E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	30MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	18
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SO
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/lpc812m101jd20fp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- State Configurable Timer/PWM (SCTimer/PWM) with input and output functions (including capture and match) assigned to pins through the switch matrix.
- Multiple-channel multi-rate timer (MRT) for repetitive interrupt generation at up to four programmable, fixed rates.
- Self Wake-up Timer (WKT) clocked from either the IRC or a low-power, low-frequency internal oscillator.
- ◆ CRC engine.
- Windowed Watchdog timer (WWDT).
- Analog peripherals:
 - Comparator with internal and external voltage references with pin functions assigned or enabled through the switch matrix.
- Serial interfaces:
 - ◆ Three USART interfaces with pin functions assigned through the switch matrix.
 - Two SPI controllers with pin functions assigned through the switch matrix.
 - ♦ One I²C-bus interface with pin functions assigned through the switch matrix.
- Clock generation:
 - ♦ 12 MHz internal RC oscillator trimmed to 1.5 % accuracy that can optionally be used as a system clock.
 - Crystal oscillator with an operating range of 1 MHz to 25 MHz.
 - Programmable watchdog oscillator with a frequency range of 9.4 kHz to 2.3 MHz.
 - 10 kHz low-power oscillator for the WKT.
 - PLL allows CPU operation up to the maximum CPU rate without the need for a high-frequency crystal. May be run from the system oscillator, the external clock input CLKIN, or the internal RC oscillator.
 - Clock output function with divider that can reflect the crystal oscillator, the main clock, the IRC, or the watchdog oscillator.
- Power control:
 - ◆ Integrated PMU (Power Management Unit) to minimize power consumption.
 - Reduced power modes: Sleep mode, Deep-sleep mode, Power-down mode, and Deep power-down mode.
 - Wake-up from Deep-sleep and Power-down modes on activity on USART, SPI, and I2C peripherals.
 - ◆ Timer-controlled self wake-up from Deep power-down mode.
 - Power-On Reset (POR).
 - Brownout detect.
- Unique device serial number for identification.
- Single power supply.
- Operating temperature range –40 °C to 105 °C except for the DIP8 package, which is available for a temperature range of –40 °C to 85 °C.
- Available as DIP8, TSSOP16, SO20, TSSOP20, and XSON16 package.

3. Applications

- 8/16-bit applications
- Consumer
- Climate control

- Lighting
- Motor control
- Fire and security applications

© NXP Semiconductors N.V. 2018. All rights reserved.

LPC81XM

4. Ordering information

Table 1.Ordering information

Type number	Package						
	Name	Description	Version				
LPC810M021FN8	DIP8	plastic dual in-line package; 8 leads (300 mil)	SOT097-2				
LPC811M001JDH16	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1				
LPC812M101JDH16	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1				
LPC812M101JD20	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1				
LPC812M101JDH20	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1				
LPC812M101JTB16	XSON16	plastic extremely thin small outline package; no leads; 16 terminals; body 2.5 \times 3.2 \times 0.5 mm	SOT1341-1				

4.1 Ordering options

Table 2.Ordering options

Type number	Flash/kB	SRAM/kB	USART	I ² C-bus	SPI	Comparator	GPIO	Package
LPC810M021FN8	4	1	2	1	1	1	6	DIP8
LPC811M001JDH16	8	2	2	1	1	1	14	TSSOP16
LPC812M101JDH16	16	4	3	1	2	1	14	TSSOP16
LPC812M101JD20	16	4	2	1	1	1	18	SO20
LPC812M101JDH20	16	4	3	1	2	1	18	TSSOP20
LPC812M101JTB16	16	4	3	1	2	1	14	XSON16

7. Pinning information

7.1 Pinning

LPC81XM

- Optional warning interrupt can be generated at a programmable time prior to watchdog time-out.
- Enabled by software but requires a hardware reset or a watchdog reset/interrupt to be disabled.
- Incorrect feed sequence causes reset or interrupt if enabled.
- Flag to indicate watchdog reset.
- Programmable 24-bit timer with internal prescaler.
- Selectable time period from $(T_{cy(WDCLK)} \times 256 \times 4)$ to $(T_{cy(WDCLK)} \times 2^{24} \times 4)$ in multiples of $T_{cy(WDCLK)} \times 4$.
- The Watchdog Clock (WDCLK) is generated by a the dedicated watchdog oscillator (WDOSC).

8.18 Self Wake-up Timer (WKT)

The self wake-up timer is a 32-bit, loadable down-counter. Writing any non-zero value to this timer automatically enables the counter and launches a count-down sequence. When the counter is used as a wake-up timer, this write can occur just prior to entering a reduced power mode.

8.18.1 Features

- 32-bit loadable down-counter. Counter starts automatically when a count value is loaded. Time-out generates an interrupt/wake up request.
- The WKT resides in a separate, always-on power domain.
- The WKT supports two clock sources: the low-power oscillator and the IRC. The low-power oscillator is located in the always-on power domain, so it can be used as the clock source in Deep power-down mode.
- The WKT can be used for waking up the part from any reduced power mode, including Deep power-down mode, or for general-purpose timing.

8.19 Analog comparator (ACMP)

The analog comparator with selectable hysteresis can compare voltage levels on external pins and internal voltages.

After power-up and after switching the input channels of the comparator, the output of the voltage ladder must be allowed to settle to its stable value before it can be used as a comparator reference input. Settling times are given in <u>Table 23</u>.

The analog comparator output is a movable function and is assigned to a pin through the switch matrix. The comparator inputs and the voltage reference are enabled or disabled on pins PIO0_0 and PIO0_1 through the switch matrix.

LPC81xM

8.20.1 Crystal and internal oscillators

The LPC81xM include four independent oscillators:

- 1. The crystal oscillator (SysOsc) operating at frequencies between 1 MHz and 25 MHz.
- 2. The internal RC Oscillator (IRC) with a fixed frequency of 12 MHz, trimmed to 1% accuracy.
- 3. The internal low-power, low-frequency Oscillator with a nominal frequency of 10 kHz with 40% accuracy for use with the self wake-up timer.
- 4. The dedicated Watchdog Oscillator (WDOsc) with a programmable nominal frequency between 9.4 kHz and 2.3 MHz with 40% accuracy.

LPC81XM

© NXP Semiconductors N.V. 2018. All rights reserved.

8.21.3 Code security (Code Read Protection - CRP)

CRP provides different levels of security in the system so that access to the on-chip flash and use of the Serial Wire Debugger (SWD) and In-System Programming (ISP) can be restricted. Programming a specific pattern into a dedicated flash location invokes CRP. IAP commands are not affected by the CRP.

In addition, ISP entry via the ISP entry pin can be disabled without enabling CRP. For details, see the *LPC800 user manual*.

There are three levels of Code Read Protection:

- CRP1 disables access to the chip via the SWD and allows partial flash update (excluding flash sector 0) using a limited set of the ISP commands. This mode is useful when CRP is required and flash field updates are needed but all sectors cannot be erased.
- 2. CRP2 disables access to the chip via the SWD and only allows full flash erase and update using a reduced set of the ISP commands.
- 3. Running an application with level CRP3 selected, fully disables any access to the chip via the SWD pins and the ISP. This mode effectively disables ISP override using the ISP entry pin as well. If necessary, the application must provide a flash update mechanism using IAP calls or using a call to the reinvoke ISP command to enable flash update via the USART.

CAUTION

If level three Code Read Protection (CRP3) is selected, no future factory testing can be performed on the device.

In addition to the three CRP levels, sampling of the ISP entry pin for valid user code can be disabled. For details, see the *LPC800 user manual*.

8.21.4 APB interface

The APB peripherals are located on one APB bus.

8.21.5 AHBLite

The AHBLite connects the CPU bus of the ARM Cortex-M0+ to the flash memory, the main static RAM, the CRC, and the ROM.

Table 9. Static characteristics continued	

$T_{amb} = -40 \ ^{\circ}C \ to +105 \ ^{\circ}C,$	unless otherwise	specified
--	------------------	-----------

Symbol	Parameter	Conditions		Min	Typ[1]	Max	Unit
VI	input voltage	$V_{DD} \ge 1.8 \text{ V}$	[11] [12]	0	-	5.0	V
		V _{DD} = 0 V		0	-	3.6	V
Vo	output voltage	output active		0	-	V _{DD}	V
V _{IH}	HIGH-level input voltage			0.7V _{DD}	-	-	V
V _{IL}	LOW-level input voltage			-	-	$0.3V_{DD}$	V
V _{hys}	hysteresis voltage			0.4	-	-	V
V _{OH}	HIGH-level output	$2.5~V \leq V_{DD} \leq 3.6~V;~I_{OH}$ = 20 mA		$V_{DD}-0.4$	-	-	V
	voltage	1.8 V \leq V_{DD} < 2.5 V; I_{OH} = 12 mA		$V_{DD} - 0.4 \\$	-	-	V
V _{OL}	LOW-level output	$2.5~V \leq V_{DD} \leq 3.6~V;~I_{OL} = 4~mA$		-	-	0.4	V
	voltage	1.8 V \leq V _{DD} < 2.5 V; I _{OL} = 3 mA		-	-	0.4	V
I _{OH}	HIGH-level output current			20	-	-	mA
		$1.8 \text{ V} \le \text{V}_{\text{DD}}$ < 2.5 V		12	-	-	mA
I _{OL}	LOW-level output	V _{OL} = 0.4 V		4	-	-	mA
	current	$2.5~\text{V} \leq \text{V}_{DD} \leq 3.6~\text{V}$					
		$1.8 \text{ V} \le \text{V}_{\text{DD}}$ < 2.5 V		3	-	-	mA
I _{OLS}	LOW-level short-circuit output current	$V_{OL} = V_{DD}$	[13]	-	-	50	mA
I _{pd}	pull-down current	V ₁ = 5 V	[14]	10	50	150	μA
Ipu	pull-up current	$V_{I} = 0 V$	[14]	15	50	85	μA
		$2.0~V \leq V_{DD} \leq 3.6~V$					
		$1.8 \text{ V} \le \text{V}_{\text{DD}} < 2.0 \text{ V}$		10	50	85	μΑ
		$V_{DD} < V_{I} < 5 V$		0	0	0	μΑ
I ² C-bus pi	ns (PIO0_10 and PIO0_11); see <u>Figure 13</u>				I	
V _{IH}	HIGH-level input voltage			0.7V _{DD}	-	-	V
V _{IL}	LOW-level input voltage			-	-	$0.3V_{DD}$	V
V _{hys}	hysteresis voltage			-	0.05V _{DD}	-	V
I _{OL}	LOW-level output current	$\label{eq:Volume} \begin{array}{l} V_{OL} = 0.4 \ \text{V}; \ \text{I}^2\text{C}\text{-bus pins} \\ \text{configured as standard mode pins} \\ 2.5 \ \text{V} \leq \text{V}_{DD} \leq 3.6 \ \text{V} \end{array}$		3.5	-	-	mA
		$1.8 \text{ V} \leq \text{V}_{\text{DD}} < 2.5 \text{ V}$		3	-	-	
I _{OL}	LOW-level output current	$V_{OL} = 0.4$ V; l ² C-bus pins configured as Fast-mode Plus pins 2.5 V \leq Vpp \leq 3.6 V		20	-	-	mA
		$18V < V_{DD} < 25V$		16	-	-	
h.,	input leakage current		[15]	-	2	4	ΠΑ
		$V_1 = 5 V$		-	- 10	22	uА
				1	. •		P

LPC81xM

11.2 CoreMark data

11.3 Peripheral power consumption

The supply current per peripheral is measured as the difference in supply current between the peripheral block enabled and the peripheral block disabled in the SYSAHBCLKCFG and PDRUNCFG (for analog blocks) registers. All other blocks are disabled in both registers and no code is executed. Measured on a typical sample at $T_{amb} = 25$ °C. Unless noted otherwise, the system oscillator and PLL are running in both measurements.

The supply currents are shown for system clock frequencies of 12 MHz and 30 MHz.

Table 10. Power consumption for individual analog and digital blocks

Peripheral	Typical s	upply current	in mA	Notes
	n/a	12 MHz	30 MHz	
IRC	0.21	-	-	System oscillator running; PLL off; independent of main clock frequency.
System oscillator at 12 MHz	0.28	-	-	IRC running; PLL off; independent of main clock frequency.
Watchdog oscillator at 500 kHz/2	0.002	-	-	System oscillator running; PLL off; independent of main clock frequency.
BOD	0.05	-	-	Independent of main clock frequency.
Main PLL	-	0.31	-	-
CLKOUT	-	0.06	0.09	Main clock divided by 4 in the CLKOUTDIV register.
ROM	-	0.08	0.19	-
I2C	-	0.06	0.15	-
GPIO + pin interrupt/pattern match	-	0.09	0.23	GPIO pins configured as outputs and set to LOW. Direction and pin state are maintained if the GPIO is disabled in the SYSAHBCLKCFG register.
SWM	-	0.03	0.07	-
SCT	-	0.17	0.42	-
WKT	-	0.01	0.03	-
MRT	-	0.09	0.21	-
SPI0	-	0.05	0.13	-
SPI1	-	0.06	0.14	-
CRC	-	0.03	0.07	-
USART0	-	0.04	0.10	-
USART1	-	0.04	0.11	-
USART2	-	0.04	0.10	-
WWDT	-	0.04	0.10	Main clock selected as clock source for the WDT.
IOCON	-	0.03	0.08	-
Comparator	-	0.04	0.09	-

LPC81xM

12.5 I/O pins

Table 16. Dynamic characteristics: I/O pins^[1]

 $T_{amb} = -40 \ ^{\circ}C \ to + 105 \ ^{\circ}C; \ 3.0 \ V \le V_{DD} \le 3.6 \ V.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _r	rise time	pin configured as output	3.0	-	5.0	ns
t _f	fall time	pin configured as output	2.5	-	5.0	ns

[1] Applies to standard port pins and RESET pin.

12.6 I²C-bus

Table 17. Dynamic characteristic: I²C-bus pins^[1]

 $T_{amb} = -40 \ ^{\circ}C \ to +105 \ ^{\circ}C.$

Symbol	Parameter		Conditions	Min	Max	Unit
f _{SCL}	SCL clock		Standard-mode	0	100	kHz
	frequency		Fast-mode	0	400	kHz
			Fast-mode Plus; on pins PIO0_10 and PIO0_11	0	1	MHz
t _f	fall time	<u>[4][5][6][7]</u>	of both SDA and SCL signals Standard-mode	-	300	ns
			East-mode	20 + 0 1 × C _b	300	ns
			Fast-mode Plus; on pins PIO0_10 and PIO0_11	-	120	ns
t _{LOW}	LOW period of		Standard-mode	4.7	-	μS
	the SCL clock	clock	Fast-mode	1.3	-	μS
			Fast-mode Plus; on pins PIO0_10 and PIO0_11	0.5	-	μs
t _{HIGH}	HIGH period of		Standard-mode	4.0	-	μS
	the SCL clock		Fast-mode	0.6	-	μS
			Fast-mode Plus; on pins PIO0_10 and PIO0_11	0.26	-	μS
t _{HD;DAT}	data hold time	[3][4][8]	Standard-mode	0	-	μS
			Fast-mode	0	-	μS
			Fast-mode Plus; on pins PIO0_10 and PIO0_11	0	-	μS
t _{SU;DAT}	data set-up	[9][10]	Standard-mode	250	-	ns
	time		Fast-mode	100	-	ns
			Fast-mode Plus; on pins PIO0_10 and PIO0_11	50	-	ns

[1] See the I²C-bus specification UM10204 for details.

[2] Parameters are valid over operating temperature range unless otherwise specified.

12.7 SPI interfaces

The maximum data bit rate is 30 Mbit/s in master mode and 25 Mbit/s in slave mode.

Remark: SPI functions can be assigned to all digital pins. The characteristics are valid for all digital pins except the open-drain pins PIO0_10 and PIO0_11.

Table 18. SPI dynamic characteristics

 $T_{amb} = -40$ °C to 105 °C; 1.8 V $\leq V_{DD} \leq$ 3.6 V. Simulated parameters sampled at the 50 % level of the rising or falling edge; values guaranteed by design.

Symbol	Parameter	Conditions		Min	Max	Unit			
SPI master[1]									
T _{cy(clk)}	clock cycle time		[2]	33	-	ns			
t _{DS}	data set-up time			0	-	ns			
t _{DH}	data hold time			16	-	ns			
t _{v(Q)}	data output valid time	C _L = 10 pF		-	0.5	ns			
t _{h(Q)}	data output hold time	C _L = 10 pF		0.5	-	ns			
SPI slave				1	<u>.</u>	i			
T _{cy(clk)}				40		ns			
t _{DS}	data set-up time			0	-	ns			
t _{DH}	data hold time			16	-	ns			
t _{v(Q)}	data output valid time	C _L = 10 pF		-	10	ns			
t _{h(Q)}	data output hold time	C _L = 10 pF		10	-	ns			

[1] Capacitance on pin SPIn_SCK $C_{SCK} < 5 \text{ pF}$.

[2] T_{cy(clk)} = DIVVAL/CCLK with CCLK = system clock frequency. DIVVAL is the SPI clock divider. See the LPC800 User manual UM10601.

LPC81xM

32-bit ARM Cortex-M0+ microcontroller

Table 22. Comparator characteristics ...continued V/ 2.0 V/ and T

$V_{DD} = 3.0 V and T_{amb} = 27$	°C unless noted otherwise.
-----------------------------------	----------------------------

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _{PD}	propagation delay	HIGH to LOW; $V_{DD} = 3.0 V$;		-	109	121	
		V_{IC} = 0.1 V; 50 mV overdrive input	[1]				ns
		V _{IC} = 0.1 V; rail-to-rail input	[1]	-	155	164	ns
		V _{IC} = 1.5 V; 50 mV overdrive input	[1]	-	95	105	ns
		V _{IC} = 1.5 V; rail-to-rail input	[1]	-	101	108	ns
		V _{IC} = 2.9 V; 50 mV overdrive input	[1]	-	122	129	ns
		V _{IC} = 2.9 V; rail-to-rail input	[1]	-	74	82	ns
t _{PD}	propagation delay	LOW to HIGH; $V_{DD} = 3.0 V$;		-	246	260	
		V_{IC} = 0.1 V; 50 mV overdrive input	<u>[1]</u>				ns
		V _{IC} = 0.1 V; rail-to-rail input	[1]	-	57	59	ns
		V _{IC} = 1.5 V; 50 mV overdrive input	[1]	-	218		ns
		V _{IC} = 1.5 V; rail-to-rail input	[1]	-	146	155	ns
		V _{IC} = 2.9 V; 50 mV overdrive input	[1]	-	184	206	ns
		V _{IC} = 2.9 V; rail-to-rail input	[1]	-	250	286	ns
V _{hys}	hysteresis voltage	positive hysteresis; $V_{DD} = 3.0 \text{ V}$; $V_{IC} = 1.5 \text{ V}$	[2]	-	6, 11, 21	-	mV
V _{hys}	hysteresis voltage	negative hysteresis; $V_{DD} = 3.0 \text{ V}$; $V_{IC} = 1.5 \text{ V}$	[2] <u>[2]</u>	-	4, 9, 19	-	mV
R _{lad}	ladder resistance	-		-	1.034	-	MΩ

[1] $C_L = 10 \text{ pF}$; results from measurements on silicon samples over process corners and over the full temperature range $T_{amb} = -40 \text{ °C}$ to +105 °C. Typical data are for $T_{amb} = 27 \text{ °C}$.

[2] Input hysteresis is relative to the reference input channel and is software programmable to three levels.

Symbol	Parameter	Conditions		Min	Тур	Мах	Unit
t _{s(pu)}	power-up settling time	to 99% of voltage ladder output value	[1]	-	-	30	μs
t _{s(sw)}	switching settling time	to 99% of voltage ladder output value	[1] [2]	-	-	15	μS

Table 23. Comparator voltage ladder dynamic characteristics

[1] Maximum values are derived from worst case simulation (V_{DD} = 2.6 V; T_{amb} = 105 °C; slow process models).

[2] Settling time applies to switching between comparator channels.

14.3 XTAL Printed Circuit Board (PCB) layout guidelines

The crystal should be connected on the PCB as close as possible to the oscillator input and output pins of the chip. Take care that the load capacitors C_{x1} , C_{x2} , and C_{x3} in case of third overtone crystal usage have a common ground plane. The external components must also be connected to the ground plain. Loops must be made as small as possible in order to keep the noise coupled in via the PCB as small as possible. Also parasitics should stay as small as possible. Values of C_{x1} and C_{x2} should be chosen smaller accordingly to the increase in parasitics of the PCB layout.

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm SOT403-1 D А Х /7 v H_{E} = v (M) A - Z Q (A₃) pin 1 index detail X **→** ⊕ w M bp е 5 mm 0 2.5 scale DIMENSIONS (mm are the original dimensions) Α D⁽¹⁾ E ⁽²⁾ Z ⁽¹⁾ UNIT L Q A_1 A₂ A₃ bp с е H_{E} Lp ۷ w у θ max 8⁰ 0.30 0.75 0.15 0.95 0.2 5.1 4.5 6.6 0.4 0.40 mm 1.1 0.25 0.65 1 0.2 0.13 0.1 0[°] 0.05 0.80 0.19 0.1 4.9 4.3 6.2 0.50 0.3 0.06 Notes 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included. REFERENCES OUTLINE EUROPEAN ISSUE DATE VERSION PROJECTION IEC JEDEC JEITA 99-12-27 SOT403-1 MO-153 $] \bigcirc$ F 03-02-18

Fig 39. Package outline SOT403-1 (TSSOP16)

LPC81XM

17. Abbreviations

Table 29. Abbreviations				
Acronym	Description			
AHB	Advanced High-performance Bus			
APB	Advanced Peripheral Bus			
BOD	BrownOut Detection			
GPIO	General-Purpose Input/Output			
PLL	Phase-Locked Loop			
RC	Resistor-Capacitor			
SPI	Serial Peripheral Interface			
SMBus	System Management Bus			
TEM	Transverse ElectroMagnetic			
UART	Universal Asynchronous Receiver/Transmitter			

18. References

[1] I2C-bus specification UM10204.

19. Revision history

Table 30. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
LPC81XM v.4.6	20180404	Product data sheet	201804004I	LPC81XM v.4.5		
Modifications:	 Updated tab 	le note 2 of Section 12.1	"Power-up ramp	conditions".		
LPC81XM v.4.5	20160603	Product data sheet	-	LPC81XM v.4.4		
Modifications:	Added Section	on 12.1 "Power-up ramp	conditions".			
	 Updated Fig function of p 	Jure 4 "Pin configuration " Jure 4 "Pin configuration "	SO20 package (L	PC812M101JD20)": Corrected		
	 Updated the remark in Section 8.12 "USART0/1/2" to: USART2 is available on parts LPC812M101JTB16, LPC812M101JDH16, and LPC812M101JDH20 only. 					
LPC81XM v.4.4	20150619	Product data sheet	-	LPC81XM v.4.3		
Modifications:	Section 14.4	# "ElectroMagnetic Comp	atibility (EMC)" a	dded.		
LPC81XM v.4.3	20140422	Product data sheet	-	LPC81XM v.4.2		
Modifications:	Section 8.20	0.2 "Clock input" updated	for clarity.			
	 CLKIN signal removed from Table 13 "Dynamic characteristic: external clock (XTALIN inputs)". 					
	Name "SCT	" changed to "SCTimer/P	WM" for clarity.			
	 Remove slew rate control from GPIO features for clarity. 					
	 MRT bus sta 	all mode added.				
	WWDT clock source corrected in Section 8.17.1.					
	 Pin descript 	ion table updated for clar	ification (I2C-bus	pins, WAKEUP, RESET).		
	 Added reflow (SOT1341-1 	w solder diagram and the	ermal resistance r	umbers for XSON16		
	 Table 22: Added V_{ref(cmp)} spec for PIO0_6/VDDCMP 					
LPC81XM v.4.2	20131210	Product data sheet	-	LPC81XM v.4.1		
Modifications:	Corrected vertica	al axis marker in Figure 2	1 "CoreMark sco	re".		
LPC81XM v.4.1	20131112	Product data sheet	-	LPC81XM v.4		
Modifications:	Corrected X	SON16 pin information ir	n Figure 6 and Ta	ble 4.		
LPC81XM v.4	20131025	Product data sheet	-	LPC81XM v.3.1		
Modifications:	Added Section	on 14.1 "Typical wake-up	o times".			
	Added LPC8	312M101JTB16 and XSC	DN16 package.			
LPC81XM v.3.1	20130916	Product data sheet	-	LPC81XM v.3		
Modifications:	 Correct the mode, Deep 	pin interrupt features: Pir o-sleep mode, and Power	n interrupts can w r-down mode. See	ake up the part from Sleep		
	 Table 9 "State and Deep per 	tic characteristics": Upda ower-down.	ted power numbe	rs for Deep-sleep, Power-down,		
	 Added 30 M supply volta temperature temperature 	Hz data to Figure 13 "Ac ge VDD", Figure 14 "Acti ", and Figure 15 "Sleep r for different system cloc	tive mode: Typica ve mode: Typical node: Typical sup k frequencies".	al supply current IDD versus supply current IDD versus ply current IDD versus		
LPC81XM v.3	20130729	Product data sheet	-	LPC81XM v.2.1		

Document ID	Release date	Data sheet status	Change notice	Supersedes	
	 Operating te 	mperature range change	ed to -40 °C to 10	5 °C.	
	 Type numbers updated to reflect the new operating temperature range. See Table 1 "Ordering information" and Table 2 "Ordering options". 				
	 ISP entry pin moved from PIO0_1 to PIO0_12 for TSSOP, and SSOP packages. See Table 4 and Table 6. 				
	 Propagation delay values updated in Table 21 "Comparator characteristics". SPI characteristics updated. See Section 12.6. IDC characteristics updated. See Section 12.2. 				
	 IRU characteristics updated. See Section 12.3. CoreMark data updated. See Figure 10 and Figure 20. 				
	 Coreiviark data updated. See Figure 19 and Figure 20. IRC frequency changed to 12 MHz +/- 1.5 %. See Table 13. 				
	 Data sheet status updated to Product data sheet. 				
	20130325	Preliminary data sheet			
	Editorial upo		-		
	 CoreMark da IDD" and Fig 	ates (temperature senso ata added. See Figure 19 gure 20 "CoreMark score) "Active mode: C ".	oreMark power consumption	
	 I_{DD} in Deep wake-up ena 	power-down mode addeo abled. See Table 10.	d for condition Lov	w-power oscillator on/WKT	
	• Table note 3	updated for Table 4 "Pin	description table	(fixed pins)".	
	 Conditions f 	or t _{er} and t _{prog} updated in	Table 12 "Flash o	characteristics".	
	Section 13.3	3 "Internal voltage referen	ce" added.		
	 Typical timin 	ig data added for SPI. Se	e Section 12.6.		
	 Typical timin 	ig data added for USART	in synchronous r	mode. See Section 12.7.	
	 BOD charac 	terization added. See Se	ction 13.1.		
	 IRC characterization added. See Section 12.3. 				
	 Internal voltage reference characteristics added. See Section 13.3. 				
	 Data sheet s 	status changed to Prelimi	nary data sheet.		
LPC81XM v.2	20130128	Objective data sheet	-	LPC81XM v.1	
Modifications:	 MTB memory 	ry space changed to 1 kB	in Figure 6.		
	 Electrical pin characteristics added in Table 10. 				
	 Figure 11 "Connecting the SWD pins to a standard SWD connector" added. 				
	 Peripheral power consumption added in Table 11. 				
	 Table 7 upda 	ated.			
	 MRT implem 	nentation changed to 31-l	oit timer.		
	 Power const Figure 15. 	umption data in active an	d sleep mode wit	h IRC added. See Figure 13 to	
	 Power const 12 MHz corr 	umption (parameter I _{DD}) i rected in Table 10.	n active and slee	p mode for low-power mode at	
	 Power const Table 10. 	umption (parameter I_{DD}) i	n active and slee	p mode at 24 MHz added in	
	Maximum U	SART speed in synchron	ous mode change	ed to 10 Mbit/s.	
	 Section 5 "M 	larking" added.	C		
LPC81XM v.1	20121112	Objective data sheet	-	-	

Table 30. Revision history ... continued

20. Legal information

20.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL <u>http://www.nxp.com</u>.

20.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

20.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.