a serial break on the DBG pin when first connecting to the Z8 Encore! F083A Series devices or when recovering from an error. A serial break from the host resets the autobaud generator/detector, but does not reset the OCD Control Register. A serial break leaves the device in DEBUG Mode, if that is the current mode. The OCD is held in reset until the end of the serial break when the DBG pin returns high. Because of the open-drain nature of the DBG pin, the host sends a serial break to the OCD even if the OCD is transmitting a character.

Breakpoints

Execution breakpoints are generated using the BRK instruction (Opcode 00H). When the eZ8 CPU decodes a BRK instruction, it signals the On-Chip Debugger. If breakpoints are enabled, the OCD enters DEBUG Mode and idles the eZ8 CPU. If breakpoints are not enabled, the OCD ignores the BRK signal and the BRK instruction operates as an NOP instruction.

Breakpoints in Flash Memory

The BRK instruction is Opcode 00H, which corresponds to the fully programmed state of a byte in Flash memory. To implement a breakpoint, write 00H to the required break address overwriting the current instruction. To remove a breakpoint, the corresponding page of Flash memory must be erased and reprogrammed with the original data.

Clock Source	Characteristics	Required Setup
Internal precision RC oscillator	 119kHz or 20MHz ± 4% accuracy when trimmed No external components required 	 Unlock and write Oscillator Control Register (OSCCTL) to enable and select oscillator at either 20MHz or 119kHz
External crystal/ resonator	 32kHz to 20MHz Very high accuracy (dependent on crystal or resonator used) Requires external components 	 Configure Flash option bits for correct external OSCILLATOR mode Unlock and write OSCCTL to enable crystal oscillator, wait for it to stabilize and select as system clock (if the XTLDIS option bit has been de- asserted, no waiting is required)
External RC oscillator	 32kHz to 4MHz Accuracy dependent on external components 	 Configure Flash option bits for correct external OSCILLATOR Mode Unlock and write OSCCTL to enable crystal oscillator and select as system clock
External clock drive	 0 to 20MHz Accuracy dependent on external clock source 	 Write GPIO registers to configure PB3 pin for external clock function Unlock and write OSCCTL to select external system clock Apply external clock signal to GPIO
Internal Watchdog Timer Oscillator	 10kHz nominal ± 40% accuracy; no external components required Low power consumption 	 Enable WDT if not enabled and wait until WDT oscillator is operating. Unlock and write Oscillator Control Register (OSCCTL) to enable and select oscillator

Table 99. Oscillator Configuration and Selection

Caution: Unintentional accesses to the Oscillator Control Register actually stop the chip by switching to a nonfunctioning oscillator. To prevent this condition, the oscillator control block employs a register-unlocking/locking scheme.

OSC Control Register Unlocking/Locking

To write the Oscillator Control Register, unlock it by making two writes to the OSCCTL Register with the values E7H followed by 18H. A third write to the OSCCTL Register changes the value of the actual register and returns the register to a Locked state. Any other sequence of Oscillator Control Register writes has no effect. The values written to unlock the register must be ordered correctly, but are not necessarily consecutive. It is possible to write to or read from other registers within the unlocking/locking operation.

Mnemonic	Operands	Instruction
MULT	dst	Multiply
SBC	dst, src	Subtract with Carry
SBCX	dst, src	Subtract with Carry using extended addressing
SUB	dst, src	Subtract
SUBX	dst, src	Subtract using extended addressing

Table 107. Bit Manipulation Instructions

Mnemonic	Operands	Instruction
BCLR	bit, dst	Bit Clear
BIT	p, bit, dst	Bit Set or Clear
BSET	bit, dst	Bit Set
BSWAP	dst	Bit Swap
CCF	—	Complement Carry Flag
RCF	—	Reset Carry Flag
SCF	—	Set Carry Flag
ТСМ	dst, src	Test Complement Under Mask
ТСМХ	dst, src	Test Complement Under Mask using extended addressing
ТМ	dst, src	Test Under Mask
ТМХ	dst, src	Test Under Mask using extended addressing

Table 108. Block Transfer Instructions

Mnemonic	Operands	Instruction
LDCI	dst, src	Load constant to/from Program Memory and autoincrement addresses.
LDEI	dst, src	Load external data to/from Data Memory and autoincrement addresses.

177

Assombly		Add Mo	lress ode	Op Codo(s)			Fla	ags			Fotob	Inctr
Mnemonic	Symbolic Operation	dst	src	(Hex)	С	Ζ	S	V	D	Н	Cycles	Cycles
ORX dst, src	$dst \gets dst \ OR \ src$	ER	ER	48	_	*	*	0	_	_	4	3
		ER	IM	49	-						4	3
POP dst	$dst \gets @SP$	R		50	_	_	_	_	_	_	2	2
	$SP \leftarrow SP + 1$	IR		51	_						2	3
POPX dst	dst \leftarrow @SP SP \leftarrow SP + 1	ER		D8	-	_	_	-	-	_	3	2
PUSH src	$SP \leftarrow SP - 1$	R		70	_	_	_	_	_	_	2	2
	@SP ← src	IR		71	_						2	3
		IM		IF70	_						3	2
PUSHX src	$SP \leftarrow SP - 1$ @SP ← src	ER		C8	-	_	_	_	-	_	3	2
RCF	C ← 0			CF	0	_	_	_	_	_	1	2
RET	$\begin{array}{l} PC \leftarrow @SP \\ SP \leftarrow SP + 2 \end{array}$			AF	-	_	_	-	-	_	1	4
RL dst		R		90	*	*	*	*	_	_	2	2
	C	IR		91	-						2	3
RLC dst		R		10	*	*	*	*	_	_	2	2
	C D7 D6 D5 D4 D3 D2 D1 D0	IR		11	-						2	3
RR dst		R		E0	*	*	*	*	_	_	2	2
	► D7 D6 D5 D4 D3 D2 D1 D0 C dst	IR		E1	_						2	3
RRC dst		R		C0	*	*	*	*	_	_	2	2
	► D7 D6 D5 D4 D3 D2 D1 D0 ► C dst	IR		C1	_						2	3

Table 114. eZ8 CPU Instruction Summary (Continued)

Note: Flags Notation:

* = Value is a function of the result of the operation.

- = Unaffected.

X = Undefined.

0 = Reset to 0.

1 = Set to 1.

			V _{DD} = 2.7V to 3.6V T _A = 0°C to +70°C			= 2.7V t 40°C to	to 3.6V +105°C		
Symbol	Parameter	Min	Тур	Max	Min	Тур	Max	Units	Conditions
I _{DD2} ADC	ADC Quiescent Current						1	μΑ	
Z _{IN}	Input Impedance				10			MΩ	
V _{IN}	Input Voltage				0		2.0	V	Internal reference.
	Range				0		0.9*V _{DD}		External refer- ence.
T _{CONV}	Conversion Time				2.8			μs	10MHz (ADC Clock)
GBW _{IN}	Input Bandwidth					350		kHz	
T _{WAKE}	Wake Up Time					0.02		ms	Internal reference.
						10		ms	External refer- ence.
	Input Clock Duty				45	50	55	%	
f _{ADC_CLK}	Maximum Frequency of ADC_CLK						10	MHz	
Note:									

Table 123. Analog-to-Digital Converter Electrical Characteristics and Timing (Continued)

1. When the input voltage is lower than 20mV, the conversion error is out of specification tolerance.

		V _{DD} = 2.7V to 3.6V T _A = 0°C to +70°C			V _{DD} = T _A = -4	= 2.7V to 10°C to	o 3.6V +105°C		
Symbol	Parameter	Min	Тур	Мах	Min	Тур	Мах	Units	Conditions
V _{OS}	Input DC Offset					5		mV	
V _{CREF}	Programmable Inter- nal Reference Volt- age Range				0		1.8	V	User-program- mable in 200 mV step
V _{CREF}	Programmable inter- nal reference volt- age				0.92	1.0	1.08	V	Default (CMP0[REFLV L]=5H)
T _{PROP}	Propagation delay					100		ns	
V _{HYS}	Input hysteresis					8		mV	

Table 124. Comparator Electrical Characteristics

Z8 Encore![®] F083A Series Product Specification

step instruction (10H) 148 stuff instruction (11H) 148 write data memory (0CH) 147 write OCD control register (04H) 145 write program counter (06H) 146 write program memory (0AH) 146 write register (08H) 146 on-chip debugger (OCD) 139 on-chip debugger signals 12 on-chip oscillator 157 one-shot mode 89 opcode map abbreviations 181 cell description 181 first 182 second after 1FH 183 operation 100 current measurement 99 voltage measurement timing diagram 100 Operational Description 21, 30, 33, 54, 69, 92, 98, 108, 110, 124, 139, 151, 157, 161 OR 169 ordering information 199 **ORX 169** oscillator signals 11

Ρ

p 164 Packaging 198 part selection guide 2 PC 165 peripheral AC and DC electrical characteristics 189 pin characteristics 13 Pin Descriptions 7 polarity 164 POP 168 pop using extended addressing 168 **POPX 168** port availability, device 33 port input timing (GPIO) 194 port output timing, GPIO 195 power supply signals 12 power-on reset (POR) 23

program control instructions 169 program counter 165 program memory 15 PUSH 168 push using extended addressing 168 PUSHX 168 PWM mode 89, 90 PxADDR register 40, 218, 219, 220, 221 PxCTL register 41, 218, 219, 220, 221

R

R 164 r 164 RA register address 165 RCF 167, 168 register 164 flash control (FCTL) 120, 126, 127, 224 flash high and low byte (FFREQH and FRE-EQL) 123 flash page select (FPS) 121, 122 flash status (FSTAT) 121 GPIO port A-H address (PxADDR) 40, 218, 219, 220, 221 GPIO port A-H alternate function sub-registers 42 GPIO port A-H control address (PxCTL) 41, 218, 219, 220, 221 GPIO port A-H data direction sub-registers 41 OCD control 148 OCD status 150 watch-dog timer control (WDTCTL) 29, 95, 109, 154, 213, 214, 222 watch-dog timer reload high byte (WDTH) 96, 223 watch-dog timer reload low byte (WDTL) 97, 223 watch-dog timer reload upper byte (WDTU) 96, 223 register file 14 register pair 165 register pointer 165 registers