

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	67MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART, USB
Peripherals	CapSense, DMA, LCD, POR, PWM, WDT
Number of I/O	62
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 2x12b; D/A 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-TQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c5668axi-lp013

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2-1. V_{DDIO} and Port Pin Associations

VDDIO	Port Pins
VDDIO0	P0[7:0], P4[7:0], P12[3:2]
VDDIO1	P1[7:0], P5[7:0], P12[7:6]
VDDIO2	P2[7:0], P6[7:0], P12[5:4], P15[5:4]
VDDIO3	P3[7:0], P12[1:0], P15[3:0]
VDDD	P15[7:6] (USB D+, D-)

Note 6. Pins are Do Not Use (DNU) on devices without USB. The pin must be left floating.

Figure 6-1. Clocking Subsystem

6.1.1 Internal Oscillators

Figure 6-1 shows that there are two internal oscillators. They can be routed directly or divided. The direct routes may not have a 50% duty cycle. Divided clocks have a 50% duty cycle.

6.1.1.1 Internal Main Oscillator

In most designs the IMO is the only clock source required, due to its $\pm 1\%$ accuracy. The IMO operates with no external components and outputs a stable clock. A factory trim for each frequency range is stored in the device. With the factory trim, tolerance varies from $\pm 1\%$ at 3 MHz, up to $\pm 7\%$ at 74 MHz. The IMO, in conjunction with the PLL, allows generation of CPU and system clocks up to the device's maximum frequency (see Phase-Locked Loop)

The IMO provides clock outputs at 3, 6, 12, 24, 48, and 74 MHz.

6.1.1.2 Clock Doubler

The clock doubler outputs a clock at twice the frequency of the input clock. The doubler works for input frequency ranges of 6 to 24 MHz (providing 12 to 48 MHz at the output). It can be configured to use a clock from the IMO, MHzECO, or the DSI (external pin). The doubler is typically used to clock the USB.

6.1.1.3 Phase-Locked Loop

The PLL allows low frequency, high accuracy clocks to be multiplied to higher frequencies. This is a tradeoff between higher clock frequency and accuracy and, higher power consumption and increased startup time.

The PLL block provides a mechanism for generating clock frequencies based upon a variety of input sources. The PLL

outputs clock frequencies in the range of 24 to 80 MHz. Its input and feedback dividers supply 4032 discrete ratios to create almost any desired system clock frequency. The accuracy of the PLL output depends on the accuracy of the PLL input source. The most common PLL use is to multiply the IMO clock at 3 MHz, where it is most accurate, to generate the CPU and system clocks up to the device's maximum frequency.

The PLL achieves phase lock within 250 µs (verified by bit setting). It can be configured to use a clock from the IMO, MHZECO or DSI (external pin). The PLL clock source can be used until lock is complete and signaled with a lock bit. The lock signal can be routed through the DSI to generate an interrupt. Disable the PLL before entering low power modes.

6.1.1.4 Internal Low Speed Oscillator

The ILO provides clock frequencies for low power consumption, including the watchdog timer, and sleep timer. The ILO generates up to three different clocks: 1 kHz, 33 kHz, and 100 kHz.

The 1 kHz clock (CLK1K) is typically used for a background 'heartbeat' timer. This clock inherently lends itself to low power supervisory operations such as the watchdog timer and long sleep intervals using the central timewheel (CTW).

The central timewheel is a 1 kHz, free running, 13-bit counter clocked by the ILO. The central timewheel is always enabled except in hibernate mode and when the CPU is stopped during debug on chip mode. It can be used to generate periodic interrupts for timing purposes or to wake the system from a low power mode. Firmware can reset the central timewheel.

6.2.1 Power Modes

PSoC 5LP devices have four different power modes, as shown in Table 6-2 and Table 6-3. The power modes allow a design to easily provide required functionality and processing power while simultaneously minimizing power consumption and maximizing battery life in low power and portable devices.

PSoC 5LP power modes, in order of decreasing power consumption are:

- Active
- Alternate Active
- Sleep
- Hibernate

Table 6-2. Power Modes

Active is the main processing mode. Its functionality is configurable. Each power controllable subsystem is enabled or disabled by using separate power configuration template registers. In alternate active mode, fewer subsystems are enabled, reducing power. In sleep mode most resources are disabled regardless of the template settings. Sleep mode is optimized to provide timed sleep intervals and Real Time Clock functionality. The lowest power mode is hibernate, which retains register and SRAM state, but no clocks, and allows wakeup only from I/O pins. Figure 6-5 illustrates the allowable transitions between power modes. Sleep and hibernate modes should not be entered until all VDDIO supplies are at valid voltage levels.

Power Modes	Description	Entry Condition	Wakeup Source	Active Clocks	Regulator
Active	Primary mode of operation, all peripherals available (programmable)	Wakeup, reset, manual register entry	Any interrupt	Any (programmable)	All regulators available. Digital and analog regulators can be disabled if external regulation used.
Alternate Active	Similar to Active mode, and is typically configured to have fewer peripherals active to reduce power. One possible configuration is to use the UDBs for processing, with the CPU turned off	Manual register entry	Any interrupt	Any (programmable)	All regulators available. Digital and analog regulators can be disabled if external regulation used.
Sleep	All subsystems automatically disabled	Manual register entry	Comparator, PICU, I ² C, RTC, CTW, LVD	ILO/kHzECO	Both digital and analog regulators buzzed. Digital and analog regulators can be disabled if external regulation used.
Hibernate	All subsystems automatically disabled Lowest power consuming mode with all peripherals and internal regulators disabled, except hibernate regulator is enabled Configuration and memory contents retained	Manual register entry	PICU		Only hibernate regulator active.

Table 6-3. Power Modes Wakeup Time and Power Consumption

Sleep Modes	Wakeup Time	Current (Typ)	Code Execution	Digital Resources	Analog Resources	Clock Sources Available	Wakeup Sources	Reset Sources
Active	-	3.1 mA ^[8]	Yes	All	All	All	-	All
Alternate Active	_	-	User defined	All	All	All	_	All
Sleep	<25 µs	2 µA	No	l ² C	Comparator	ILO/kHzECO	Comparator, PICU, I ² C, RTC, CTW, LVD	XRES, LVD, WDR
Hibernate	<200 µs	300 nA	No	None	None	None	PICU	XRES

Note

8. Bus clock off. Execute from CPU instruction buffer at 6 MHz. See Table 11-2 on page 67.

6.4.1 Drive Modes

Each GPIO and SIO pin is individually configurable into one of the eight drive modes listed in Table 6-6. Three configuration bits are used for each pin (DM[2:0]) and set in the PRTxDM[2:0] registers. Figure 6-12 depicts a simplified pin view based on each of the eight drive modes. Table 6-6 shows the I/O pin's drive state based on the port data register value or digital array signal

if bypass mode is selected. Note that the actual I/O pin voltage is determined by a combination of the selected drive mode and the load at the pin. For example, if a GPIO pin is configured for resistive pull up mode and driven high while the pin is floating, the voltage measured at the pin is a high logic state. If the same GPIO pin is externally tied to ground then the voltage unmeasured at the pin is a low logic state.

Figure 6-12. Drive Mode

The 'Out' connection is driven from either the Digital System (when the Digital Output terminal is connected) or the Data Register (when HW connection is disabled). The 'In' connection drives the Pin State register, and the Digital System if the Digital Input terminal is enabled and connected. The 'An' connection connects to the Analog System.

Table 6-6. Drive Modes

Diagram	Drive Mode	PRTxDM2	PRTxDM1	PRTxDM0	PRTxDR = 1	PRTxDR = 0
0	High-impedance analog	0	0	0	High Z	High Z
1	High-impedance digital	0	0	1	High Z	High Z
2	Resistive pull-up ^[10]	0	1	0	Res High (5K)	Strong Low
3	Resistive pull-down ^[10]	0	1	1	Strong High	Res Low (5K)
4	Open drain, drives low	1	0	0	High Z	Strong Low
5	Open drain, drive high	1	0	1	Strong High	High Z
6	Strong drive	1	1	0	Strong High	Strong Low
7	Resistive pull up and pull down ^[10]	1	1	1	Res High (5K)	Res Low (5K)

6.4.13 SIO as Comparator

This section applies only to SIO pins. The adjustable input level feature of the SIOs as explained in the Adjustable Input Level section can be used to construct a comparator. The threshold for the comparator is provided by the SIO's reference generator. The reference generator has the option to set the analog signal routed through the analog global line as threshold for the comparator. Note that a pair of SIO pins share the same threshold.

The digital input path in Figure 6-10 on page 34 illustrates this functionality. In the figure, 'Reference level' is the analog signal routed through the analog global. The hysteresis feature can also be enabled for the input buffer of the SIO, which increases noise immunity for the comparator.

6.4.14 Hot Swap

This section applies only to SIO pins. SIO pins support 'hot swap' capability to plug into an application without loading the signals that are connected to the SIO pins even when no power is applied to the PSoC device. This allows the unpowered PSoC to maintain a high impedance load to the external device while also preventing the PSoC from being powered through a SIO pin's protection diode.

Powering the device up or down while connected to an operational I2C bus may cause transient states on the SIO pins. The overall I2C bus design should take this into account.

6.4.15 Over Voltage Tolerance

All I/O pins provide an over voltage tolerance feature at any operating VDD.

- There are no current limitations for the SIO pins as they present a high impedance load to the external circuit.
- The GPIO pins must be limited to 100 µA using a current limiting resistor. GPIO pins clamp the pin voltage to approximately one diode above the VDDIO supply.
- In case of a GPIO pin configured for analog input/output, the analog voltage on the pin must not exceed the VDDIO supply voltage to which the GPIO belongs.

A common application for this feature is connection to a bus such as I^2C where different devices are running from different supply voltages. In the I^2C case, the PSoC chip is configured into the Open Drain, Drives Low mode for the SIO pin. This allows an external pull up to pull the I^2C bus voltage above the PSoC pin supply. For example, the PSoC chip could operate at 1.8 V, and an external device could run from 5 V. Note that the SIO pin's VIH and VIL levels are determined by the associated VDDIO supply pin.

The SIO pin must be in one of the following modes: 0 (high impedance analog), 1 (high impedance digital), or 4 (open drain drives low). See Figure 6-12 for details. Absolute maximum ratings for the device must be observed for all I/O pins.

6.4.16 Reset Configuration

While reset is active all I/Os are reset to and held in the High Impedance Analog state. After reset is released, the state can be reprogrammed on a port-by-port basis to pull down or pull up. To ensure correct reset operation, the port reset configuration data is stored in special nonvolatile registers. The stored reset data is automatically transferred to the port reset configuration registers at reset release.

6.4.17 Low Power Functionality

In all low power modes the I/O pins retain their state until the part is awakened and changed or reset. To awaken the part, use a pin interrupt, because the port interrupt logic continues to function in all low power modes.

6.4.18 Special Pin Functionality

Some pins on the device include additional special functionality in addition to their GPIO or SIO functionality. The specific special function pins are listed in "Pinouts" on page 6. The special features are:

- Digital
 - 4 to 25 MHz crystal oscillator
 - □ 32.768 kHz crystal oscillator
 - \blacksquare Wake from sleep on I²C address match. Any pin can be used for I²C if wake from sleep is not required.
 - JTAG interface pins
 - □ SWD interface pins
 - □ SWV interface pins
 - TRACEPORT interface pins
 - External reset
- Analog
 - Deamp inputs and outputs
 - □ High current IDAC outputs
 - External reference inputs

6.4.19 JTAG Boundary Scan

The device supports standard JTAG boundary scan chains on all pins for board level test.

7. Digital Subsystem

The digital programmable system creates application specific combinations of both standard and advanced digital peripherals and custom logic functions. These peripherals and logic are then interconnected to each other and to any pin on the device, providing a high level of design flexibility and IP security.

The features of the digital programmable system are outlined here to provide an overview of capabilities and architecture. You do not need to interact directly with the programmable digital system at the hardware and register level. PSoC Creator provides a high level schematic capture graphical interface to automatically place and route resources similar to PLDs.

The main components of the digital programmable system are:

- Universal Digital Blocks (UDB) These form the core functionality of the digital programmable system. UDBs are a collection of uncommitted logic (PLD) and structural logic (Datapath) optimized to create all common embedded peripherals and customized functionality that are application or design specific.
- Universal Digital Block array UDB blocks are arrayed within a matrix of programmable interconnect. The UDB array structure is homogeneous and allows for flexible mapping of digital functions onto the array. The array supports extensive and flexible routing interconnects between UDBs and the Digital System Interconnect.

Digital System Interconnect (DSI) - Digital signals from Universal Digital Blocks (UDBs), fixed function peripherals, I/O pins, interrupts, DMA, and other system core signals are attached to the Digital System Interconnect to implement full featured device connectivity. The DSI allows any digital function to any pin or other feature routability when used with the Universal Digital Block array.

Figure 7-1. CY8C56LP Digital Programmable Architecture

7.1 Example Peripherals

The flexibility of the CY8C56LP family's Universal Digital Blocks (UDBs) and Analog Blocks allow the user to create a wide range of components (peripherals). The most common peripherals were built and characterized by Cypress and are shown in the PSoC Creator component catalog, however, users may also create their own custom components using PSoC Creator. Using PSoC Creator, users may also create their own components for reuse within their organization, for example sensor interfaces, proprietary algorithms, and display interfaces.

The number of components available through PSoC Creator is too numerous to list in the datasheet, and the list is always growing. An example of a component available for use in CY8C56LP family, but, not explicitly called out in this datasheet is the UART component.

7.1.1 Example Digital Components

The following is a sample of the digital components available in PSoC Creator for the CY8C56LP family. The exact amount of hardware resources (UDBs, routing, RAM, flash) used by a component varies with the features selected in PSoC Creator for the component.

- Communications
 - □ I²C
 - D UART
 - SPI
- Functions
 - EMIF
 - PWMs

- Timers
- Counters
- Logic
 - NOT
 - ם OR
 - XOR
 - AND

7.1.2 Example Analog Components

The following is a sample of the analog components available in PSoC Creator for the CY8C56LP family. The exact amount of hardware resources (SC/CT blocks, routing, RAM, flash) used by a component varies with the features selected in PSoC Creator for the component.

- Amplifiers
- □ TIA
- □ PGA
- □ opamp
- ADCs
- Delta-Sigma
- Successive Approximation (SAR)
- DACs
 - Current
 - Voltage
 - □ PWM
- Comparators
- Mixers

7.1.3 Example System Function Components

The following is a sample of the system function components available in PSoC Creator for the CY8C56LP family. The exact amount of hardware resources (UDBs, DFB taps, SC/CT blocks, routing, RAM, flash) used by a component varies with the features selected in PSoC Creator for the component.

- CapSense
- LCD Drive
- LCD Control
- Filters
- 7.1.4 Designing with PSoC Creator

7.1.4.1 More Than a Typical IDE

A successful design tool allows for the rapid development and deployment of both simple and complex designs. It reduces or eliminates any learning curve. It makes the integration of a new design into the production stream straightforward.

PSoC Creator is that design tool.

PSoC Creator is a full featured Integrated Development Environment (IDE) for hardware and software design. It is optimized specifically for PSoC devices and combines a modern, powerful software development platform with a sophisticated graphical design tool. This unique combination of tools makes PSoC Creator the most flexible embedded design platform available.

7.3 UDB Array Description

Figure 7-7 shows an example of a 16 UDB array. In addition to the array core, there are a DSI routing interfaces at the top and bottom of the array. Other interfaces that are not explicitly shown include the system interfaces for bus and clock distribution. The UDB array includes multiple horizontal and vertical routing channels each comprised of 96 wires. The wire connections to UDBs, at horizontal/vertical intersection and at the DSI interface are highly permutable providing efficient automatic routing in PSoC Creator. Additionally the routing allows wire by wire segmentation along the vertical and horizontal routing to further increase routing flexibility and capability.

Figure 7-7. Digital System Interface Structure

7.3.1 UDB Array Programmable Resources

Figure 7-8 shows an example of how functions are mapped into a bank of 16 UDBs. The primary programmable resources of the UDB are two PLDs, one datapath and one status/control register. These resources are allocated independently, because they have independently selectable clocks, and therefore unused blocks are allocated to other unrelated functions.

An example of this is the 8-bit Timer in the upper left corner of the array. This function only requires one datapath in the UDB, and therefore the PLD resources may be allocated to another function. A function such as a Quadrature Decoder may require more PLD logic than one UDB can supply and in this case can utilize the unused PLD blocks in the 8-bit Timer UDB. Programmable resources in the UDB array are generally homogeneous so functions can be mapped to arbitrary boundaries in the array.

Figure 7-8. Function Mapping Example in a Bank of UDBs

7.4 DSI Routing Interface Description

The DSI routing interface is a continuation of the horizontal and vertical routing channels at the top and bottom of the UDB array core. It provides general purpose programmable routing between device peripherals, including UDBs, I/Os, analog peripherals, interrupts, DMA and fixed function peripherals.

Figure 7-9 illustrates the concept of the digital system interconnect, which connects the UDB array routing matrix with other device peripherals. Any digital core or fixed function peripheral that needs programmable routing is connected to this interface.

Signals in this category include:

- Interrupt requests from all digital peripherals in the system.
- DMA requests from all digital peripherals in the system.
- Digital peripheral data signals that need flexible routing to I/Os.
- Digital peripheral data signals that need connections to UDBs.
- Connections to the interrupt and DMA controllers.
- Connection to I/O pins.
- Connection to analog system digital signals.

7.8.1 External Electrical Connections

As Figure 7-19 shows, the I^2C bus requires external pull-up resistors (R_P). These resistors are primarily determined by the supply voltage, bus speed, and bus capacitance. For detailed information on how to calculate the optimum pull-up resistor value for your design, we recommend using the UM10204 I2C-bus specification and user manual Rev 6, or newer, available from the NXP website at www.nxp.com.

Figure 7-19. Connection of Devices to the I²C Bus

For most designs, the default values in Table 7-2 will provide excellent performance without any calculations. The default values were chosen to use standard resistor values between the minimum and maximum limits. The values in Table 7-2 work for designs with 1.8 V to 5.0V V_{DD} , less than 200-pF bus capacitance (C_B), up to 25 μ A of total input leakage (I_{IL}), up to 0.4 V output voltage level (V_{OL}), and a max V_{IH} of 0.7 * V_{DD}. Standard Mode and Fast Mode can use either GPIO or SIO PSoC pins. Fast Mode Plus requires use of SIO pins to meet the V_{OL} spec at 20 mA. Calculation of custom pull-up resistor values is required; if your design does not meet the default assumptions, you use series resistors (RS) to limit injected noise, or you need to maximize the resistor value for low power consumption.

Table 7-2. Recommended default Pull-up Resistor Values

	R _P	Units
Standard Mode – 100 kbps	4.7 k, 5%	Ω
Fast Mode – 400 kbps	1.74 k, 1%	Ω
Fast Mode Plus – 1 Mbps	620, 5%	Ω

Calculation of the ideal pull-up resistor value involves finding a value between the limits set by three equations detailed in the NXP I²C specification. These equations are:

Equation 1:

$$R_{PMIN} = (V_{DD}(max) - V_{OL}(max))/(I_{OL}(min))$$

Equation 2:

$$R_{PMAX} = T_R(max)/0.8473 \times C_R(max)$$

Equation 3:

$$R_{PMAX} = V_{DD}(min) - V_{IH}(min) + V_{NH}(min) / I_{IH}(max)$$

Equation parameters:

 V_{DD} = Nominal supply voltage for I²C bus

V_{OL} = Maximum output low voltage of bus devices.

I_{OL}= Low-level output current from I²C specification

 T_R = Rise Time of bus from I²C specification

C_B = Capacitance of each bus line including pins and PCB traces

V_{IH} = Minimum high-level input voltage of all bus devices

 V_{NH} = Minimum high-level input noise margin from I^2C specification

IIH = Total input leakage current of all devices on the bus

The supply voltage (V_{DD}) limits the minimum pull-up resistor value due to bus devices maximum low output voltage (V_{OL}) specifications. Lower pull-up resistance increases current though the pins and can, therefore, exceed the spec conditions of V_{OH}. Equation 1 is derived using Ohm's law to determine the minimum resistance that will still meet the V_{OL} specification at 3 mA for standard and fast modes, and 20 mA for fast mode plus at the given V_{DD}.

Equation 2 determines the maximum pull-up resistance due to bus capacitance. Total bus capacitance is comprised of all pin, wire, and trace capacitance on the bus. The higher the bus capacitance, the lower the pull-up resistance required to meet the specified bus speeds rise time due to RC delays. Choosing a pull-up resistance higher than allowed can result in failing timing requirements resulting in communication errors. Most designs with five or less I^2C devices and up to 20 centimeters of bus trace length have less than 100 pF of bus capacitance.

A secondary effect that limits the maximum pull-up resistor value is total bus leakage calculated in Equation 3. The primary source of leakage is I/O pins connected to the bus. If leakage is too high, the pull-ups will have difficulty maintaining an acceptable V_{IH} level causing communication errors. Most designs with five or less I²C devices on the bus have less than 10 µA of total leakage current.

Figure 11-11. Efficiency vs V_{BAT}, L_{BOOST} = 4.7 μ H ^[33]

Figure 11-13. Efficiency vs V_{BAT}, L_{BOOST} = 22 μ H ^[33]

Figure 11-12. Efficiency vs V_{BAT} , L_{BOOST} = 10 μ H ^[33]

Figure 11-14. V_{RIPPLE} vs V_{BAT} ^[33]

Note

33. Typical example. Actual values may vary depending on external component selection, PCB layout, and other design parameters.

Figure 11-15. GPIO Output High Voltage and Current

Table 11-9. GPIO AC Specifications^[36]

Parameter	Description	Conditions	Min	Тур	Max	Units
TriseF	Rise time in Fast Strong Mode	3.3 V V _{DDIO} Cload = 25 pF	_	-	6	ns
TfallF	Fall time in Fast Strong Mode	$3.3 \text{ V V}_{\text{DDIO}} \text{ Cload} = 25 \text{ pF}$	-	-	6	ns
TriseS	Rise time in Slow Strong Mode	$3.3 \text{ V V}_{\text{DDIO}} \text{ Cload} = 25 \text{ pF}$	_	-	60	ns
TfallS	Fall time in Slow Strong Mode	$3.3 \text{ V V}_{\text{DDIO}} \text{ Cload} = 25 \text{ pF}$	_	-	60	ns
	GPIO output operating frequency					
	2.7 V \leq V _{DDIO} \leq 5.5 V, fast strong drive mode	90/10% V _{DDIO} into 25 pF	_	-	33	MHz
Fgpioout	1.71 V \leq V _{DDIO} < 2.7 V, fast strong drive mode	90/10% V _{DDIO} into 25 pF	_	-	20	MHz
	$3.3 \text{ V} \leq \text{V}_{\text{DDIO}} \leq 5.5 \text{ V}$, slow strong drive mode	90/10% V _{DDIO} into 25 pF	-	-	7	MHz
	1.71 V \leq V _{DDIO} < 3.3 V, slow strong drive mode	90/10% V _{DDIO} into 25 pF	_	-	3.5	MHz
Fgpioin	GPIO input operating frequency	90/10% V _{DDIO}	-	-	33	MHz

Figure 11-16. GPIO Output Low Voltage and Current

11.5.2 Delta-Sigma ADC

Unless otherwise specified, operating conditions are:

- Operation in continuous sample mode
- fclk = 6.144 MHz
- Reference = 1.024 V internal reference bypassed on P3.2 or P0.3
- Unless otherwise specified, all charts and graphs show typical values

Table 11-20. 12-bit Delta-sigma ADC DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Resolution		8	-	12	bits
	Number of channels, single ended		-	-	No. of GPIO	-
	Number of channels, differential	Differential pair is formed using a pair of GPIOs.	-	-	No. of GPIO/2	-
	Monotonic	Yes	_	-	-	_
Ge	Gain error	Buffered, buffer gain = 1, Range = ±1.024 V, 25 °C	-	-	±0.4	%
Gd	Gain drift	Buffered, buffer gain = 1, Range = ±1.024 V	-	-	50	ppm/° C
Voc	Input offset voltage	Buffered, 16-bit mode, full voltage range	-	-	±0.2	mV
VUS	Input offset voltage	Buffered, 16-bit mode, V _{DDA} = 1.8 V ±5%, 25 °C	-	-	±0.1	mV
TCVos	Temperature coefficient, input offset voltage	Buffer gain = 1, 12-bit, Range = ±1.024 V	-	-	1	µV/°C
	Input voltage range, single ended ^[41]		V_{SSA}	-	V _{DDA}	V
	Input voltage range, differential unbuf- fered ^[41]		V_{SSA}	-	V _{DDA}	V
	Input voltage range, differential, buffered ^[41]		V_{SSA}	-	V _{DDA} – 1	V
INL12	Integral non linearity ^[41]	Range = ±1.024 V, unbuffered	_	-	±1	LSB
DNL12	Differential non linearity ^[41]	Range = ±1.024 V, unbuffered	_	-	±1	LSB
INL8	Integral non linearity ^[41]	Range = ±1.024 V, unbuffered	-	-	±1	LSB
DNL8	Differential non linearity ^[41]	Range = ±1.024 V, unbuffered	-	-	±1	LSB
Rin_Buff	ADC input resistance	Input buffer used	10	-	-	MΩ
Rin_ADC12	ADC input resistance	Input buffer bypassed, 12 bit, Range = ±1.024 V	_	148 ^[42]	-	kΩ
Rin_ExtRef	ADC external reference input resistance		_	70 ^[42, 43]	-	kΩ
Vextref	ADC external reference input voltage, see also internal reference in Voltage Reference on page 88	Pins P0[3], P3[2]	0.9	-	1.3	V
Current Cor	sumption					
I _{DD_12}	Current consumption, 12 bit ^[41]	192 ksps, unbuffered	-	-	1.4	mA
IBUFF	Buffer current consumption ^[41]		-	-	2.5	mA

Notes

42. By using switched capacitors at the ADC input an effective input resistance is created. Holding the gain and number of bits constant, the resistance is proportional to

^{41.} Based on device characterization (not production tested).

 ^{42.} By damped and the factor in particulated, not measured. For more information see the Technical Reference Manual.
 43. Recommend an external reference device with an output impedance <100 Ω, for example, the LM185/285/385 family. A 1 µF capacitor is recommended. For more information, see AN61290 - PSoC® 3 and PSoC 5LP Hardware Design Considerations.

11.5.4 SAR ADC

Table 11-24. SAR ADC DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Resolution		_	_	12	bits
	Number of channels – single-ended		_	-	No of GPIO	
	Number of channels – differential	Differential pair is formed using a pair of neighboring GPIO.	_	_	No of GPIO/2	
	Monotonicity ^[47]		Yes	-	-	
Ge	Gain error ^[48]	External reference	-	_	±0.1	%
V _{OS}	Input offset voltage		-	-	±2	mV
I _{DD}	Current consumption ^[47]		-	-	1	mA
	Input voltage range – single-ended ^[47]		V _{SSA}	-	V _{DDA}	V
	Input voltage range – differential ^[47]		V _{SSA}	-	V _{DDA}	V
PSRR	Power supply rejection ratio ^[47]		70	-	-	dB
CMRR	Common mode rejection ratio		70	_	-	dB
INL	Integral non linearity ^[47]	V _{DDA} 1.71 to 5.5 V, 1 Msps, V _{REF} 1 to 5.5 V, bypassed at ExtRef pin	_	-	+2/–1.5	LSB
		V _{DDA} 2.0 to 3.6 V, 1 Msps, V _{REF} 2 to V _{DDA, bypassed at ExtRef pin}	_	-	±1.2	LSB
		V _{DDA} 1.71 to 5.5 V, 500 ksps, V _{REF} 1 to 5.5 V, bypassed at ExtRef pin	-	-	±1.3	LSB
DNL	Differential non linearity ^[47]	V _{DDA} 1.71 to 5.5 V, 1 Msps, V _{REF} 1 to 5.5 V, bypassed at ExtRef pin	_	-	+2/–1	LSB
		V_{DDA} 2.0 to 3.6 V, 1 Msps, V_{REF} 2 to $V_{DDA},$ bypassed at ExtRef pin No missing codes	-	_	1.7/-0.99	LSB
		V _{DDA} 1.71 to 5.5 V, 500 ksps, V _{REF} 1 to 5.5 V, bypassed at ExtRef pin No missing codes	_	_	+2/-0.99	LSB
R _{IN}	Input resistance ^[47]		-	180	-	kΩ

Notes
47. Based on device characterization (Not production tested).
48. For total analog system Idd < 5 mA, depending on package used. With higher total analog system currents it is recommended that the SAR ADC be used in differential mode.

Table 11-25. SAR ADC AC Specifications^[49]

Parameter	Description	Conditions	Min	Тур	Max	Units
A_SAMP_1	Sample rate with external reference bypass cap		_	_	1	Msps
A_SAMP_2	Sample rate with no bypass cap. Reference = V _{DD}		_	-	500	Ksps
A_SAMP_3	Sample rate with no bypass cap. Internal reference		_	-	100	Ksps
	Startup time		-	-	10	μs
SINAD	Signal-to-noise ratio		68	-	-	dB
THD	Total harmonic distortion		_	_	0.02	%

Figure 11-39. SAR ADC Noise Histogram, 100 ksps, Internal Reference No Bypass

Figure 11-41. SAR ADC Noise Histogram, 1 msps, External Reference

Figure 11-40. SAR ADC Noise Histogram, 1 msps, Internal Reference Bypassed

Note 49. Based on device characterization (Not production tested).

11.5.5 Analog Globals

Table 11-26. Analog Globals DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
Rppag	Resistance pin-to-pin through	V _{DDA} = 3.0 V	-	1500	2200	Ω
	P2[4], AGL0, DSM INP, AGL1, P2[5] ^[50]	V _{DDA} = 1.71 V	-	1200	1700	Ω
Rppmuxbus	Repmuxbus Resistance pin-to-pin through P2[3], amuxbusL, P2[4] ^[50]	V _{DDA} = 3.0 V	-	700	1100	Ω
		V _{DDA} = 1.71 V	-	600	900	Ω

Table 11-27. Analog Globals AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Inter-pair crosstalk for analog routes ^[51, 52]		106	Ι	-	dB
BWag	Analog globals 3 db bandwidth ^[52]	V _{DDA} = 3.0 V, 25 °C	-	26	-	MHz

11.5.6 Comparator

Table 11-28. Comparator DC Specifications^[53]

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{os}	Input offset voltage in fast mode	Factory trim, $V_{DDA} > 2.7 V$, $V_{IN} \ge 0.5 V$	-		10	mV
	Input offset voltage in slow mode	Factory trim, Vin $\ge 0.5 V$	-		9	mV
Maria	Input offset voltage in fast mode	Custom trim	-	-	4	mV
VOS	Input offset voltage in slow mode ^[53]	Custom trim	-	_	4	mV
V _{OS}	Input offset voltage in ultra low power mode		-	±12	-	mV
TCVos	Temperature coefficient, input offset	V _{CM} = V _{DDA} / 2, fast mode	-	63	85	μV/°C
	voltage	$V_{CM} = V_{DDA} / 2$, slow mode	_	15	20	
V _{HYST}	Hysteresis	Hysteresis enable mode	-	10	32	mV
V _{ICM}	Input common mode voltage	High current / fast mode	V _{SSA}	-	V _{DDA}	V
		Low current / slow mode	V _{SSA}	-	V _{DDA}	V
		Ultra low power mode	V_{SSA}	_	V _{DDA} – 1.15	V
CMRR	Common mode rejection ratio		-	50	-	dB
I _{CMP}	High current mode/fast mode		-	-	400	μA
	Low current mode/slow mode		-	-	100	μA
	Ultra low power mode		_	6	-	μA

Table 11-29. Comparator AC Specifications^[53]

Parameter	Description	Conditions	Min	Тур	Max	Units
T _{RESP}	Response time, high current mode	50 mV overdrive, measured pin-to-pin	-	75	110	ns
	Response time, low current mode	50 mV overdrive, measured pin-to-pin	-	155	200	ns
	Response time, ultra low power mode	50 mV overdrive, measured pin-to-pin	-	55	-	μs

Notes

52. Pin P6[4] to del-sig ADC input; calculated, not measured.
53. The recommended procedure for using a custom trim value for the on-chip comparators are found in the TRM.

^{50.} Based on device characterization (Not production tested).

^{51.} This value is calculated, not measured.

Table 11-30. IDAC DC Specifications (continued)

Parameter	Description	Conditions	Min	Тур	Max	Units
DNL	Differential nonlinearity	Sink mode, range = 255 μ A, Rload = 2.4 kΩ, Cload = 15 pF	_	±0.3	±1	LSB
		Source mode, range = 255 μ A, Rload = 2.4 k Ω , Cload = 15 pF	_	±0.3	±1	LSB
		Source mode, range = 31.875 μ A, Rload = 20 k Ω , Cload = 15 pF ^[55]	_	±0.2	±1	LSB
		Sink mode, range = 31.875 μ A, Rload = 20 k Ω , Cload = 15 pF ^[55]	_	±0.2	±1	LSB
		Source mode, range = 2.0 4 mA, Rload = 600 Ω , Cload = 15 pF ^[55]	_	±0.2	±1	LSB
		Sink mode, range = 2.0 4 mA, Rload = 600 Ω , Cload = 15 pF ^[55]	_	±0.2	±1	LSB
Vcompliance	Dropout voltage, source or sink mode	Voltage headroom at max current, Rload to V_{DDA} or Rload to $V_{SSA},$ Vdiff from V_{DDA}	1	-	-	V
I _{DD}	Operating current, code = 0	Slow mode, source mode, range = 31.875 μA	_	44	100	μA
		Slow mode, source mode, range = 255 μA,	_	33	100	μA
		Slow mode, source mode, range = 2.04 mA	_	33	100	μA
		Slow mode, sink mode, range = 31.875 μΑ	_	36	100	μA
		Slow mode, sink mode, range = 255 μA	-	33	100	μA
		Slow mode, sink mode, range = 2.04 mA	-	33	100	μA
		Fast mode, source mode, range = 31.875 μΑ	-	310	500	μA
		Fast mode, source mode, range = 255 μA	-	305	500	μA
		Fast mode, source mode, range = 2.04 mA	-	305	500	μA
		Fast mode, sink mode, range = 31.875 μΑ	-	310	500	μA
		Fast mode, sink mode, range = 255 μA	_	300	500	μA
		Fast mode, sink mode, range = 2.04 mA	-	300	500	μA

11.5.8 Voltage Digital to Analog Converter (VDAC)

See the VDAC component datasheet in PSoC Creator for full electrical specifications and APIs.

Unless otherwise specified, all charts and graphs show typical values.

Table 11-32. VDAC DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Resolution		_	8	-	bits
INL1	Integral nonlinearity	1 V scale	-	±2.1	±2.5	LSB
INL4	Integral nonlinearity ^[57]	4 V scale	-	±2.1	±2.5	LSB
DNL1	Differential nonlinearity	1 V scale	-	±0.3	±1	LSB
DNL4	Differential nonlinearity ^[57]	4 V scale	-	±0.3	±1	LSB
Rout	Output resistance	1 V scale	-	4	-	kΩ
		4 V scale	-	16	-	kΩ
V _{OUT}	Output voltage range, code = 255	1 V scale	-	1.02	-	V
		4 V scale, V _{DDA} = 5 V	-	4.08	-	V
	Monotonicity		_	_	Yes	_
V _{OS}	Zero scale error		_	0	±0.9	LSB
Eg	Gain error	1 V scale	-	-	±2.5	%
		4 V scale	_	_	±2.5	%
TC_Eg	Temperature coefficient, gain error	1 V scale	_	_	0.03	%FSR / °C
		4 V scale	-	-	0.03	%FSR/°C
I _{DD}	Operating current ^[57]	Slow mode	-	-	100	μA
		Fast mode	_	_	500	μA

Figure 11-56. VDAC INL vs Input Code, 1 V Mode

Figure 11-57. VDAC DNL vs Input Code, 1 V Mode

Note 57. Based on device characterization (Not production tested).

11.7.3 Nonvolatile Latches (NVL)

Table 11-61. NVL DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Erase and program voltage	V _{DDD} pin	1.71	-	5.5	V

Table 11-62. NVL AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	NVL endurance	Programmed at 25 °C	1K	-	-	program/ erase cycles
		Programmed at 0 °C to 70 °C	100	-	-	program/ erase cycles
	NVL data retention time	Average ambient temp. T _A ≤ 55 °C	20	-	-	years
		Average ambient temp. T _A ≤ 85 °C	10	-	-	
		Ambient temp. T _A ≤ 105 °C, ≤ one year at T _A ≥ 75 °C ^[73]	10	-	-	

11.7.4 SRAM

Table 11-63. SRAM DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{SRAM}	SRAM retention voltage ^[74]		1.2	-	_	V

Table 11-64. SRAM AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
F _{SRAM}	SRAM operating frequency		DC	_	80.01	MHz

 ^{73.} Cypress provides a retention calculator to calculate the retention lifetime based on customers' individual temperature profiles for operation over the -40 °C to +105 °C ambient temperature range. Contact customercare@cypress.com.
 74. Based on device characterization (Not production tested).

11.8.3 Interrupt Controller

Table 11-71. Interrupt Controller AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Delay from interrupt signal input to ISR code execution from main line code ^[80]		-	-	12	Tcy CPU
	Delay from interrupt signal input to ISR code execution from ISR code (tail-chaining) ^[80]		_	_	6	Tcy CPU

11.8.4 JTAG Interface

Figure 11-74. JTAG Interface Timing

Table 11-72. JTAG Interface AC Specifications^[81]

Parameter	Description	Conditions	Min	Тур	Max	Units
f_TCK	TCK frequency	$3.3 \text{ V} \leq \text{V}_{DDD} \leq 5 \text{ V}$	-	-	12 ^[82]	MHz
		$1.71 \text{ V} \le \text{V}_{\text{DDD}} < 3.3 \text{ V}$	-	-	7 ^[82]	MHz
T_TDI_setup	TDI setup before TCK high		(T/10)-5	-	-	ns
T_TMS_setup	TMS setup before TCK high		T/4	-	-	
T_TDI_hold	TDI, TMS hold after TCK high	T = 1/f_TCK max	T/4	_	-	
T_TDO_valid	TCK low to TDO valid	T = 1/f_TCK max	-	-	2T/5	
T_TDO_hold	TDO hold after TCK high	T = 1/f_TCK max	T/4	_	-	
T_nTRST	Minimum nTRST pulse width	f_TCK = 2 MHz	8	_	-	ns

Notes

^{80.} ARM Cortex-M3 NVIC spec. Visit www.arm.com for detailed documentation about the Cortex-M3 CPU.

Based on device characterization (Not production tested).
 f_TCK must also be no more than 1/3 CPU clock frequency.

NOTES:

1. REFERENCE JEDEC Publication 95: Design Guide 4.18

2. ALL DIMENSIONS ARE IN MILLIMETERS

001-88034 *B

Document History Page (continued)

Revision ECN Orig. of Date Submission Date Description of Change "H 4698847 AVER / MKEA / GJV 03/24/2015 Updated Features: Added "Extended temperature parts: -40 to 105 °C" as indented under "Temperature range (ambient)" under "Operating characteristics". Updated Boost Converter: Updated Boost Converter: Updated Beost Converter: Updated Electrical Specifications are valid for -40 °C 5 TA 5 85 °C and TJ 5 100 °C except where noted." with "Specifications are valid for -40 °C 5 TA 5 105 °C and TJ 5 120 °C, except where noted." in all instances. Updated Device Level Specifications: Updated Table 11-2: Added details of Upp parameter corresponding to "T = 105 °C". Updated Table 11-2: Updated Table 11-6: Updated Table 11-6: Updated Table 11-6: Updated Table 11-6: Updated Table 11-7: Updated Table 11-6: Updated details of V _{BAT} parameter and its details. Removed J _{QUT} : V _{BAT} parameter and its details. Removed Table 11-7: Updated Gaust of V _{BAT} parameters. Addeed Gaust of V _{BAT} parameters. Addeed Gaust of V _{BAT} parameters. Addeed Gaust and Is, Figure 11-0, Figure 11-11, Figure 11-12, Figure 11-13, Figure 11-14. Removed Table 11-7: Updated Gaust of V _{BAT} parameters. Addeed Gaust Parameter and its details. Addeed Gaust of V _{LEF} parameter corresponding to condition "105 °C". Updated Analog Peripherals: Updated Figure 11-26. Updated Figure 11-28. Figure 11-48. Figure 11-49. Figure 11-49. Figure 11-49. Figure 11-49. Figure 11-48. Figure 11-49. Figure 11-51. Updated Figure 11-53. Figure 11-40. Figure 11-49. Figur	Descriptio Document	n Title: PSo Number: 00	C [®] 5LP: CY 01-84935	8C56LP Family	y Datasheet Programmable System-on-Chip (PSoC [®])
"H 4698847 AVER / MKEA / GJV 03/24/2015 Updated Features: Added "Extended temperature parts: -40 to 105 °C" as indented under "Temperature range (ambient)" under "Operating characteristics". Updated System Integration: Updated Boost Converter: Updated Boost Converter: Updated Boost Converter: Updated Tester Specifications: Replaced "Specifications are valid for -40 °C ≤ T _A ≤ 85 °C and T _J ≤ 100 °C except where noted." with "Specifications: Updated Table 11-2: Updated Table 11-2: Updated Table 11-2: Updated Table 11-2: Updated Table 11-2: Updated Power Regulator: Updated Power Regulator: Updated Table 11-3: Updated Table 11-6: Updated Table 11-6: Updated Table 11-6: Updated Table 11-7: Updated Table 11-8; Figure 11-10, Figure 11-11, Figure 11-12, Figure 11-13, Figure 11-14, Figure 11-14, Figure 11-12, Figure 11-14; Figure 11-14, Figure 11-14, Figure 11-12, Figure 11-14; Figure 11-14, Figure 11-14, Figure 11-12, Figure 11-15, Updated Table 11-23: Added Jeals of Lapost a 3.3 V, LBOOST = 3.3 V, LBOOST = 22 µH°. Updated Table 11-23: Updated Table 11-24; Updated Table 11-26, Updated Table 11-26, Updated Table 11-27; Updated Table 11-28, Updated Table 11-28, Updated Table 11-28, Updated Table 11-28, Updated Table 11-29; Updated Figure 11-46, Figure 11-46, Figure 11-49, Figure 11-45, Figure 11-50, Figure	Revision	ECN	Orig. of Change	Submission Date	Description of Change
Updated System Integration: Updated Power System: Updated Power System: Updated entire section. Updated Electrical Specifications: Replaced "Specifications are valid for -40 °C ≤ T _A ≤ 85 °C and T _J ≤ 100 °C except where noted." with "Specifications are valid for -40 °C ≤ T _A ≤ 105 °C and T _J ≤ 120 °C, except where noted." in all instances. Updated Device Level Specifications: Updated Device Level Specifications: Updated Table 11-2: Added details of Ing. parameter corresponding to "T = 105 °C". Updated Table 11-4: Updated Inductive Boost Regulator: Updated Inductive Boost Regulator: Updated Dele 11-3 and Figure 11-4. Updated Dele 11-6: Updated Dele 11-7: Updated Table 11-6: Updated Table 11-7: Updated Table 11-7: Segret 11-13, Figure 11-10, Figure 11-11, Figure 11-12, Figure 11-13, Figure 11-14, Removed Figure 11-9, Figure 11-10, Figure 11-11, Figure 11-12, Figure 11-13, Figure 11-14, Removed Figure 11-9, Figure 11-10, Figure 11-11, Figure 11-12, How The Segret 11-13, Figure 11-14, Removed Figure 11-10, Figure 11-11, Figure 11-12, Figure 11-13, Figure 11-14, Removed Figure 11-14, Figure 11-10, Figure 11-14, Figure 11-12, How The Segret 11-12, Updated Opamp: Updated Opamp: Updated Figure 11-23, Added details of V _{EEP} parameter corresponding to condition "105 °C". Updated Figure 11-34, Updated Figure 11-34, Figure 11-43, Figure 11-44, Figure 11-44, Figure 11-45, Figure 11-45, Figure 11-46, Fig	*H	4698847	AVER / MKEA / GJV	03/24/2015	Updated Features: Added "Extended temperature parts: –40 to 105 °C" as indented under "Temperature range (ambient)" under "Operating characteristics".
Updated Electrical Specifications: Replaced "Specifications valid for -40 °C ≤ T_A ≤ 85 °C and T_J ≤ 100 °C except where noted." with "Specifications are valid for -40 °C ≤ T_A ≤ 105 °C and T_J ≤ 120 °C, except where noted." in all instances. Updated Device Level Specifications: Updated Table 11-2: Added details of IDD parameter corresponding to "T = 105 °C". Updated Table 11-2: Updated Table 11-3 Updated Table 11-6: Updated Table 11-6: Updated Table 11-6: Updated Table 11-6: Updated Table 11-6: Updated Table 11-7: Updated Table 11-7: Updated Table 11-7: Updated details of V _{BAT} -IQUT, V _{QUT} , Reg _{LOAD} , Reg _{LINE} parameters. Removed Table "Inductive Boost Regulators". Updated details of L _{BOOST} , C _{BOOST} parameters. Added C _{BAT} parameter and its details. Added Gipure 11-8, Figure 11-9, Figure 11-10, Figure 11-11, Figure 11-12, Figure 11-13, Figure 11-14. Removed Figure "Efficiency vs IQUT V _{BOOST} = 3.3 V, L _{BOOST} = 10 µH". Removed Figure "Efficiency vs IQUT V _{BOOST} = 3.3 V, L _{BOOST} = 22 µH". Updated Opamp: Updated Opamp: Updated Figure 11-26. Updated Figure 11-23: Added Opamp: Updated Figure 11-24. Updated Figure 11-24. Updated Figure 11-26. Updated Figure 11-34. Updated Figure 11-34. Updated Figure 11-34. Updated Figure 11-34. Updated Figure 11-35: Added details of V _{REF} parameter corresponding to condition "105 °C". Updated Figure 11-54. Updated Figure 11-54. Figure 11-57. Updated Figure 11-59. Figure 11-60. Figure 11-61, Figure 11-67. Updated Pigure 11-54. Updated Pigure 11-59. Figure 11-60. Updated Pigure 11-54. Updated Pigure 11-57. Updated Pigure 11-57. <b< td=""><td></td><td></td><td></td><td></td><td>Updated System Integration: Updated Power System: Updated Boost Converter: Updated entire section.</td></b<>					Updated System Integration: Updated Power System: Updated Boost Converter: Updated entire section.
Updated Current Digital-to-analog Converter (IDAC): Updated Figure 11-46, Figure 11-47, Figure 11-48, Figure 11-49, Figure 11-51. Updated Voltage Digital to Analog Converter (VDAC): Updated Figure 11-58, Figure 11-59, Figure 11-60, Figure 11-61, Figure 11-63. Updated Programmable Gain Amplifier: Updated Table 11-39: Added details of BW1 parameter corresponding to condition " $T_A \le 105$ °C".					Updated entire section. Updated Electrical Specifications: Replaced "Specifications are valid for -40 °C $\leq T_A \leq 85$ °C and $T_J \leq 100$ °C, except where noted." with "Specifications are valid for -40 °C $\leq T_A \leq 105$ °C and $T_J \leq 120$ °C, except where noted." in all instances. Updated Device Level Specifications: Updated Table 11-2: Added details of I _{DD} parameter corresponding to "T = 105 °C". Updated Figure 11-3 and Figure 11-4. Updated Power Regulators: Updated Inductive Boost Regulator: Updated details of V _{BAT} , I _{OUT} , V _{OUT} , Reg _{LOAD} , Reg _{LINE} parameters. Removed Table 11-6: Updated details of V _{BAT} , I _{OUT} , V _{OUT} , Reg _{LOAD} , Reg _{LINE} parameters. Removed Table 11-7: Updated details of L _{BOOST} , C _{BOOST} parameters. Added C _{BAT} parameter and its details. Added Figure 11-8, Figure 11-9, Figure 11-10, Figure 11-11, Figure 11-12, Figure 11-13, Figure 11-9, Figure 11-10, Figure 11-11, Figure 11-12, Figure 11-13, Figure 11-9, SIOUT V _{BOOST} = 3.3 V, L _{BOOST} = 10 µH". Removed Figure "Efficiency vs I _{OUT} V _{BOOST} = 3.3 V, L _{BOOST} = 22 µH". Updated Opamp: Updated Geale Reference: Updated Table 11-23: Added details of V _{REF} parameter corresponding to condition "105 °C". Updated Figure 11-34.
Updated Figure 11-58, Figure 11-60, Figure 11-61, Figure 11-6 Figure 11-63. Updated Programmable Gain Amplifier: Updated Table 11-39: Added details of BW1 parameter corresponding to condition "T _A ≤ 105 °C".					Updated Current Digital-to-analog Converter (IDAC): Updated Figure 11-46, Figure 11-47, Figure 11-48, Figure 11-49, Figure 11-50, Figure 11-51. Updated Voltage Digital to Analog Converter (VDAC):
Added details of BW1 parameter corresponding to condition " $T_A \le 105$ °C".					Updated Figure 11-58, Figure 11-59, Figure 11-60, Figure 11-61, Figure 11-62, Figure 11-63. Updated Programmable Gain Amplifier: Updated Table 11-39:
Updated Figure 11-69. Updated Temperature Sensor: Updated Table 11-40: Replaced 85 °C with 105 °C					Added details of BW1 parameter corresponding to condition " $T_A \le 105$ °C". Updated Figure 11-69. Updated Temperature Sensor: Updated Table 11-40: Replaced 85 °C with 105 °C