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What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade
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Figure 2-4. 100-pin TQFP Part Pinout

Table 2-1.  VDDIO and Port Pin Associations

VDDIO Port Pins

VDDIO0 P0[7:0], P4[7:0], P12[3:2]

VDDIO1 P1[7:0], P5[7:0], P12[7:6]

VDDIO2 P2[7:0], P6[7:0], P12[5:4], P15[5:4]

VDDIO3 P3[7:0], P12[1:0], P15[3:0]

VDDD P15[7:6] (USB D+, D-)

TQFP

(TRACEDATA[1] , GPIO) P2[5]
(TRACEDATA[2] , GPIO) P2[6]
(TRACEDATA[3] , GPIO) P2[7]

(I2C0 : SCL, SIO) P12[4]

(I2C0 : SDA, SIO) P12[5]
( GPIO) P6[4]

( GPIO) P6[5]
( GPIO) P6[6]

( GPIO) P6[7]

VSSB
IND
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VBAT

VSSD
XRES

( GPIO) P5[0]
( GPIO) P5[1]

( GPIO) P5[2]

( GPIO) P5[3]
( TMS, SWDIO, GPIO) P1[0]

( TCK, SWDCK, GPIO) P1[1]

(Configurable XRES , GPIO) P1[2]
( TDO, SWV, GPIO) P1[3]

( TDI , GPIO) P1[4]
( NTRST, GPIO) P1[5]
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P0[3] ( GPIO, OPAMP0-/EXTREF0)

P0[2] ( GPIO, OPAMP 0+/SAR1 EXTREF)

P0[1] ( GPIO, OPAMP 0OUT )

P0[0] ( GPIO, OPAMP 2OUT )
P4[1] ( GPIO)

P4[0] ( GPIO)
P12[3] (SIO)
P12[2] (SIO)
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NC
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P15[3] ( GPIO, KHZ XTAL: XI)
P15[2] ( GPIO, KHZ XTAL: XO)
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P12[0] (SIO, I2C1 : SCL)

P3[7] ( GPIO, OPAMP 3OUT )

P3[6] ( GPIO, OPAMP 1OUT )
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Note
6. Pins are Do Not Use (DNU) on devices without USB. The pin must be left floating.
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Figure 6-1. Clocking Subsystem

6.1.1  Internal Oscillators 

Figure 6-1 shows that there are two internal oscillators. They can 
be routed directly or divided. The direct routes may not have a 
50% duty cycle. Divided clocks have a 50% duty cycle.

6.1.1.1 Internal Main Oscillator

In most designs the IMO is the only clock source required, due 
to its ±1% accuracy. The IMO operates with no external 
components and outputs a stable clock. A factory trim for each 
frequency range is stored in the device. With the factory trim, 
tolerance varies from ±1% at 3 MHz, up to ±7% at 74 MHz. The 
IMO, in conjunction with the PLL, allows generation of CPU and 
system clocks up to the device's maximum frequency (see 
Phase-Locked Loop) 

The IMO provides clock outputs at 3, 6, 12, 24, 48, and 74 MHz.

6.1.1.2 Clock Doubler

The clock doubler outputs a clock at twice the frequency of the 
input clock. The doubler works for input frequency ranges of 6 to 
24 MHz (providing 12 to 48 MHz at the output). It can be 
configured to use a clock from the IMO, MHzECO, or the DSI 
(external pin). The doubler is typically used to clock the USB.

6.1.1.3 Phase-Locked Loop

The PLL allows low frequency, high accuracy clocks to be 
multiplied to higher frequencies. This is a tradeoff between 
higher clock frequency and accuracy and, higher power 
consumption and increased startup time. 

The PLL block provides a mechanism for generating clock 
frequencies based upon a variety of input sources. The PLL 

outputs clock frequencies in the range of 24 to 80 MHz. Its input 
and feedback dividers supply 4032 discrete ratios to create 
almost any desired system clock frequency. The accuracy of the 
PLL output depends on the accuracy of the PLL input source. 
The most common PLL use is to multiply the IMO clock at 3 MHz, 
where it is most accurate, to generate the CPU and system 
clocks up to the device’s maximum frequency.

The PLL achieves phase lock within 250 µs (verified by bit 
setting). It can be configured to use a clock from the IMO, 
MHzECO or DSI (external pin). The PLL clock source can be 
used until lock is complete and signaled with a lock bit. The lock 
signal can be routed through the DSI to generate an interrupt. 
Disable the PLL before entering low power modes.

6.1.1.4 Internal Low Speed Oscillator

The ILO provides clock frequencies for low power consumption, 
including the watchdog timer, and sleep timer. The ILO 
generates up to three different clocks: 1 kHz, 33 kHz, and 
100 kHz. 

The 1 kHz clock (CLK1K) is typically used for a background 
‘heartbeat’ timer. This clock inherently lends itself to low power 
supervisory operations such as the watchdog timer and long 
sleep intervals using the central timewheel (CTW).

The central timewheel is a 1 kHz, free running, 13-bit counter 
clocked by the ILO. The central timewheel is always enabled 
except in hibernate mode and when the CPU is stopped during 
debug on chip mode. It can be used to generate periodic 
interrupts for timing purposes or to wake the system from a low 
power mode. Firmware can reset the central timewheel. 
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6.2.1  Power Modes

PSoC 5LP devices have four different power modes, as shown 
in Table 6-2 and Table 6-3. The power modes allow a design to 
easily provide required functionality and processing power while 
simultaneously minimizing power consumption and maximizing 
battery life in low power and portable devices. 

PSoC 5LP power modes, in order of decreasing power 
consumption are: 

 Active

 Alternate Active

 Sleep 

 Hibernate

Active is the main processing mode. Its functionality is 
configurable. Each power controllable subsystem is enabled or 
disabled by using separate power configuration template 
registers. In alternate active mode, fewer subsystems are 
enabled, reducing power. In sleep mode most resources are 
disabled regardless of the template settings. Sleep mode is 
optimized to provide timed sleep intervals and Real Time Clock 
functionality. The lowest power mode is hibernate, which retains 
register and SRAM state, but no clocks, and allows wakeup only 
from I/O pins. Figure 6-5 illustrates the allowable transitions 
between power modes. Sleep and hibernate modes should not 
be entered until all VDDIO supplies are at valid voltage levels.

Table 6-2.  Power Modes

Power Modes Description Entry Condition Wakeup Source Active Clocks  Regulator

Active Primary mode of operation, 
all peripherals available 
(programmable)

Wakeup, reset, 
manual register 
entry 

Any interrupt Any (programmable) All regulators available. 
Digital and analog 
regulators can be disabled 
if external regulation used.

Alternate 
Active

Similar to Active mode, and is 
typically configured to have 
fewer peripherals active to 
reduce power. One possible 
configuration is to use the 
UDBs for processing, with the 
CPU turned off

Manual register 
entry

Any interrupt Any (programmable) All regulators available. 
Digital and analog 
regulators can be disabled 
if external regulation used.

Sleep All subsystems automatically 
disabled 

Manual register 
entry

Comparator, 
PICU, I2C, RTC, 
CTW, LVD

ILO/kHzECO Both digital and analog 
regulators buzzed. 
Digital and analog 
regulators can be disabled 
if external regulation used.

Hibernate All subsystems automatically 
disabled 
Lowest power consuming 
mode with all peripherals and 
internal regulators disabled, 
except hibernate regulator is 
enabled 
Configuration and memory 
contents retained

Manual register 
entry 

PICU Only hibernate regulator 
active.

Table 6-3.  Power Modes Wakeup Time and Power Consumption

Sleep 
Modes

Wakeup 
Time

Current 
(Typ)

Code 
Execution

Digital 
Resources

Analog 
Resources

Clock Sources 
Available Wakeup Sources Reset 

Sources

Active  – 3.1 mA[8] Yes All All All – All

Alternate 
Active 

 – – User 
defined

All All All – All

Sleep
<25 µs 2 µA No I2C Comparator ILO/kHzECO Comparator, 

PICU, I2C, RTC, 
CTW, LVD

XRES, LVD, 
WDR

Hibernate <200 µs 300 nA No None None None PICU XRES

Note
8. Bus clock off. Execute from CPU instruction buffer at 6 MHz. See Table 11-2 on page 67.
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6.4.1  Drive Modes

Each GPIO and SIO pin is individually configurable into one of 
the eight drive modes listed in Table 6-6. Three configuration bits 
are used for each pin (DM[2:0]) and set in the PRTxDM[2:0] 
registers. Figure 6-12 depicts a simplified pin view based on 
each of the eight drive modes. Table 6-6 shows the I/O pin’s drive 
state based on the port data register value or digital array signal 

if bypass mode is selected. Note that the actual I/O pin voltage 
is determined by a combination of the selected drive mode and 
the load at the pin. For example, if a GPIO pin is configured for 
resistive pull up mode and driven high while the pin is floating, 
the voltage measured at the pin is a high logic state. If the same 
GPIO pin is externally tied to ground then the voltage 
unmeasured at the pin is a low logic state.

Figure 6-12. Drive Mode

Table 6-6.  Drive Modes

Diagram Drive Mode PRTxDM2 PRTxDM1 PRTxDM0 PRTxDR = 1 PRTxDR = 0

0 High-impedance analog 0 0 0 High Z High Z

1 High-impedance digital 0 0 1 High Z High Z

2 Resistive pull-up[10] 0 1 0 Res High (5K) Strong Low

3 Resistive pull-down[10] 0 1 1 Strong High Res Low (5K)

4 Open drain, drives low 1 0 0 High Z Strong Low

5 Open drain, drive high 1 0 1 Strong High High Z

6 Strong drive 1 1 0 Strong High Strong Low

7 Resistive pull up and pull down[10] 1 1 1 Res High (5K) Res Low (5K)

Out
In

Pin
Out
In

Pin
Out
In

Pin Out
In

Pin

Out
In

Pin
Out
In

Pin
Out
In

Pin Out
In

Pin

0. High Impedance
    Analog

1. High Impedance
    Digital

2. Resistive Pull-Up 3. Resistive Pull-Down

4. Open Drain,
    Drives Low

5. Open Drain,
    Drives High

6. Strong Drive 7. Resistive Pull-Up
    and Pull-Down

VDD VDD

VDD VDD VDD

An An An An

AnAnAnAn

The ‘Out’ connection is driven from either the Digital System (when the Digital Output terminal is connected) or the Data Register 
(when HW connection is disabled). 
The ‘In’ connection drives the Pin State register, and the Digital System if the Digital Input terminal is enabled and connected. 
The ‘An’ connection connects to the Analog System.

Note
10. Resistive pull up and pull down are not available with SIO in regulated output mode.
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6.4.13  SIO as Comparator

This section applies only to SIO pins. The adjustable input level 
feature of the SIOs as explained in the Adjustable Input Level 
section can be used to construct a comparator. The threshold for 
the comparator is provided by the SIO's reference generator. The 
reference generator has the option to set the analog signal 
routed through the analog global line as threshold for the 
comparator. Note that a pair of SIO pins share the same 
threshold.

The digital input path in Figure 6-10 on page 34 illustrates this 
functionality. In the figure, ‘Reference level’ is the analog signal 
routed through the analog global. The hysteresis feature can 
also be enabled for the input buffer of the SIO, which increases 
noise immunity for the comparator.

6.4.14  Hot Swap

This section applies only to SIO pins. SIO pins support ‘hot swap’ 
capability to plug into an application without loading the signals 
that are connected to the SIO pins even when no power is 
applied to the PSoC device. This allows the unpowered PSoC to 
maintain a high impedance load to the external device while also 
preventing the PSoC from being powered through a SIO pin’s 
protection diode.

Powering the device up or down while connected to an 
operational I2C bus may cause transient states on the SIO pins. 
The overall I2C bus design should take this into account.

6.4.15  Over Voltage Tolerance

All I/O pins provide an over voltage tolerance feature at any 
operating VDD. 
 There are no current limitations for the SIO pins as they present 

a high impedance load to the external circuit.
 The GPIO pins must be limited to 100 µA using a current limiting 

resistor. GPIO pins clamp the pin voltage to approximately one 
diode above the VDDIO supply.

 In case of a GPIO pin configured for analog input/output, the 
analog voltage on the pin must not exceed the VDDIO supply 
voltage to which the GPIO belongs.

A common application for this feature is connection to a bus such 
as I2C where different devices are running from different supply 
voltages. In the I2C case, the PSoC chip is configured into the 
Open Drain, Drives Low mode for the SIO pin. This allows an 
external pull up to pull the I2C bus voltage above the PSoC pin 
supply. For example, the PSoC chip could operate at 1.8 V, and 
an external device could run from 5 V. Note that the SIO pin’s 
VIH and VIL levels are determined by the associated VDDIO 
supply pin. 

The SIO pin must be in one of the following modes: 0 (high 
impedance analog), 1 (high impedance digital), or 4 (open drain 
drives low). See Figure 6-12 for details. Absolute maximum 
ratings for the device must be observed for all I/O pins. 

6.4.16  Reset Configuration

While reset is active all I/Os are reset to and held in the High 
Impedance Analog state. After reset is released, the state can be 
reprogrammed on a port-by-port basis to pull down or pull up. To 
ensure correct reset operation, the port reset configuration data 
is stored in special nonvolatile registers. The stored reset data is 
automatically transferred to the port reset configuration registers 
at reset release.

6.4.17  Low Power Functionality

In all low power modes the I/O pins retain their state until the part 
is awakened and changed or reset. To awaken the part, use a 
pin interrupt, because the port interrupt logic continues to 
function in all low power modes.

6.4.18  Special Pin Functionality

Some pins on the device include additional special functionality 
in addition to their GPIO or SIO functionality. The specific special 
function pins are listed in “Pinouts” on page 6. The special 
features are:

 Digital
 4 to 25 MHz crystal oscillator
 32.768 kHz crystal oscillator
 Wake from sleep on I2C address match. Any pin can be used 

for I2C if wake from sleep is not required.
 JTAG interface pins
 SWD interface pins
 SWV interface pins
 TRACEPORT interface pins
 External reset

 Analog
 Opamp inputs and outputs
 High current IDAC outputs
 External reference inputs

6.4.19  JTAG Boundary Scan

The device supports standard JTAG boundary scan chains on all 
pins for board level test.

7.  Digital Subsystem

The digital programmable system creates application specific 
combinations of both standard and advanced digital peripherals 
and custom logic functions. These peripherals and logic are then 
interconnected to each other and to any pin on the device, 
providing a high level of design flexibility and IP security.

The features of the digital programmable system are outlined 
here to provide an overview of capabilities and architecture. You 
do not need to interact directly with the programmable digital 
system at the hardware and register level. PSoC Creator 
provides a high level schematic capture graphical interface to 
automatically place and route resources similar to PLDs. 

The main components of the digital programmable system are:

 Universal Digital Blocks (UDB) - These form the core 
functionality of the digital programmable system. UDBs are a 
collection of uncommitted logic (PLD) and structural logic 
(Datapath) optimized to create all common embedded 
peripherals and customized functionality that are application or 
design specific.

 Universal Digital Block array - UDB blocks are arrayed within 
a matrix of programmable interconnect. The UDB array 
structure is homogeneous and allows for flexible mapping of 
digital functions onto the array. The array supports extensive 
and flexible routing interconnects between UDBs and the 
Digital System Interconnect.
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 Digital System Interconnect (DSI) - Digital signals from 
Universal Digital Blocks (UDBs), fixed function peripherals, I/O 
pins, interrupts, DMA, and other system core signals are 
attached to the Digital System Interconnect to implement full 
featured device connectivity. The DSI allows any digital function 
to any pin or other feature routability when used with the 
Universal Digital Block array.

Figure 7-1. CY8C56LP Digital Programmable Architecture

7.1  Example Peripherals

The flexibility of the CY8C56LP family’s Universal Digital Blocks 
(UDBs) and Analog Blocks allow the user to create a wide range 
of components (peripherals). The most common peripherals 
were built and characterized by Cypress and are shown in the 
PSoC Creator component catalog, however, users may also 
create their own custom components using PSoC Creator. Using 
PSoC Creator, users may also create their own components for 
reuse within their organization, for example sensor interfaces, 
proprietary algorithms, and display interfaces.

The number of components available through PSoC Creator is 
too numerous to list in the datasheet, and the list is always 
growing. An example of a component available for use in 
CY8C56LP family, but, not explicitly called out in this datasheet 
is the UART component.

7.1.1  Example Digital Components

The following is a sample of the digital components available in 
PSoC Creator for the CY8C56LP family. The exact amount of 
hardware resources (UDBs, routing, RAM, flash) used by a 
component varies with the features selected in PSoC Creator for 
the component. 

 Communications
 I2C 
 UART 
 SPI

 Functions
 EMIF
 PWMs

 Timers
 Counters

 Logic 
 NOT
 OR
 XOR
 AND

7.1.2  Example Analog Components

The following is a sample of the analog components available in 
PSoC Creator for the CY8C56LP family. The exact amount of 
hardware resources (SC/CT blocks, routing, RAM, flash) used 
by a component varies with the features selected in PSoC 
Creator for the component. 

 Amplifiers
 TIA
 PGA
 opamp

 ADCs
 Delta-Sigma
 Successive Approximation (SAR)

 DACs
 Current
 Voltage
 PWM

 Comparators

Mixers

7.1.3  Example System Function Components

The following is a sample of the system function components 
available in PSoC Creator for the CY8C56LP family. The exact 
amount of hardware resources (UDBs, DFB taps, SC/CT blocks, 
routing, RAM, flash) used by a component varies with the 
features selected in PSoC Creator for the component. 

 CapSense

 LCD Drive

 LCD Control

 Filters

7.1.4  Designing with PSoC Creator

7.1.4.1 More Than a Typical IDE

A successful design tool allows for the rapid development and 
deployment of both simple and complex designs. It reduces or 
eliminates any learning curve. It makes the integration of a new 
design into the production stream straightforward. 

PSoC Creator is that design tool. 

PSoC Creator is a full featured Integrated Development 
Environment (IDE) for hardware and software design. It is 
optimized specifically for PSoC devices and combines a modern, 
powerful software development platform with a sophisticated 
graphical design tool. This unique combination of tools makes 
PSoC Creator the most flexible embedded design platform 
available.
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7.3  UDB Array Description

Figure 7-7 shows an example of a 16 UDB array. In addition to 
the array core, there are a DSI routing interfaces at the top and 
bottom of the array. Other interfaces that are not explicitly shown 
include the system interfaces for bus and clock distribution. The 
UDB array includes multiple horizontal and vertical routing 
channels each comprised of 96 wires. The wire connections to 
UDBs, at horizontal/vertical intersection and at the DSI interface 
are highly permutable providing efficient automatic routing in 
PSoC Creator. Additionally the routing allows wire by wire 
segmentation along the vertical and horizontal routing to further 
increase routing flexibility and capability.

Figure 7-7. Digital System Interface Structure

7.3.1  UDB Array Programmable Resources

Figure 7-8 shows an example of how functions are mapped into 
a bank of 16 UDBs. The primary programmable resources of the 
UDB are two PLDs, one datapath and one status/control register. 
These resources are allocated independently, because they 
have independently selectable clocks, and therefore unused 
blocks are allocated to other unrelated functions.

An example of this is the 8-bit Timer in the upper left corner of 
the array. This function only requires one datapath in the UDB, 
and therefore the PLD resources may be allocated to another 
function. A function such as a Quadrature Decoder may require 
more PLD logic than one UDB can supply and in this case can 

utilize the unused PLD blocks in the 8-bit Timer UDB. 
Programmable resources in the UDB array are generally 
homogeneous so functions can be mapped to arbitrary 
boundaries in the array.

Figure 7-8. Function Mapping Example in a Bank of UDBs

7.4  DSI Routing Interface Description

The DSI routing interface is a continuation of the horizontal and 
vertical routing channels at the top and bottom of the UDB array 
core. It provides general purpose programmable routing 
between device peripherals, including UDBs, I/Os, analog 
peripherals, interrupts, DMA and fixed function peripherals.

Figure 7-9 illustrates the concept of the digital system 
interconnect, which connects the UDB array routing matrix with 
other device peripherals. Any digital core or fixed function 
peripheral that needs programmable routing is connected to this 
interface.

Signals in this category include:

 Interrupt requests from all digital peripherals in the system.

 DMA requests from all digital peripherals in the system.

 Digital peripheral data signals that need flexible routing to I/Os.

 Digital peripheral data signals that need connections to UDBs.

 Connections to the interrupt and DMA controllers.

 Connection to I/O pins.

 Connection to analog system digital signals.
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Figure 7-18. I2C Complete Transfer Timing

7.8.1  External Electrical Connections 

As Figure 7-19 shows, the I2C bus requires external pull-up
resistors (RP). These resistors are primarily determined by the
supply voltage, bus speed, and bus capacitance. For detailed
information on how to calculate the optimum pull-up resistor
value for your design, we recommend using the UM10204
I2C-bus specification and user manual Rev 6, or newer, available
from the NXP website at www.nxp.com.

Figure 7-19. Connection of Devices to the I2C Bus

For most designs, the default values in Table 7-2 will provide
excellent performance without any calculations. The default
values were chosen to use standard resistor values between the
minimum and maximum limits. The values in Table 7-2 work for
designs with 1.8 V to 5.0V VDD, less than 200-pF bus capaci-
tance (CB), up to 25 µA of total input leakage (IIL), up to 0.4 V
output voltage level (VOL), and a max VIH of 0.7 * VDD. Standard
Mode and Fast Mode can use either GPIO or SIO PSoC pins.
Fast Mode Plus requires use of SIO pins to meet the VOL spec
at 20 mA. Calculation of custom pull-up resistor values is
required; if your design does not meet the default assumptions,
you use series resistors (RS) to limit injected noise, or you need
to maximize the resistor value for low power consumption.

Calculation of the ideal pull-up resistor value involves finding a
value between the limits set by three equations detailed in the
NXP I2C specification. These equations are:

Equation 1:

Equation 2:

Equation 3:

Equation parameters:

VDD = Nominal supply voltage for I2C bus

VOL = Maximum output low voltage of bus devices. 

IOL= Low-level output current from I2C specification

TR = Rise Time of bus from I2C specification

CB = Capacitance of each bus line including pins and PCB traces

VIH = Minimum high-level input voltage of all bus devices

VNH = Minimum high-level input noise margin from I2C specifi-
cation

IIH = Total input leakage current of all devices on the bus

The supply voltage (VDD) limits the minimum pull-up resistor
value due to bus devices maximum low output voltage (VOL)
specifications. Lower pull-up resistance increases current
though the pins and can, therefore, exceed the spec conditions
of VOH. Equation 1 is derived using Ohm's law to determine the
minimum resistance that will still meet the VOL specification at
3 mA for standard and fast modes, and 20 mA for fast mode plus
at the given VDD.

Equation 2 determines the maximum pull-up resistance due to
bus capacitance. Total bus capacitance is comprised of all pin,
wire, and trace capacitance on the bus. The higher the bus
capacitance, the lower the pull-up resistance required to meet
the specified bus speeds rise time due to RC delays. Choosing
a pull-up resistance higher than allowed can result in failing
timing requirements resulting in communication errors. Most
designs with five or less I2C devices and up to 20 centimeters of
bus trace length have less than 100 pF of bus capacitance.

A secondary effect that limits the maximum pull-up resistor value
is total bus leakage calculated in Equation 3. The primary source
of leakage is I/O pins connected to the bus. If leakage is too high,
the pull-ups will have difficulty maintaining an acceptable VIH
level causing communication errors. Most designs with five or
less I2C devices on the bus have less than 10 µA of total leakage
current.

SDA

SCL 1 - 7
8 9 1 - 7 8 9 1 - 7 8 9

START 
Condition

ADDRESS R/W ACK DATA ACK DATA ACK
STOP 

Condition

Table 7-2.  Recommended default Pull-up Resistor Values

RP Units

Standard Mode – 100 kbps 4.7 k, 5% Ω

Fast Mode – 400 kbps 1.74 k, 1% Ω

Fast Mode Plus – 1 Mbps 620, 5% Ω

RPMIN VDD max  VOL– max   IOL min  =

RPMAX TR max  0.8473 CB max =

RPMAX VDD min  VIH min – VNH min  IIH max +=

www.nxp.com
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Figure 11-11. Efficiency vs VBAT, LBOOST = 4.7 µH [33] Figure 11-12. Efficiency vs VBAT, LBOOST = 10 µH [33] 

Figure 11-13. Efficiency vs VBAT, LBOOST = 22 µH [33] Figure 11-14. VRIPPLE vs VBAT [33] 
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Note
33. Typical example. Actual values may vary depending on external component selection, PCB layout, and other design parameters. 
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Figure 11-15. GPIO Output High Voltage and Current Figure 11-16. GPIO Output Low Voltage and Current 

Note
36. Based on device characterization (Not production tested).

Table 11-9.  GPIO AC Specifications[36]

Parameter Description Conditions Min Typ Max Units

TriseF Rise time in Fast Strong Mode 3.3 V VDDIO Cload = 25 pF – – 6 ns

TfallF Fall time in Fast Strong Mode 3.3 V VDDIO Cload = 25 pF – – 6 ns

TriseS Rise time in Slow Strong Mode 3.3 V VDDIO Cload = 25 pF – – 60 ns

TfallS Fall time in Slow Strong Mode 3.3 V VDDIO Cload = 25 pF – – 60 ns

Fgpioout

GPIO output operating frequency

2.7 V < VDDIO < 5.5 V, fast strong drive mode 90/10% VDDIO into 25 pF – – 33 MHz

1.71 V < VDDIO < 2.7 V, fast strong drive mode 90/10% VDDIO into 25 pF – – 20 MHz

3.3 V < VDDIO < 5.5 V, slow strong drive mode 90/10% VDDIO into 25 pF – – 7 MHz

1.71 V < VDDIO < 3.3 V, slow strong drive mode 90/10% VDDIO into 25 pF – – 3.5 MHz

Fgpioin GPIO input operating frequency 90/10% VDDIO – – 33 MHz
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11.5.2  Delta-Sigma ADC

Unless otherwise specified, operating conditions are:

Operation in continuous sample mode

 fclk = 6.144 MHz 

 Reference = 1.024 V internal reference bypassed on P3.2 or P0.3

 Unless otherwise specified, all charts and graphs show typical values

Table 11-20.  12-bit Delta-sigma ADC DC Specifications

Parameter Description Conditions Min Typ Max Units

Resolution 8 – 12 bits

Number of channels, single ended – – No. of 
GPIO

–

Number of channels, differential Differential pair is formed using a 
pair of GPIOs. – – No. of 

GPIO/2 –

Monotonic Yes – – – –

Ge Gain error
Buffered, buffer gain = 1, 
Range = ±1.024 V, 25 °C – – ±0.4 %

Gd Gain drift Buffered, buffer gain = 1, 
Range = ±1.024 V

– – 50 ppm/°
C

Vos Input offset voltage

Buffered, 16-bit mode, full voltage 
range – – ±0.2 mV

Buffered, 16-bit mode, 
VDDA = 1.8 V ±5%, 25 °C – – ±0.1 mV

TCVos Temperature coefficient, input offset 
voltage

Buffer gain = 1, 12-bit, 
Range = ±1.024 V

– – 1 µV/°C

Input voltage range, single ended[41] VSSA – VDDA V

Input voltage range, differential unbuf-
fered[41] VSSA – VDDA V

Input voltage range, differential, 
buffered[41] VSSA – VDDA – 1 V

INL12 Integral non linearity[41] Range = ±1.024 V, unbuffered – – ±1 LSB

DNL12 Differential non linearity[41] Range = ±1.024 V, unbuffered – – ±1 LSB

INL8 Integral non linearity[41] Range = ±1.024 V, unbuffered – – ±1 LSB

DNL8 Differential non linearity[41] Range = ±1.024 V, unbuffered – – ±1 LSB

Rin_Buff ADC input resistance Input buffer used 10 – – M

Rin_ADC12 ADC input resistance Input buffer bypassed, 12 bit, Range 
= ±1.024 V

– 148[42] – k

Rin_ExtRef ADC external reference input resistance – 70[42, 43] – k

Vextref
ADC external reference input voltage, see 
also internal reference in Voltage 
Reference on page 88

Pins P0[3], P3[2] 0.9 – 1.3 V

Current Consumption

IDD_12 Current consumption, 12 bit[41] 192 ksps, unbuffered – – 1.4 mA

IBUFF Buffer current consumption[41] – – 2.5 mA

Notes
41. Based on device characterization (not production tested).
42. By using switched capacitors at the ADC input an effective input resistance is created. Holding the gain and number of bits constant, the resistance is proportional to 

the inverse of the clock frequency. This value is calculated, not measured. For more information see the Technical Reference Manual.
43. Recommend an external reference device with an output impedance <100 Ω, for example, the LM185/285/385 family. A 1 µF capacitor is recommended. For more 

information, see AN61290 - PSoC® 3 and PSoC 5LP Hardware Design Considerations.

http://www.cypress.com/?rID=43337
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11.5.4  SAR ADC

Table 11-24.  SAR ADC DC Specifications

Parameter Description Conditions Min Typ Max Units

Resolution – – 12 bits

Number of channels – single-ended – – No of 
GPIO

Number of channels – differential Differential pair is formed using a 
pair of neighboring GPIO.

– – No of 
GPIO/2

Monotonicity[47] Yes – –

Ge Gain error[48] External reference – – ±0.1 %

VOS Input offset voltage – – ±2 mV

IDD Current consumption[47] – – 1 mA

Input voltage range – single-ended[47] VSSA – VDDA V

Input voltage range – differential[47] VSSA – VDDA V

PSRR Power supply rejection ratio[47] 70 – – dB

CMRR Common mode rejection ratio 70 – – dB

INL Integral non linearity[47] VDDA 1.71 to 5.5 V, 1 Msps, VREF 
1 to 5.5 V, bypassed at ExtRef pin

– – +2/–1.5 LSB

VDDA 2.0 to 3.6 V, 1 Msps, VREF 2 
to VDDA, bypassed at ExtRef pin

– – ±1.2 LSB

VDDA 1.71 to 5.5 V, 500 ksps, VREF 
1 to 5.5 V, bypassed at ExtRef pin

– – ±1.3 LSB

DNL Differential non linearity[47] VDDA 1.71 to 5.5 V, 1 Msps, VREF 
1 to 5.5 V, bypassed at ExtRef pin

– – +2/–1 LSB

VDDA 2.0 to 3.6 V, 1 Msps, VREF 2 
to VDDA, bypassed at ExtRef pin
No missing codes

– – 1.7/–0.99 LSB

VDDA 1.71 to 5.5 V, 500 ksps, VREF 
1 to 5.5 V, bypassed at ExtRef pin
No missing codes

– – +2/–0.99 LSB

RIN Input resistance[47] – 180 – kΩ

Notes
47. Based on device characterization (Not production tested).
48. For total analog system Idd < 5 mA, depending on package used. With higher total analog system currents it is recommended that the SAR ADC be used in differential 

mode.



PSoC® 5LP: CY8C56LP Family
Datasheet

Document Number: 001-84935 Rev. *L Page 91 of 131

Figure 11-39. SAR ADC Noise Histogram, 100 ksps, Internal 
Reference No Bypass

Figure 11-40. SAR ADC Noise Histogram, 1 msps, Internal 
Reference Bypassed

Figure 11-41. SAR ADC Noise Histogram, 1 msps, External 
Reference

Table 11-25.  SAR ADC AC Specifications[49]

Parameter Description Conditions Min Typ Max Units

A_SAMP_1 Sample rate with external reference 
bypass cap

– – 1 Msps

A_SAMP_2 Sample rate with no bypass cap. 
Reference = VDD

– – 500 Ksps

A_SAMP_3 Sample rate with no bypass cap. 
Internal reference

– – 100 Ksps

Startup time – – 10 µs

SINAD Signal-to-noise ratio 68 – – dB

THD Total harmonic distortion – – 0.02 %
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Note
49. Based on device characterization (Not production tested).
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11.5.5  Analog Globals  

11.5.6  Comparator  

Table 11-26.  Analog Globals DC Specifications

Parameter Description Conditions Min Typ Max Units

Rppag
 

Resistance pin-to-pin through 
P2[4], AGL0, DSM INP, AGL1, 
P2[5][50]

VDDA = 3.0 V – 1500 2200 
VDDA = 1.71 V – 1200 1700 

Rppmuxbus
 

Resistance pin-to-pin through 
P2[3], amuxbusL, P2[4][50]

VDDA = 3.0 V – 700 1100 
VDDA = 1.71 V – 600 900 

Table 11-27.  Analog Globals AC Specifications

Parameter Description Conditions Min Typ Max Units

Inter-pair crosstalk for analog 
routes[51, 52]

106 – – dB

BWag Analog globals 3 db bandwidth[52] VDDA = 3.0 V, 25 °C – 26 – MHz

Notes
50. Based on device characterization (Not production tested).
51. This value is calculated, not measured.
52. Pin P6[4] to del-sig ADC input; calculated, not measured.
53. The recommended procedure for using a custom trim value for the on-chip comparators are found in the TRM.

Table 11-28.  Comparator DC Specifications[53]

Parameter Description Conditions Min Typ Max Units

VOS

Input offset voltage in fast mode Factory trim, VDDA > 2.7 V, 
VIN  0.5 V

– 10 mV

Input offset voltage in slow mode Factory trim, Vin  0.5 V – 9 mV

VOS
Input offset voltage in fast mode Custom trim – – 4 mV

Input offset voltage in slow mode[53] Custom trim – – 4 mV

VOS Input offset voltage in ultra low 
power mode

– ±12 – mV

TCVos Temperature coefficient, input offset 
voltage 

VCM = VDDA / 2, fast mode – 63 85 µV/°C

VCM = VDDA / 2, slow mode – 15 20

VHYST Hysteresis Hysteresis enable mode – 10 32 mV

VICM Input common mode voltage High current / fast mode VSSA – VDDA V

Low current / slow mode VSSA – VDDA V

Ultra low power mode VSSA – VDDA – 
1.15

V

CMRR Common mode rejection ratio – 50 – dB

ICMP High current mode/fast mode – – 400 µA

Low current mode/slow mode – – 100 µA

Ultra low power mode – 6 – µA

Table 11-29.  Comparator AC Specifications[53]

Parameter Description Conditions Min Typ Max Units

TRESP

Response time, high current mode 50 mV overdrive, measured 
pin-to-pin

– 75 110 ns

Response time, low current mode 50 mV overdrive, measured 
pin-to-pin

– 155 200 ns

Response time, ultra low power 
mode

50 mV overdrive, measured 
pin-to-pin

– 55 – µs
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DNL Differential nonlinearity Sink mode, range = 255 µA, 
Rload = 2.4 k, Cload = 15 pF

– ±0.3 ±1 LSB

Source mode, range = 255 µA, 
Rload = 2.4 k, Cload = 15 pF

– ±0.3 ±1 LSB

Source mode, range = 31.875 µA, 
Rload = 20 kΩ, Cload = 15 pF[55]

– ±0.2 ±1 LSB

Sink mode, range = 31.875 µA, 
Rload = 20 kΩ, Cload = 15 pF[55]

– ±0.2 ±1 LSB

Source mode, range = 2.0 4 mA, 
Rload = 600 Ω, Cload = 15 pF[55]

– ±0.2 ±1 LSB

Sink mode, range = 2.0 4 mA, 
Rload = 600 Ω, Cload = 15 pF[55]

– ±0.2 ±1 LSB

Vcompliance Dropout voltage, source or sink 
mode

Voltage headroom at max current, 
Rload to VDDA or Rload to VSSA, 
Vdiff from VDDA

1 – – V

IDD Operating current, code = 0 Slow mode, source mode, range = 
31.875 µA

– 44 100 µA

Slow mode, source mode, range = 
255 µA,

– 33 100 µA

Slow mode, source mode, range = 
2.04 mA

– 33 100 µA

Slow mode, sink mode, range = 
31.875 µA

– 36 100 µA

Slow mode, sink mode, range = 
255 µA

– 33 100 µA

Slow mode, sink mode, range = 
2.04 mA

– 33 100 µA

Fast mode, source mode, range = 
31.875 µA

– 310 500 µA

Fast mode, source mode, range = 
255 µA

– 305 500 µA

Fast mode, source mode, range = 
2.04 mA

– 305 500 µA

Fast mode, sink mode, range = 
31.875 µA

– 310 500 µA

Fast mode, sink mode, range = 
255 µA

– 300 500 µA

Fast mode, sink mode, range = 
2.04 mA

– 300 500 µA

Table 11-30.  IDAC DC Specifications (continued)

Parameter Description Conditions Min Typ Max Units

Note
55. Based on device characterization (Not production tested).
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11.5.8  Voltage Digital to Analog Converter (VDAC)

See the VDAC component datasheet in PSoC Creator for full electrical specifications and APIs.

Unless otherwise specified, all charts and graphs show typical values.

Figure 11-56. VDAC INL vs Input Code, 1 V Mode Figure 11-57. VDAC DNL vs Input Code, 1 V Mode

Table 11-32.  VDAC DC Specifications

Parameter Description Conditions Min Typ Max Units

Resolution – 8 – bits

INL1 Integral nonlinearity 1 V scale – ±2.1 ±2.5 LSB

INL4 Integral nonlinearity[57] 4 V scale – ±2.1 ±2.5 LSB

DNL1 Differential nonlinearity 1 V scale – ±0.3 ±1 LSB

DNL4 Differential nonlinearity[57] 4 V scale – ±0.3 ±1 LSB

Rout Output resistance 1 V scale – 4 – k

4 V scale – 16 – k

VOUT Output voltage range, code = 255 1 V scale – 1.02 – V

4 V scale, VDDA = 5 V – 4.08 – V

Monotonicity – – Yes –

VOS Zero scale error – 0 ±0.9 LSB

Eg Gain error 1 V scale – – ±2.5 %

4 V scale – – ±2.5 %

TC_Eg Temperature coefficient, gain error 1 V scale – – 0.03 %FSR / °C

4 V scale – – 0.03 %FSR / °C

IDD Operating current[57] Slow mode – – 100 µA

Fast mode – – 500 µA
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Note
57. Based on device characterization (Not production tested).



PSoC® 5LP: CY8C56LP Family
Datasheet

Document Number: 001-84935 Rev. *L Page 109 of 131

11.7.3  Nonvolatile Latches (NVL)

11.7.4  SRAM

Table 11-61.  NVL DC Specifications

Parameter Description Conditions Min Typ Max Units

Erase and program voltage VDDD pin 1.71 – 5.5 V

Table 11-62.  NVL AC Specifications

Parameter Description Conditions Min Typ Max Units

NVL endurance Programmed at 25 °C 1K – – program/
erase 
cycles

Programmed at 0 °C to 70 °C 100 – – program/
erase 
cycles

NVL data retention time Average ambient temp. TA ≤ 55 °C 20 – – years

Average ambient temp. TA ≤ 85 °C 10 – –

Ambient temp. TA ≤ 105 °C, 
≤ one year at TA ≥ 75 °C [73]

10 – –

Table 11-63.   SRAM DC Specifications

Parameter Description Conditions Min Typ Max Units

VSRAM SRAM retention voltage[74] 1.2 – – V

Table 11-64.   SRAM AC Specifications

Parameter Description Conditions Min Typ Max Units

FSRAM SRAM operating frequency DC – 80.01 MHz

Notes
73. Cypress provides a retention calculator to calculate the retention lifetime based on customers' individual temperature profiles for operation over the –40 °C to +105 °C 

ambient temperature range. Contact customercare@cypress.com.
74. Based on device characterization (Not production tested).
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11.8.3   Interrupt Controller

11.8.4  JTAG Interface 

Figure 11-74. JTAG Interface Timing

Table 11-71.  Interrupt Controller AC Specifications

Parameter Description Conditions Min Typ Max Units

Delay from interrupt signal input to ISR 
code execution from main line code[80]

– – 12 Tcy CPU

Delay from interrupt signal input to ISR 
code execution from ISR code 
(tail-chaining)[80]

– – 6 Tcy CPU

Table 11-72.  JTAG Interface AC Specifications[81]

Parameter Description Conditions Min Typ Max Units

f_TCK TCK frequency 3.3 V  VDDD  5 V – – 12[82] MHz

1.71 V  VDDD < 3.3 V – – 7[82] MHz

T_TDI_setup TDI setup before TCK high (T/10) – 5 – – ns

T_TMS_setup TMS setup before TCK high T/4 – –

T_TDI_hold TDI, TMS hold after TCK high T = 1/f_TCK max T/4 – –

T_TDO_valid TCK low to TDO valid T = 1/f_TCK max – – 2T/5

T_TDO_hold TDO hold after TCK high T = 1/f_TCK max T/4 – –

T_nTRST Minimum nTRST pulse width f_TCK = 2 MHz 8 – – ns

TDI

TCK

T_TDI_setup

TDO

(1/f_TCK)

T_TDI_hold

T_TDO_valid T_TDO_hold

TMS

T_TMS_setup T_TMS_hold

Notes
80. ARM Cortex-M3 NVIC spec. Visit www.arm.com for detailed documentation about the Cortex-M3 CPU.
81. Based on device characterization (Not production tested).
82. f_TCK must also be no more than 1/3 CPU clock frequency.

www.arm.com
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Figure 2.  WLCSP Package (5.192 × 5.940 × 0.6 mm)
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03/24/2015 Updated Features:
Added “Extended temperature parts: –40 to 105 °C” as indented under 
“Temperature range (ambient)” under “Operating characteristics”.

Updated System Integration:
Updated Power System:
Updated Boost Converter:
Updated entire section.

Updated Electrical Specifications:
Replaced “Specifications are valid for –40 °C ≤ TA ≤ 85 °C and TJ ≤ 100 °C, 
except where noted.” with “Specifications are valid for –40 °C ≤ TA ≤ 105 °C 
and TJ ≤ 120 °C, except where noted.” in all instances.
Updated Device Level Specifications:
Updated Table 11-2:
Added details of IDD parameter corresponding to “T = 105 °C”.
Updated Figure 11-3 and Figure 11-4.
Updated Power Regulators:
Updated Inductive Boost Regulator:
Updated Table 11-6:
Updated details of VBAT, IOUT, VOUT, RegLOAD, RegLINE parameters.
Removed VOUT: VBAT parameter and its details.
Removed Table “Inductive Boost Regulator AC Specifications”.
Updated Table 11-7:
Updated details of LBOOST, CBOOST parameters.
Added CBAT parameter and its details.
Added Figure 11-8, Figure 11-9, Figure 11-10, Figure 11-11, Figure 11-12, 
Figure 11-13, Figure 11-14.
Removed Figure “Efficiency vs IOUT VBOOST = 3.3 V, LBOOST = 10 μH”.
Removed Figure “Efficiency vs IOUT VBOOST = 3.3 V, LBOOST = 22 μH”.
Updated Analog Peripherals:
Updated Opamp:
Updated Figure 11-26.
Updated Voltage Reference:
Updated Table 11-23:
Added details of VREF parameter corresponding to condition “105 °C”.
Updated Figure 11-34.
Updated Current Digital-to-analog Converter (IDAC):
Updated Figure 11-46, Figure 11-47, Figure 11-48, Figure 11-49, Figure 11-50, 
Figure 11-51.
Updated Voltage Digital to Analog Converter (VDAC):
Updated Figure 11-58, Figure 11-59, Figure 11-60, Figure 11-61, Figure 11-62, 
Figure 11-63.
Updated Programmable Gain Amplifier:
Updated Table 11-39:
Added details of BW1 parameter corresponding to condition “TA ≤ 105 °C”.
Updated Figure 11-69.
Updated Temperature Sensor:
Updated Table 11-40:
Replaced 85 °C with 105 °C.
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