

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	67MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	CapSense, DMA, LCD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 2x12b; D/A 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-VFQFN Exposed Pad
Supplier Device Package	68-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c5667lti-lp041

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

More Information

Cypress provides a wealth of data at www.cypress.com to help you to select the right PSoC device for your design, and to help you to quickly and effectively integrate the device into your design. For a comprehensive list of resources, see the knowledge base article KBA86521, How to Design with PSoC 3, PSoC 4, and PSoC 5LP. Following is an abbreviated list for PSoC 5LP:

- Overview: PSoC Portfolio, PSoC Roadmap
- Product Selectors: PSoC 1, PSoC 3, PSoC 4, PSoC 5LP In addition, PSoC Creator includes a device selection tool.
- Application notes: Cypress offers a large number of PSoC application notes and code examples covering a broad range of topics, from basic to advanced level. Recommended application notes for getting started with PSoC 5LP are:
 - AN77759: Getting Started With PSoC 5LP
 - □ AN77835: PSoC 3 to PSoC 5LP Migration Guide
 - AN61290: Hardware Design Considerations
 - AN57821: Mixed Signal Circuit Board Layout
 - □ AN58304: Pin Selection for Analog Designs
 - □ AN81623: Digital Design Best Practices
 - AN73854: Introduction To Bootloaders

- Development Kits:
 - CY8CKIT-059 is a low-cost platform for prototyping, with a unique snap-away programmer and debugger on the USB connector.
 - CY8CKIT-050 is designed for analog performance, for developing high-precision analog, low-power, and low-voltage applications.
 - CY8CKIT-001 provides a common development platform for any one of the PSoC 1, PSoC 3, PSoC 4, or PSoC 5LP families of devices.
 - The MiniProg3 device provides an interface for flash programming and debug.
- Technical Reference Manuals (TRM)
 - Architecture TRM
 - Registers TRM
- Programming Specification

PSoC Creator

PSoC Creator is a free Windows-based Integrated Design Environment (IDE). It enables concurrent hardware and firmware design of PSoC 3, PSoC 4, and PSoC 5LP based systems. Create designs using classic, familiar schematic capture supported by over 100 pre-verified, production-ready PSoC Components; see the list of component datasheets. With PSoC Creator, you can:

- 1. Drag and drop component icons to build your hardware system design in the main design workspace
- 2. Codesign your application firmware with the PSoC hardware, using the PSoC Creator IDE C compiler
- 3. Configure components using the configuration tools
- 4. Explore the library of 100+ components
- 5. Review component datasheets

Figure 1. Multiple-Sensor Example Project in PSoC Creator

Notes

4. The center pad on the QFN package should be connected to digital ground (VSSD) for best mechanical, thermal, and electrical performance. If not connected to ground, it should be electrically floated and not connected to any other signal. For more information, see AN72845, Design Guidelines for QFN Devices.

Pins are Do Not Use (DNU) on devices without USB. The pin must be left floating.

5.6 External Memory Interface

CY8C56LP provides an External Memory Interface (EMIF) for connecting to external memory devices. The connection allows read and write accesses to external memories. The EMIF operates in conjunction with UDBs, I/O ports, and other hardware to generate external memory address and control signals. At 33 MHz, each memory access cycle takes four bus clock cycles. Figure 5-1 is the EMIF block diagram. The EMIF supports synchronous and asynchronous memories. The CY8C56LP only supports one type of external memory device at a time. External memory is located in the Cortex-M3 external RAM space; it can use up to 24 address bits. See Table 5-4 on page 22Memory Map on page 22. The memory can be 8 or 16 bits wide.

Cortex-M3 instructions can be fetched from external memory if it is 16-bit. Other limitations apply; for details, see application note AN89610, PSoC[®] 4 and PSoC 5LP ARM Cortex Code Optimization. There is no provision for code security in external memory. If code must be kept secure, then it should be placed in internal flash. See Flash Security on page 19 and Device Security on page 64.

Figure 5-1. EMIF Block Diagram

Figure 6-1. Clocking Subsystem

6.1.1 Internal Oscillators

Figure 6-1 shows that there are two internal oscillators. They can be routed directly or divided. The direct routes may not have a 50% duty cycle. Divided clocks have a 50% duty cycle.

6.1.1.1 Internal Main Oscillator

In most designs the IMO is the only clock source required, due to its $\pm 1\%$ accuracy. The IMO operates with no external components and outputs a stable clock. A factory trim for each frequency range is stored in the device. With the factory trim, tolerance varies from $\pm 1\%$ at 3 MHz, up to $\pm 7\%$ at 74 MHz. The IMO, in conjunction with the PLL, allows generation of CPU and system clocks up to the device's maximum frequency (see Phase-Locked Loop)

The IMO provides clock outputs at 3, 6, 12, 24, 48, and 74 MHz.

6.1.1.2 Clock Doubler

The clock doubler outputs a clock at twice the frequency of the input clock. The doubler works for input frequency ranges of 6 to 24 MHz (providing 12 to 48 MHz at the output). It can be configured to use a clock from the IMO, MHzECO, or the DSI (external pin). The doubler is typically used to clock the USB.

6.1.1.3 Phase-Locked Loop

The PLL allows low frequency, high accuracy clocks to be multiplied to higher frequencies. This is a tradeoff between higher clock frequency and accuracy and, higher power consumption and increased startup time.

The PLL block provides a mechanism for generating clock frequencies based upon a variety of input sources. The PLL

outputs clock frequencies in the range of 24 to 80 MHz. Its input and feedback dividers supply 4032 discrete ratios to create almost any desired system clock frequency. The accuracy of the PLL output depends on the accuracy of the PLL input source. The most common PLL use is to multiply the IMO clock at 3 MHz, where it is most accurate, to generate the CPU and system clocks up to the device's maximum frequency.

The PLL achieves phase lock within 250 µs (verified by bit setting). It can be configured to use a clock from the IMO, MHZECO or DSI (external pin). The PLL clock source can be used until lock is complete and signaled with a lock bit. The lock signal can be routed through the DSI to generate an interrupt. Disable the PLL before entering low power modes.

6.1.1.4 Internal Low Speed Oscillator

The ILO provides clock frequencies for low power consumption, including the watchdog timer, and sleep timer. The ILO generates up to three different clocks: 1 kHz, 33 kHz, and 100 kHz.

The 1 kHz clock (CLK1K) is typically used for a background 'heartbeat' timer. This clock inherently lends itself to low power supervisory operations such as the watchdog timer and long sleep intervals using the central timewheel (CTW).

The central timewheel is a 1 kHz, free running, 13-bit counter clocked by the ILO. The central timewheel is always enabled except in hibernate mode and when the CPU is stopped during debug on chip mode. It can be used to generate periodic interrupts for timing purposes or to wake the system from a low power mode. Firmware can reset the central timewheel.

6.2.1 Power Modes

PSoC 5LP devices have four different power modes, as shown in Table 6-2 and Table 6-3. The power modes allow a design to easily provide required functionality and processing power while simultaneously minimizing power consumption and maximizing battery life in low power and portable devices.

PSoC 5LP power modes, in order of decreasing power consumption are:

- Active
- Alternate Active
- Sleep
- Hibernate

Table 6-2. Power Modes

Active is the main processing mode. Its functionality is configurable. Each power controllable subsystem is enabled or disabled by using separate power configuration template registers. In alternate active mode, fewer subsystems are enabled, reducing power. In sleep mode most resources are disabled regardless of the template settings. Sleep mode is optimized to provide timed sleep intervals and Real Time Clock functionality. The lowest power mode is hibernate, which retains register and SRAM state, but no clocks, and allows wakeup only from I/O pins. Figure 6-5 illustrates the allowable transitions between power modes. Sleep and hibernate modes should not be entered until all VDDIO supplies are at valid voltage levels.

Power Modes	Description	Entry Condition	Wakeup Source	Active Clocks	Regulator
Active	Primary mode of operation, all peripherals available (programmable)	Wakeup, reset, manual register entry	Any interrupt	Any (programmable)	All regulators available. Digital and analog regulators can be disabled if external regulation used.
Alternate Active	Similar to Active mode, and is typically configured to have fewer peripherals active to reduce power. One possible configuration is to use the UDBs for processing, with the CPU turned off	Manual register entry	Any interrupt	Any (programmable)	All regulators available. Digital and analog regulators can be disabled if external regulation used.
Sleep	All subsystems automatically disabled	Manual register entry	Comparator, PICU, I ² C, RTC, CTW, LVD	ILO/kHzECO	Both digital and analog regulators buzzed. Digital and analog regulators can be disabled if external regulation used.
Hibernate	All subsystems automatically disabled Lowest power consuming mode with all peripherals and internal regulators disabled, except hibernate regulator is enabled Configuration and memory contents retained	Manual register entry	PICU		Only hibernate regulator active.

Table 6-3. Power Modes Wakeup Time and Power Consumption

Sleep Modes	Wakeup Time	Current (Typ)	Code Execution	Digital Resources	Analog Resources	Clock Sources Available	Wakeup Sources	Reset Sources
Active	-	3.1 mA ^[8]	Yes	All	All	All	-	All
Alternate Active	_	-	User defined	All	All	All	-	All
Sleep	<25 µs	2 µA	No	l ² C	Comparator	ILO/kHzECO	Comparator, PICU, I ² C, RTC, CTW, LVD	XRES, LVD, WDR
Hibernate	<200 µs	300 nA	No	None	None	None	PICU	XRES

Note

8. Bus clock off. Execute from CPU instruction buffer at 6 MHz. See Table 11-2 on page 67.

Figure 6-10. SIO Input/Output Block Diagram

7.2.2.3 Conditionals

Each datapath has two compares, with bit masking options. Compare operands include the two accumulators and the two data registers in a variety of configurations. Other conditions include zero detect, all ones detect, and overflow. These conditions are the primary datapath outputs, a selection of which can be driven out to the UDB routing matrix. Conditional computation can use the built in chaining to neighboring UDBs to operate on wider data widths without the need to use routing resources.

7.2.2.4 Variable MSB

The most significant bit of an arithmetic and shift function can be programmatically specified. This supports variable width CRC and PRS functions, and in conjunction with ALU output masking, can implement arbitrary width timers, counters and shift blocks.

7.2.2.5 Built in CRC/PRS

The datapath has built in support for single cycle Cyclic Redundancy Check (CRC) computation and Pseudo Random Sequence (PRS) generation of arbitrary width and arbitrary polynomial. CRC/PRS functions longer than 8 bits may be implemented in conjunction with PLD logic, or built in chaining may be use to extend the function into neighboring UDBs.

7.2.2.6 Input/Output FIFOs

Each datapath contains two four-byte deep FIFOs, which can be independently configured as an input buffer (system bus writes to the FIFO, datapath internal reads the FIFO), or an output buffer (datapath internal writes to the FIFO, the system bus reads from the FIFO). The FIFOs generate status that are selectable as datapath outputs and can therefore be driven to the routing, to interact with sequencers, interrupts, or DMA.

Figure 7-5. Example FIFO Configurations

7.2.2.7 Chaining

The datapath can be configured to chain conditions and signals such as carries and shift data with neighboring datapaths to create higher precision arithmetic, shift, CRC/PRS functions.

7.2.2.8 Time Multiplexing

In applications that are over sampled, or do not need high clock rates, the single ALU block in the datapath can be efficiently

shared with two sets of registers and condition generators. Carry and shift out data from the ALU are registered and can be selected as inputs in subsequent cycles. This provides support for 16-bit functions in one (8-bit) datapath.

7.2.2.9 Datapath I/O

There are six inputs and six outputs that connect the datapath to the routing matrix. Inputs from the routing provide the configuration for the datapath operation to perform in each cycle, and the serial data inputs. Inputs can be routed from other UDB blocks, other device peripherals, device I/O pins, and so on. The outputs to the routing can be selected from the generated conditions, and the serial data outputs. Outputs can be routed to other UDB blocks, device peripherals, interrupt and DMA controller, I/O pins, and so on.

7.2.3 Status and Control Module

The primary purpose of this circuitry is to coordinate CPU firmware interaction with internal UDB operation.

Figure 7-6. Status and Control Registers

The bits of the control register, which may be written to by the system bus, are used to drive into the routing matrix, and thus provide firmware with the opportunity to control the state of UDB processing. The status register is read-only and it allows internal UDB state to be read out onto the system bus directly from internal routing. This allows firmware to monitor the state of UDB processing. Each bit of these registers has programmable connections to the routing matrix and routing connections are made depending on the requirements of the application.

7.2.3.1 Usage Examples

As an example of control input, a bit in the control register can be allocated as a function enable bit. There are multiple ways to enable a function. In one method the control bit output would be routed to the clock control block in one or more UDBs and serve as a clock enable for the selected UDB blocks. A status example is a case where a PLD or datapath block generated a condition, such as a "compare true" condition that is captured and latched by the status register and then read (and cleared) by CPU firmware.

7.2.3.2 Clock Generation

Each subcomponent block of a UDB including the two PLDs, the datapath, and Status and Control, has a clock selection and control block. This promotes a fine granularity with respect to allocating clocking resources to UDB component blocks and allows unused UDB resources to be used by other functions for maximum system efficiency.

7.3 UDB Array Description

Figure 7-7 shows an example of a 16 UDB array. In addition to the array core, there are a DSI routing interfaces at the top and bottom of the array. Other interfaces that are not explicitly shown include the system interfaces for bus and clock distribution. The UDB array includes multiple horizontal and vertical routing channels each comprised of 96 wires. The wire connections to UDBs, at horizontal/vertical intersection and at the DSI interface are highly permutable providing efficient automatic routing in PSoC Creator. Additionally the routing allows wire by wire segmentation along the vertical and horizontal routing to further increase routing flexibility and capability.

Figure 7-7. Digital System Interface Structure

7.3.1 UDB Array Programmable Resources

Figure 7-8 shows an example of how functions are mapped into a bank of 16 UDBs. The primary programmable resources of the UDB are two PLDs, one datapath and one status/control register. These resources are allocated independently, because they have independently selectable clocks, and therefore unused blocks are allocated to other unrelated functions.

An example of this is the 8-bit Timer in the upper left corner of the array. This function only requires one datapath in the UDB, and therefore the PLD resources may be allocated to another function. A function such as a Quadrature Decoder may require more PLD logic than one UDB can supply and in this case can utilize the unused PLD blocks in the 8-bit Timer UDB. Programmable resources in the UDB array are generally homogeneous so functions can be mapped to arbitrary boundaries in the array.

Figure 7-8. Function Mapping Example in a Bank of UDBs

7.4 DSI Routing Interface Description

The DSI routing interface is a continuation of the horizontal and vertical routing channels at the top and bottom of the UDB array core. It provides general purpose programmable routing between device peripherals, including UDBs, I/Os, analog peripherals, interrupts, DMA and fixed function peripherals.

Figure 7-9 illustrates the concept of the digital system interconnect, which connects the UDB array routing matrix with other device peripherals. Any digital core or fixed function peripheral that needs programmable routing is connected to this interface.

Signals in this category include:

- Interrupt requests from all digital peripherals in the system.
- DMA requests from all digital peripherals in the system.
- Digital peripheral data signals that need flexible routing to I/Os.
- Digital peripheral data signals that need connections to UDBs.
- Connections to the interrupt and DMA controllers.
- Connection to I/O pins.
- Connection to analog system digital signals.

Figure 8-12. DAC Block Diagram

8.10.1 Current DAC

The current DAC (IDAC) can be configured for the ranges 0 to 31.875 μ A, 0 to 255 μ A, and 0 to 2.04 mA. The IDAC can be configured to source or sink current.

8.10.2 Voltage DAC

For the voltage DAC (VDAC), the current DAC output is routed through resistors. The two ranges available for the VDAC are 0 to 1.02 V and 0 to 4.08 V. In voltage mode any load connected to the output of a DAC should be purely capacitive (the output of the VDAC is not buffered).

8.11 Up/Down Mixer

In continuous time mode, the SC/CT block components are used to build an up or down mixer. Any mixing application contains an input signal frequency and a local oscillator frequency. The polarity of the clock, Fclk, switches the amplifier between inverting or noninverting gain. The output is the product of the input and the switching function from the local oscillator, with frequency components at the local oscillator plus and minus the signal frequency (Fclk + Fin and Fclk - Fin) and reduced-level frequency components at odd integer multiples of the local oscillator frequency. The local oscillator frequency is provided by the selected clock source for the mixer.

Continuous time up and down mixing works for applications with input signals and local oscillator frequencies up to 1 MHz.

Figure 8-13. Mixer Configuration

Table 11-2. DC Specifications (continued)

Parameter	Description	Condition	s	Min	Тур	Max	Units
I _{DD} ^[26]	Hibernate Mode						
		V _{DD} = V _{DDIO} =	T = –40 °C	-	0.2	2	μA
		4.5–5.5 V	T = 25 °C	_	0.24	2	
			T = 85 °C	_	2.6	15	
			T = 105 °C	-	2.6	15	
	Hibernate mode current	$V_{DD} = V_{DDIO} =$	T = -40 °C	_	0.11	2	
	SRAM retention	2.7–3.6 V	T = 25 °C	-	0.3	2	
	GPIO interrupts are active Boost = OFF SIO pins in single ended input, unregulated output mode	-	T = 85 °C	-	2	15	
			T = 105 °C	-	2	15	
	i i i i i i i i i i i i i i i i i i i	V _{DD} = V _{DDIQ} =	T = -40 °C	-	0.9	2	
		1.71–1.95 V	T = 25 °C	-	0.11	2	
			T = 85 °C	_	1.8	15	
			T = 105 °C	-	1.8	15	
I _{DDAR} ^[27]	Analog current consumption while device is reset	$V_{DDA} \le 3.6 V$		-	0.3	0.6	mA
		V _{DDA} > 3.6 V		_	1.4	3.3	mA
I _{DDDR} ^[27]	Digital current consumption while device is reset	$V_{DDD} \le 3.6 V$		-	1.1	3.1	mA
		$V_{DDD} > 3.6 V$		-	0.7	3.1	mA
I _{DD_PROG} ^[25]	Current consumption while device programming. Sum of digital, analog, and IOs: IDDD + IDDA + IDDIOX.			-	15	21	mA

Notes 26. The current consumption of additional peripherals that are implemented only in programmed logic blocks can be found in their respective datasheets, available in PSoC Creator, the integrated design environment. To estimate total current, find CPU current at frequency of interest and add peripheral currents for your particular system from the device datasheet and component datasheets.

^{27.} Based on device characterization (Not production tested).

11.4.2 SIO

Table 11-10. SIO DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units			
Vinmax	Maximum input voltage	All allowed values of V_{DDIO} and V_{DDD} , see Section 11.1	-	_	5.5	V			
Vinref	Input voltage reference (Differential input mode)		0.5	-	$0.52 \times V_{DDIO}$	V			
	Output voltage reference (Regulate	d output mode)							
Voutref		V _{DDIO} > 3.7	1	-	V _{DDIO} -1	V			
		V _{DDIO} < 3.7	1	Ι	$V_{DDIO} - 0.5$	V			
	Input voltage high threshold				I				
VIH	GPIO mode	CMOS input	$0.7 \times V_{DDIO}$	-	_	V			
V _{IH}	Differential input mode ^[37]	Hysteresis disabled	SIO_ref + 0.2	-	_	V			
	Input voltage low threshold		L		I				
V _{IL}	GPIO mode	CMOS input	_	-	$0.3 \times V_{DDIO}$	V			
• 112	Differential input mode ^[37]	Hysteresis disabled	_	-	SIO_ref – 0.2	V			
	Output voltage high								
	Unregulated mode	I _{OH} = 4 mA, V _{DDIO} = 3.3 V	V _{DDIO} – 0.4	_	_	V			
V _{OH}	Regulated mode ^[37]	I _{OH} = 1 mA	SIO_ref - 0.65	Ι	SIO_ref + 0.2	V			
		I _{OH} = 0.1 mA	SIO_ref – 0.3	-	SIO_ref + 0.2	V			
		no load, I _{OH} = 0	SIO_ref – 0.1	I	SIO_ref + 0.1	V			
V _{OL}	Output voltage low	V _{DDIO} = 3.30 V, I _{OL} = 25 mA	-	Ι	0.8	V			
		V _{DDIO} = 3.30 V, I _{OL} = 20 mA	-	Ι	0.4	V			
		V _{DDIO} = 1.80 V, I _{OL} = 4 mA	-	I	0.4	V			
Rpullup	Pull up resistor		3.5	5.6	8.5	kΩ			
Rpulldown	Pull down resistor		3.5	5.6	8.5	kΩ			
I _{IL}	Input leakage current (absolute value) ^[38]								
	$V_{IH} \leq V_{DDSIO}$	25 °C, V _{DDSIO} = 3.0 V, V _{IH} = 3.0 V	_	-	14	nA			
	V _{IH} > V _{DDSIO}	25 °C, V _{DDSIO} = 0 V, V _{IH} = 3.0 V	_	-	10	μA			
C _{IN}	Input capacitance ^[38]		_	-	9	pF			
V	Input voltage hysteresis	Single ended mode (GPIO mode)	_	115	_	mV			
vн	(Schmitt–Trigger) ^[38]	Differential mode	_	50	_	mV			
Idiode	Current through protection diode to V_{SSIO}		_	-	100	μA			

Notes 37. See Figure 6-10 on page 34 and Figure 6-13 on page 37 for more information on SIO reference. 38. Based on device characterization (Not production tested).

Table 11-12. SIO Comparator Specifications^[40]

Parameter	Description	Conditions	Min	Тур	Max	Units
Vos	Offset voltage	V _{DDIO} = 2 V	_	-	68	mV
		V _{DDIO} = 2.7 V	-	-	72	
		V _{DDIO} = 5.5 V	-	-	82	
TCVos	Offset voltage drift with temp		-	-	250	µV/°C
CMRR	Common mode rejection ratio	V _{DDIO} = 2 V	30	-	-	dB
		V _{DDIO} = 2.7 V	35	-	-	
		V _{DDIO} = 5.5 V	40	-	-	
Tresp	Response time		-	-	30	ns

11.4.3 USBIO

For operation in GPIO mode, the standard range for V_{DDD} applies, see Device Level Specifications on page 67.

Table 11-13. USBIO DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Rusbi	USB D+ pull-up resistance ^[40]	With idle bus	0.900	_	1.575	kΩ
Rusba	USB D+ pull-up resistance ^[40]	While receiving traffic	1.425	-	3.090	kΩ
Vohusb	Static output high ^[40]	15 k Ω ±5% to $V_{SS},$ internal pull-up enabled	2.8	-	3.6	V
Volusb	Static output low ^[40]	15 k Ω ±5% to V $_{SS},$ internal pull-up enabled	-	-	0.3	V
Vihgpio	Input voltage high, GPIO mode ^[40]	V _{DDD} = 1.8 V	1.5	_	_	V
		V _{DDD} = 3.3 V	2	-	_	V
		V _{DDD} = 5.0 V	2	-	_	V
Vilgpio	Input voltage low, GPIO mode ^[40]	V _{DDD} = 1.8 V	_	-	0.8	V
		V _{DDD} = 3.3 V	-	-	0.8	V
		V _{DDD} = 5.0 V	_	-	0.8	V
Vohgpio	Output voltage high, GPIO mode ^[40]	I _{OH} = 4 mA, V _{DDD} = 1.8 V	1.6	_	_	V
		I _{OH} = 4 mA, V _{DDD} = 3.3 V	3.1	-	_	V
		I _{OH} = 4 mA, V _{DDD} = 5.0 V	4.2	-	-	V
Volgpio	Output voltage low, GPIO mode ^[40]	I _{OL} = 4 mA, V _{DDD} = 1.8 V	-	-	0.3	V
		I _{OL} = 4 mA, V _{DDD} = 3.3 V	_	-	0.3	V
		I _{OL} = 4 mA, V _{DDD} = 5.0 V	_	-	0.3	V
V _{DI}	Differential input sensitivity	(D+)(D)	_	_	0.2	V
Vcm	Differential input common mode range		0.8	-	2.5	V
Vse	Single ended receiver threshold		0.8	-	2	V
Rps2	PS/2 pull-up resistance ^[40]	In PS/2 mode, with PS/2 pull-up enabled	3	-	7	kΩ
Rext	External USB series resistor ^[40]	In series with each USB pin	21.78 (–1%)	22	22.22 (+1%)	Ω
Zo	USB driver output impedance ^[40]	Including Rext	28	-	44	Ω
C _{IN}	USB transceiver input capacitance		_	-	20	pF
IL	Input leakage current (absolute value) ^[40]	25 °C, V _{DDD} = 3.0 V	-	-	2	nA

Note

^{40.} Based on device characterization (Not production tested).

11.5.2 Delta-Sigma ADC

Unless otherwise specified, operating conditions are:

- Operation in continuous sample mode
- fclk = 6.144 MHz
- Reference = 1.024 V internal reference bypassed on P3.2 or P0.3
- Unless otherwise specified, all charts and graphs show typical values

Table 11-20. 12-bit Delta-sigma ADC DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Resolution		8	-	12	bits
	Number of channels, single ended		-	-	No. of GPIO	-
	Number of channels, differential	Differential pair is formed using a pair of GPIOs.	_	-	No. of GPIO/2	-
	Monotonic	Yes	_	_	-	_
Ge	Gain error	Buffered, buffer gain = 1, Range = ±1.024 V, 25 °C	-	-	±0.4	%
Gd	Gain drift	Buffered, buffer gain = 1, Range = ±1.024 V	-	-	50	ppm/° C
Vos		Buffered, 16-bit mode, full voltage range	_	-	±0.2	mV
VUS	Temperature coefficient, input offset	Buffered, 16-bit mode, V _{DDA} = 1.8 V ±5%, 25 °C	_	-	±0.1	mV
TCVos	Temperature coefficient, input offset voltage	Buffer gain = 1, 12-bit, Range = ±1.024 V	-	-	1	µV/°C
	Input voltage range, single ended ^[41]		V_{SSA}	-	V _{DDA}	V
	Input voltage range, differential unbuf- fered ^[41]		V_{SSA}	-	V _{DDA}	V
	Input voltage range, differential, buffered ^[41]		V_{SSA}	-	V _{DDA} – 1	V
INL12	Integral non linearity ^[41]	Range = ±1.024 V, unbuffered	_	-	±1	LSB
DNL12	Differential non linearity ^[41]	Range = ±1.024 V, unbuffered	_	-	±1	LSB
INL8	Integral non linearity ^[41]	Range = ±1.024 V, unbuffered	_	-	±1	LSB
DNL8	Differential non linearity ^[41]	Range = ±1.024 V, unbuffered	-	-	±1	LSB
Rin_Buff	ADC input resistance	Input buffer used	10	-	-	MΩ
Rin_ADC12	ADC input resistance	Input buffer bypassed, 12 bit, Range = ±1.024 V	_	148 ^[42]	-	kΩ
Rin_ExtRef	ADC external reference input resistance		_	70 ^[42, 43]	-	kΩ
Vextref	ADC external reference input voltage, see also internal reference in Voltage Reference on page 88	Pins P0[3], P3[2]	0.9	-	1.3	V
Current Cor	sumption					
I _{DD_12}	Current consumption, 12 bit ^[41]	192 ksps, unbuffered	_	-	1.4	mA
I _{BUFF}	Buffer current consumption ^[41]		-	-	2.5	mA

Notes

42. By using switched capacitors at the ADC input an effective input resistance is created. Holding the gain and number of bits constant, the resistance is proportional to

^{41.} Based on device characterization (not production tested).

 ^{42.} By damped and the factor in particulated, not measured. For more information see the Technical Reference Manual.
 43. Recommend an external reference device with an output impedance <100 Ω, for example, the LM185/285/385 family. A 1 µF capacitor is recommended. For more information, see AN61290 - PSoC® 3 and PSoC 5LP Hardware Design Considerations.

11.5.4 SAR ADC

Table 11-24. SAR ADC DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Resolution		_	_	12	bits
	Number of channels – single-ended		_	-	No of GPIO	
	Number of channels – differential	Differential pair is formed using a pair of neighboring GPIO.	_	_	No of GPIO/2	
	Monotonicity ^[47]		Yes	-	-	
Ge	Gain error ^[48]	External reference	-	_	±0.1	%
V _{OS}	Input offset voltage		-	-	±2	mV
I _{DD}	Current consumption ^[47]		-	-	1	mA
	Input voltage range – single-ended ^[47]		V _{SSA}	-	V _{DDA}	V
	Input voltage range – differential ^[47]		V _{SSA}	-	V _{DDA}	V
PSRR	Power supply rejection ratio ^[47]		70	-	-	dB
CMRR	Common mode rejection ratio		70	_	-	dB
INL	Integral non linearity ^[47]	V _{DDA} 1.71 to 5.5 V, 1 Msps, V _{REF} 1 to 5.5 V, bypassed at ExtRef pin	_	-	+2/–1.5	LSB
		V _{DDA} 2.0 to 3.6 V, 1 Msps, V _{REF} 2 to V _{DDA, bypassed at ExtRef pin}	_	-	±1.2	LSB
		V _{DDA} 1.71 to 5.5 V, 500 ksps, V _{REF} 1 to 5.5 V, bypassed at ExtRef pin	-	-	±1.3	LSB
DNL	Differential non linearity ^[47]	V _{DDA} 1.71 to 5.5 V, 1 Msps, V _{REF} 1 to 5.5 V, bypassed at ExtRef pin	_	-	+2/–1	LSB
		V_{DDA} 2.0 to 3.6 V, 1 Msps, V_{REF} 2 to $V_{DDA},$ bypassed at ExtRef pin No missing codes	-	_	1.7/-0.99	LSB
		V _{DDA} 1.71 to 5.5 V, 500 ksps, V _{REF} 1 to 5.5 V, bypassed at ExtRef pin No missing codes	_	_	+2/-0.99	LSB
R _{IN}	Input resistance ^[47]		-	180	-	kΩ

Notes
47. Based on device characterization (Not production tested).
48. For total analog system Idd < 5 mA, depending on package used. With higher total analog system currents it is recommended that the SAR ADC be used in differential mode.

Table 11-30. IDAC DC Specifications (continued)

Parameter	Description	Conditions	Min	Тур	Max	Units
DNL	Differential nonlinearity	Sink mode, range = 255 μ A, Rload = 2.4 k Ω , Cload = 15 pF	_	±0.3	±1	LSB
		Source mode, range = 255 μ A, Rload = 2.4 k Ω , Cload = 15 pF	_	±0.3	±1	LSB
		Source mode, range = 31.875 μ A, Rload = 20 k Ω , Cload = 15 pF ^[55]	_	±0.2	±1	LSB
		Sink mode, range = 31.875 μ A, Rload = 20 k Ω , Cload = 15 pF ^[55]	_	±0.2	±1	LSB
		Source mode, range = 2.0 4 mA, Rload = 600 Ω , Cload = 15 pF ^[55]	_	±0.2	±1	LSB
		Sink mode, range = 2.0 4 mA, Rload = 600 Ω , Cload = 15 pF ^[55]	_	±0.2	±1	LSB
Vcompliance	Dropout voltage, source or sink mode	Voltage headroom at max current, Rload to V_{DDA} or Rload to $V_{SSA},$ Vdiff from V_{DDA}	1	-	-	V
I _{DD}	Operating current, code = 0	Slow mode, source mode, range = 31.875 μA	-	44	100	μA
		Slow mode, source mode, range = 255 μA,	_	33	100	μA
		Slow mode, source mode, range = 2.04 mA	_	33	100	μA
		Slow mode, sink mode, range = 31.875 μΑ	_	36	100	μA
		Slow mode, sink mode, range = 255 μA	-	33	100	μA
		Slow mode, sink mode, range = 2.04 mA	-	33	100	μA
		Fast mode, source mode, range = 31.875 μΑ	-	310	500	μA
		Fast mode, source mode, range = 255 μA	-	305	500	μA
		Fast mode, source mode, range = 2.04 mA	-	305	500	μA
		Fast mode, sink mode, range = 31.875 μΑ	-	310	500	μA
		Fast mode, sink mode, range = 255 μA	_	300	500	μA
		Fast mode, sink mode, range = 2.04 mA	_	300	500	μA

11.5.9 Mixer

The mixer is created using a SC/CT analog block; see the Mixer component datasheet in PSoC Creator for full electrical specifications and APIs.

Table 11-34. Mixer DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{OS}	Input offset voltage	High power mode, V_{IN} = 1.024 V, V _{REF} = 1.024 V	-	_	15	mV
	Quiescent current		-	0.9	2	mA
G	Gain		_	0	_	dB

Table 11-35. Mixer AC Specifications^[59]

Parameter	Description	Conditions	Min	Тур	Max	Units
f _{LO}	Local oscillator frequency	Down mixer mode	_	-	4	MHz
f _{in}	Input signal frequency	Down mixer mode	_	-	14	MHz
f _{LO}	Local oscillator frequency	Up mixer mode	_	-	1	MHz
f _{in}	Input signal frequency	Up mixer mode	-	-	1	MHz
SR	Slew rate		3	-	-	V/µs

11.5.10 Transimpedance Amplifier

The TIA is created using a SC/CT analog block; see the TIA component datasheet in PSoC Creator for full electrical specifications and APIs.

Table 11-36. Transimpedance Amplifier (TIA) DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{IOFF}	Input offset voltage		-	-	10	mV
Rconv	Conversion resistance ^[60]	R = 20K; 40 pF load	-25	-	+35	%
		R = 30K; 40 pF load	-25	-	+35	%
		R = 40K; 40 pF load	-25	-	+35	%
		R = 80K; 40 pF load	-25	-	+35	%
		R = 120K; 40 pF load	-25	-	+35	%
		R = 250K; 40 pF load	-25	-	+35	%
		R= 500K; 40 pF load	-25	-	+35	%
		R = 1M; 40 pF load	-25	-	+35	%
	Quiescent current ^[59]		-	1.1	2	mA

Table 11-37. Transimpedance Amplifier (TIA) AC Specifications^[59]

Parameter	Description	Conditions	Min	Тур	Max	Units
BW	Input bandwidth (–3 dB)	R = 20K; –40 pF load	1200	-	-	kHz
		R = 120K;	240	1	I	kHz
		R = 1M; –40 pF load	25	-	-	kHz

Notes

^{59.} Based on device characterization (Not production tested).

^{60.} Conversion resistance values are not calibrated. Calibrated values and details about calibration are provided in PSoC Creator component datasheets. External precision resistors can also be used.

Table 11-39. PGA AC Specifications^[62]

Parameter	Description	Conditions	Min	Тур	Max	Units
BW1	–3 dB bandwidth	Power mode = high, gain = 1, input = 100 mV peak-to-peak	6.7	8	-	MHz
		T _A ≤ 105 °C	6	8	_	
SR1	Slew rate	Power mode = high, gain = 1, 20% to 80%	3	-	-	V/µs
e _n	Input noise density	Power mode = high, V _{DDA} = 5 V, at 100 kHz	-	43	-	nV/sqrtHz

Figure 11-69. Bandwidth vs. Temperature, at Different Gain Settings, Power Mode = High

Figure 11-70. Noise vs. Frequency, Vdda = 5 V, Power Mode = High

11.5.12 Temperature Sensor

Table 11-40. Temperature Sensor Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Temp sensor accuracy	Range: –40 °C to +105 °C	-	±5	Ι	°C

11.5.13 LCD Direct Drive

Table 11-41. LCD Direct Drive DC Specifications^[62]

Parameter	Description	Conditions	Min	Тур	Мах	Units
I _{CC}	LCD Block (no glass)	Device sleep mode with wakeup at 400 Hz rate to refresh LCD, bus, clock = 3MHz, Vddio = Vdda = 3 V, 8 commons, 16 segments, 1/5 duty cycle, 40 Hz frame rate, no glass connected	-	81	-	μΑ
I _{CC_SEG}	Current per segment driver	Strong drive mode	-	260	-	μA
V _{BIAS}	LCD bias range (V _{BIAS} refers to the main output voltage(V0) of LCD DAC)	$V_{DDA} \geq 3~V$ and $V_{DDA} \geq V_{BIAS}$	2	-	5	V
	LCD bias step size	$V_{DDA} \ge 3 V \text{ and } V_{DDA} \ge V_{BIAS}$	-	9.1 × V _{DDA}	-	mV
	LCD capacitance per segment/ common driver	Drivers may be combined	_	500	5000	pF
	Maximum segment DC offset	$V_{DDA} \ge 3V$ and $V_{DDA} \ge V_{BIAS}$	_	_	20	mV
I _{OUT}	Output drive current per segment driver)	V_{DDIO} = 5.5 V, strong drive mode	355	_	710	μĀ

Note

62. Based on device characterization (Not production tested).

Table 11-42. LCD Direct Drive AC Specifications^[63]

Parameter	Description	Conditions	Min	Тур	Max	Units
f _{LCD}	LCD frame rate		10	50	150	Hz

11.6 Digital Peripherals

Specifications are valid for -40 $^{\circ}C \le T_A \le 105 ^{\circ}C$ and $T_J \le 120 ^{\circ}C$, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.6.1 Timer

The following specifications apply to the Timer/Counter/PWM peripheral in timer mode. Timers can also be implemented in UDBs; for more information, see the Timer component datasheet in PSoC Creator.

Table 11-43. Timer DC Specifications^[63]

Parameter	Description	Conditions	Min	Тур	Max	Units
	Block current consumption	16-bit timer, at listed input clock frequency	-	_	_	μA
	3 MHz		-	15	-	μA
	12 MHz		_	60	_	μA
	48 MHz		_	260	_	μA
	80 MHz		_	360	_	μA

Table 11-44. Timer AC Specifications^[63]

Parameter	Description	Conditions	Min	Тур	Max	Units
	Operating frequency		DC	_	80.01	MHz
	Capture pulse width (Internal) ^[64]		15	-	-	ns
	Capture pulse width (external)		30	_	-	ns
	Timer resolution ^[64]		15	_	-	ns
	Enable pulse width ^[64]		15	-	-	ns
	Enable pulse width (external)		30	-	-	ns
	Reset pulse width ^[64]		15	-	-	ns
	Reset pulse width (external)		30	-	-	ns

11.6.2 Counter

The following specifications apply to the Timer/Counter/PWM peripheral, in counter mode. Counters can also be implemented in UDBs; for more information, see the Counter component datasheet in PSoC Creator.

Table 11-45. Counter DC Specifications^[63]

Parameter	Description	Conditions	Min	Тур	Max	Units
	Block current consumption	16-bit counter, at listed input clock frequency	-	_	-	μA
	3 MHz		_	15	_	μA
	12 MHz		_	60	_	μA
	48 MHz		_	260	_	μA
	80 MHz		_	360	-	μA

Notes

 ^{63.} Based on device characterization (Not production tested).
 64. For correct operation, the minimum Timer/Counter/PWM input pulse width is the period of bus clock.

Table 11-50. Fixed I²C AC Specifications^[67]

Parameter	Description	Conditions	Min	Тур	Max	Units
	Bit rate		-	-	1	Mbps

11.6.5 Controller Area Network

Table 11-51. CAN DC Specifications^[67, 68]

Parameter	Description	Conditions	Min	Тур	Max	Units
I _{DD}	Block current consumption		-	-	200	μA

Table 11-52. CAN AC Specifications^[67, 68]

Parameter	Description	Conditions	Min	Тур	Max	Units
	Bit rate	Minimum 8 MHz clock	_	_	1	Mbit

11.6.6 Digital Filter Block

Table 11-53. DFB DC Specifications^[68]

Parameter	Description	Conditions	Min	Тур	Max	Units
	DFB operating current	64-tap FIR at F _{DFB}				
		500 kHz (6.7 ksps)	-	0.16	0.27	mA
		1 MHz (13.4 ksps)	-	0.33	0.53	mA
		10 MHz (134 ksps)	-	3.3	5.3	mA
		48 MHz (644 ksps)	-	15.7	25.5	mA
		80 MHz (1.07 Msps)	-	26.0	42.5	mA

Table 11-54. DFB AC Specifications^[68]

Parameter	Description	Conditions	Min	Тур	Max	Units
F _{DFB}	DFB operating frequency		DC	-	80.01	MHz

11.6.7 USB

Table 11-55. USB DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{USB_5}	Device supply (V _{DDD}) for USB operation	USB configured, USB regulator enabled	4.35	-	5.25	V
V _{USB_3.3}		USB configured, USB regulator bypassed	3.15	-	3.6	V
V _{USB_3}		USB configured, USB regulator bypassed ^[69]	2.85	-	3.6	V
IUSB_Configured	Device supply current in device	V _{DDD} = 5 V, F _{CPU} = 1.5 MHz	-	10	-	mA
_ 0	active mode, bus clock and IMO = 24 MHz	V _{DDD} = 3.3 V, F _{CPU} = 1.5 MHz	_	8	-	mA
IUSB_Suspended	Device supply current in device sleep mode	V _{DDD} = 5 V, connected to USB host, PICU configured to wake on USB resume signal	-	0.5	-	mA
		V _{DDD} = 5 V, disconnected from USB host	-	0.3	-	mA
		V _{DDD} = 3.3 V, connected to USB host, PICU configured to wake on USB resume signal	-	0.5	_	mA
		V _{DDD} = 3.3 V, disconnected from USB host	_	0.3	_	mA
Notes						

67. Based on device characterization (Not production tested).

69. Rise/fall time matching (TR) not guaranteed, see Table 11-15 on page 82.

^{68.} Refer to ISO 11898 specification for details.

11.8 PSoC System Resources

Specifications are valid for –40 °C \leq T_A \leq 105 °C and T_J \leq 120 °C, except where noted. Specifications are valid for 1.71 V to 5.5 V, except where noted.

11.8.1 POR with Brown Out

For brown out detect in regulated mode, V_{DDD} and V_{DDA} must be \geq 2.0 V. Brown out detect is not available in externally regulated mode.

Table 11-67. Precise Low-Voltage Reset (PRES) with Brown Out DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
PRESR	Rising trip voltage	Factory trim	1.64	_	1.68	V
PRESF	Falling trip voltage		1.62	—	1.66	V

Table 11-68. Power On Reset (POR) with Brown Out AC Specifications^[78]

Parameter	Description	Conditions	Min	Тур	Max	Units
PRES_TR ^[79]	Response time		-	-	0.5	μs
	V _{DDD} /V _{DDA} droop rate	Sleep mode	-	5	-	V/sec

11.8.2 Voltage Monitors

Table 11-69. Voltage Monitors DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
LVI	Trip voltage					
	LVI_A/D_SEL[3:0] = 0000b		1.68	1.73	1.77	V
	LVI_A/D_SEL[3:0] = 0001b		1.89	1.95	2.01	V
	LVI_A/D_SEL[3:0] = 0010b		2.14	2.20	2.27	V
	LVI_A/D_SEL[3:0] = 0011b		2.38	2.45	2.53	V
	LVI_A/D_SEL[3:0] = 0100b		2.62	2.71	2.79	V
	LVI_A/D_SEL[3:0] = 0101b		2.87	2.95	3.04	V
	LVI_A/D_SEL[3:0] = 0110b		3.11	3.21	3.31	V
	LVI_A/D_SEL[3:0] = 0111b		3.35	3.46	3.56	V
	LVI_A/D_SEL[3:0] = 1000b		3.59	3.70	3.81	V
	LVI_A/D_SEL[3:0] = 1001b		3.84	3.95	4.07	V
	LVI_A/D_SEL[3:0] = 1010b		4.08	4.20	4.33	V
	LVI_A/D_SEL[3:0] = 1011b		4.32	4.45	4.59	V
	LVI_A/D_SEL[3:0] = 1100b		4.56	4.70	4.84	V
	LVI_A/D_SEL[3:0] = 1101b		4.83	4.98	5.13	V
	LVI_A/D_SEL[3:0] = 1110b		5.05	5.21	5.37	V
	LVI_A/D_SEL[3:0] = 1111b		5.30	5.47	5.63	V
HVI	Trip voltage		5.57	5.75	5.92	V

Table 11-70. Voltage Monitors AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
LVI_tr ^[79]	Response time		-	Ι	1	μs

Notes

78. Based on device characterization (Not production tested).
 79. This value is calculated, not measured.