

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M3
Core Size	32-Bit Single-Core
Speed	80MHz
Connectivity	I ² C, LINbus, SPI, UART/USART, USB
Peripherals	CapSense, DMA, LCD, POR, PWM, WDT
Number of I/O	38
Program Memory Size	256КВ (256К х 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 5.5V
Data Converters	A/D 2x12b; D/A 4x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	68-VFQFN Exposed Pad
Supplier Device Package	68-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8c5688lti-lp086

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2-1. V_{DDIO} and Port Pin Associations

VDDIO	Port Pins
VDDIO0	P0[7:0], P4[7:0], P12[3:2]
VDDIO1	P1[7:0], P5[7:0], P12[7:6]
VDDIO2	P2[7:0], P6[7:0], P12[5:4], P15[5:4]
VDDIO3	P3[7:0], P12[1:0], P15[3:0]
VDDD	P15[7:6] (USB D+, D-)

Note 6. Pins are Do Not Use (DNU) on devices without USB. The pin must be left floating.

Figure 2-6. Example PCB Layout for 100-pin TQFP Part for Optimal Analog Performance

3. Pin Descriptions

IDAC0, IDAC1, IDAC2, IDAC3

Low resistance output pin for high current DACs (IDAC). **Opamp0out, Opamp1out, Opamp2out, Opamp3out**

High current output of uncommitted opamp^[7].

Extref0, Extref1

External reference input to the analog system.

SAR0 EXTREF, SAR1 EXTREF

External references for SAR ADCs

Opamp0-, Opamp1-, Opamp2-, Opamp3-

Inverting input to uncommitted opamp.

Opamp0+, Opamp1+, Opamp2+, Opamp3+

Noninverting input to uncommitted opamp.

GPIO

General purpose I/O pin provides interfaces to the CPU, digital peripherals, analog peripherals, interrupts, LCD segment drive, and CapSense^[7].

12C0: SCL, 12C1: SCL

 $\rm I^2C$ SCL line providing wake from sleep on an address match. Any I/O pin can be used for I^2C SCL if wake from sleep is not required.

12C0: SDA, 12C1: SDA

 $\rm I^2C$ SDA line providing wake from sleep on an address match. Any I/O pin can be used for I^2C SDA if wake from sleep is not required. Ind

Inductor connection to boost pump.

kHz XTAL: Xo, kHz XTAL: Xi

32.768-kHz crystal oscillator pin.

MHz XTAL: Xo, MHz XTAL: Xi

4 to 25 MHz crystal oscillator pin.

Note

7. GPIOs with opamp outputs are not recommended for use with CapSense.

nTRST

Optional JTAG Test Reset programming and debug port connection to reset the JTAG connection.

SIO. Special I/O provides interfaces to the CPU, digital peripherals and interrupts with a programmable high threshold voltage, analog comparator, high sink current, and high impedance state when the device is unpowered.

SWDCK

Serial Wire Debug Clock programming and debug port connection. **SWDIO**

Serial Wire Debug Input and Output programming and debug port connection.

тск

JTAG Test Clock programming and debug port connection.

TDI

JTAG Test Data In programming and debug port connection.

TDO

JTAG Test Data Out programming and debug port connection. **TMS**

JTAG Test Mode Select programming and debug port connection. **TRACECLK**

Cortex-M3 TRACEPORT connection, clocks TRACEDATA pins. **TRACEDATA[3:0].**

Cortex-M3 TRACEPORT connections, output data.

SWV.

Single Wire Viewer output.

USBIO, D+

Provides D+ connection directly to a USB 2.0 bus. May be used as a digital I/O pin; it is powered from VDDD instead of from a VDDIO. Pins are Do Not Use (DNU) on devices without USB.

4.4 Interrupt Controller

The Cortex-M3 NVIC supports 16 system exceptions and 32 interrupts from peripherals, as shown in Table 4-5.

Table 4-5. Cortex-M3 Exceptions and Interrupts

Exception Number	Exception Type	Priority	Exception Table Address Offset	Function
			0x00	Starting value of R13 / MSP
1	Reset	–3 (highest)	0x04	Reset
2	NMI	-2	0x08	Non maskable interrupt
3	Hard fault	-1	0x0C	All classes of fault, when the corresponding fault handler cannot be activated because it is currently disabled or masked
4	MemManage	Programmable	0x10	Memory management fault, for example, instruction fetch from a nonexecutable region
5	Bus fault	Programmable	0x14	Error response received from the bus system; caused by an instruction prefetch abort or data access error
6	Usage fault	Programmable	0x18	Typically caused by invalid instructions or trying to switch to ARM mode
7–10	-	-	0x1C-0x28	Reserved
11	SVC	Programmable	0x2C	System service call via SVC instruction
12	Debug monitor	Programmable	0x30	Debug monitor
13	-	-	0x34	Reserved
14	PendSV	Pcrogrammable	0x38	Deferred request for system service
15	SYSTICK	Programmable	0x3C	System tick timer
16–47	IRQ	Programmable	0x40-0x3FC	Peripheral interrupt request #0–#31

Bit 0 of each exception vector indicates whether the exception is executed using ARM or Thumb instructions. Because the Cortex-M3 only supports Thumb instructions, this bit must always be 1. The Cortex-M3 non maskable interrupt (NMI) input can be routed to any pin, via the DSI, or disconnected from all pins. See "DSI Routing Interface Description" section on page 44.

The Nested Vectored Interrupt Controller (NVIC) handles interrupts from the peripherals, and passes the interrupt vectors to the CPU. It is closely integrated with the CPU for low latency interrupt handling. Features include:

- 32 interrupts. Multiple sources for each interrupt.
- Eight priority levels, with dynamic priority control.
- Priority grouping. This allows selection of preempting and non preempting interrupt levels.

- Support for tail-chaining, and late arrival, of interrupts. This enables back-to-back interrupt processing without the overhead of state saving and restoration between interrupts.
- Processor state automatically saved on interrupt entry, and restored on interrupt exit, with no instruction overhead.

If the same priority level is assigned to two or more interrupts, the interrupt with the lower vector number is executed first. Each interrupt vector may choose from three interrupt sources: Fixed Function, DMA, and UDB. The fixed function interrupts are direct connections to the most common interrupt sources and provide the lowest resource cost connection. The DMA interrupt sources provide direct connections to the two DMA interrupt sources provided per DMA channel. The third interrupt source for vectors is from the UDB digital routing array. This allows any digital signal available to the UDB array to be used as an interrupt source. All interrupt sources may be routed to any interrupt vector using the UDB interrupt source connections.

Figure 6-1. Clocking Subsystem

6.1.1 Internal Oscillators

Figure 6-1 shows that there are two internal oscillators. They can be routed directly or divided. The direct routes may not have a 50% duty cycle. Divided clocks have a 50% duty cycle.

6.1.1.1 Internal Main Oscillator

In most designs the IMO is the only clock source required, due to its $\pm 1\%$ accuracy. The IMO operates with no external components and outputs a stable clock. A factory trim for each frequency range is stored in the device. With the factory trim, tolerance varies from $\pm 1\%$ at 3 MHz, up to $\pm 7\%$ at 74 MHz. The IMO, in conjunction with the PLL, allows generation of CPU and system clocks up to the device's maximum frequency (see Phase-Locked Loop)

The IMO provides clock outputs at 3, 6, 12, 24, 48, and 74 MHz.

6.1.1.2 Clock Doubler

The clock doubler outputs a clock at twice the frequency of the input clock. The doubler works for input frequency ranges of 6 to 24 MHz (providing 12 to 48 MHz at the output). It can be configured to use a clock from the IMO, MHzECO, or the DSI (external pin). The doubler is typically used to clock the USB.

6.1.1.3 Phase-Locked Loop

The PLL allows low frequency, high accuracy clocks to be multiplied to higher frequencies. This is a tradeoff between higher clock frequency and accuracy and, higher power consumption and increased startup time.

The PLL block provides a mechanism for generating clock frequencies based upon a variety of input sources. The PLL

outputs clock frequencies in the range of 24 to 80 MHz. Its input and feedback dividers supply 4032 discrete ratios to create almost any desired system clock frequency. The accuracy of the PLL output depends on the accuracy of the PLL input source. The most common PLL use is to multiply the IMO clock at 3 MHz, where it is most accurate, to generate the CPU and system clocks up to the device's maximum frequency.

The PLL achieves phase lock within 250 µs (verified by bit setting). It can be configured to use a clock from the IMO, MHZECO or DSI (external pin). The PLL clock source can be used until lock is complete and signaled with a lock bit. The lock signal can be routed through the DSI to generate an interrupt. Disable the PLL before entering low power modes.

6.1.1.4 Internal Low Speed Oscillator

The ILO provides clock frequencies for low power consumption, including the watchdog timer, and sleep timer. The ILO generates up to three different clocks: 1 kHz, 33 kHz, and 100 kHz.

The 1 kHz clock (CLK1K) is typically used for a background 'heartbeat' timer. This clock inherently lends itself to low power supervisory operations such as the watchdog timer and long sleep intervals using the central timewheel (CTW).

The central timewheel is a 1 kHz, free running, 13-bit counter clocked by the ILO. The central timewheel is always enabled except in hibernate mode and when the CPU is stopped during debug on chip mode. It can be used to generate periodic interrupts for timing purposes or to wake the system from a low power mode. Firmware can reset the central timewheel.

Figure 6-6. Application of Boost Converter powering PSoC device

The boost converter may also generate a supply that is not used directly by the PSoC device. An example of this use case is boosting a 1.8 V supply to 4.0 V to drive a white LED. If the boost converter is not supplying the PSoC devices $V_{\text{DDA}},\,V_{\text{DDD}},\,\text{and}$ V_{DDIO} it must comply with the same design rules as supplying the PSoC device, but with a change to the bulk capacitor requirements. A parallel arrangement 22 µF, 1.0 µF, and 0.1 µF capacitors are all required on the Vout supply and must be placed within 1 cm of the VBOOST pin to ensure regulator stability.

Figure 6-7. Application of Boost Converter not powering PSoC device

The switching frequency is set to 400 kHz using an oscillator integrated into the boost converter. The boost converter can be operated in two different modes: active and standby. Active mode is the normal mode of operation where the boost regulator actively generates a regulated output voltage. In standby mode, most boost functions are disabled, thus reducing power

All components and values are required

6.4.1 Drive Modes

Each GPIO and SIO pin is individually configurable into one of the eight drive modes listed in Table 6-6. Three configuration bits are used for each pin (DM[2:0]) and set in the PRTxDM[2:0] registers. Figure 6-12 depicts a simplified pin view based on each of the eight drive modes. Table 6-6 shows the I/O pin's drive state based on the port data register value or digital array signal

if bypass mode is selected. Note that the actual I/O pin voltage is determined by a combination of the selected drive mode and the load at the pin. For example, if a GPIO pin is configured for resistive pull up mode and driven high while the pin is floating, the voltage measured at the pin is a high logic state. If the same GPIO pin is externally tied to ground then the voltage unmeasured at the pin is a low logic state.

Figure 6-12. Drive Mode

The 'Out' connection is driven from either the Digital System (when the Digital Output terminal is connected) or the Data Register (when HW connection is disabled). The 'In' connection drives the Pin State register, and the Digital System if the Digital Input terminal is enabled and connected. The 'An' connection connects to the Analog System.

Table 6-6. Drive Modes

Diagram	Drive Mode	PRTxDM2	PRTxDM1	PRTxDM0	PRTxDR = 1	PRTxDR = 0
0	High-impedance analog	0	0	0	High Z	High Z
1	High-impedance digital	0	0	1	High Z	High Z
2	Resistive pull-up ^[10]	0	1	0	Res High (5K)	Strong Low
3	Resistive pull-down ^[10]	0	1	1	Strong High	Res Low (5K)
4	Open drain, drives low	1	0	0	High Z	Strong Low
5	Open drain, drive high	1	0	1	Strong High	High Z
6	Strong drive	1	1	0	Strong High	Strong Low
7	Resistive pull up and pull down ^[10]	1	1	1	Res High (5K)	Res Low (5K)

7.2.2.3 Conditionals

Each datapath has two compares, with bit masking options. Compare operands include the two accumulators and the two data registers in a variety of configurations. Other conditions include zero detect, all ones detect, and overflow. These conditions are the primary datapath outputs, a selection of which can be driven out to the UDB routing matrix. Conditional computation can use the built in chaining to neighboring UDBs to operate on wider data widths without the need to use routing resources.

7.2.2.4 Variable MSB

The most significant bit of an arithmetic and shift function can be programmatically specified. This supports variable width CRC and PRS functions, and in conjunction with ALU output masking, can implement arbitrary width timers, counters and shift blocks.

7.2.2.5 Built in CRC/PRS

The datapath has built in support for single cycle Cyclic Redundancy Check (CRC) computation and Pseudo Random Sequence (PRS) generation of arbitrary width and arbitrary polynomial. CRC/PRS functions longer than 8 bits may be implemented in conjunction with PLD logic, or built in chaining may be use to extend the function into neighboring UDBs.

7.2.2.6 Input/Output FIFOs

Each datapath contains two four-byte deep FIFOs, which can be independently configured as an input buffer (system bus writes to the FIFO, datapath internal reads the FIFO), or an output buffer (datapath internal writes to the FIFO, the system bus reads from the FIFO). The FIFOs generate status that are selectable as datapath outputs and can therefore be driven to the routing, to interact with sequencers, interrupts, or DMA.

Figure 7-5. Example FIFO Configurations

7.2.2.7 Chaining

The datapath can be configured to chain conditions and signals such as carries and shift data with neighboring datapaths to create higher precision arithmetic, shift, CRC/PRS functions.

7.2.2.8 Time Multiplexing

In applications that are over sampled, or do not need high clock rates, the single ALU block in the datapath can be efficiently

shared with two sets of registers and condition generators. Carry and shift out data from the ALU are registered and can be selected as inputs in subsequent cycles. This provides support for 16-bit functions in one (8-bit) datapath.

7.2.2.9 Datapath I/O

There are six inputs and six outputs that connect the datapath to the routing matrix. Inputs from the routing provide the configuration for the datapath operation to perform in each cycle, and the serial data inputs. Inputs can be routed from other UDB blocks, other device peripherals, device I/O pins, and so on. The outputs to the routing can be selected from the generated conditions, and the serial data outputs. Outputs can be routed to other UDB blocks, device peripherals, interrupt and DMA controller, I/O pins, and so on.

7.2.3 Status and Control Module

The primary purpose of this circuitry is to coordinate CPU firmware interaction with internal UDB operation.

Figure 7-6. Status and Control Registers

The bits of the control register, which may be written to by the system bus, are used to drive into the routing matrix, and thus provide firmware with the opportunity to control the state of UDB processing. The status register is read-only and it allows internal UDB state to be read out onto the system bus directly from internal routing. This allows firmware to monitor the state of UDB processing. Each bit of these registers has programmable connections to the routing matrix and routing connections are made depending on the requirements of the application.

7.2.3.1 Usage Examples

As an example of control input, a bit in the control register can be allocated as a function enable bit. There are multiple ways to enable a function. In one method the control bit output would be routed to the clock control block in one or more UDBs and serve as a clock enable for the selected UDB blocks. A status example is a case where a PLD or datapath block generated a condition, such as a "compare true" condition that is captured and latched by the status register and then read (and cleared) by CPU firmware.

7.2.3.2 Clock Generation

Each subcomponent block of a UDB including the two PLDs, the datapath, and Status and Control, has a clock selection and control block. This promotes a fine granularity with respect to allocating clocking resources to UDB component blocks and allows unused UDB resources to be used by other functions for maximum system efficiency.

7.3 UDB Array Description

Figure 7-7 shows an example of a 16 UDB array. In addition to the array core, there are a DSI routing interfaces at the top and bottom of the array. Other interfaces that are not explicitly shown include the system interfaces for bus and clock distribution. The UDB array includes multiple horizontal and vertical routing channels each comprised of 96 wires. The wire connections to UDBs, at horizontal/vertical intersection and at the DSI interface are highly permutable providing efficient automatic routing in PSoC Creator. Additionally the routing allows wire by wire segmentation along the vertical and horizontal routing to further increase routing flexibility and capability.

Figure 7-7. Digital System Interface Structure

7.3.1 UDB Array Programmable Resources

Figure 7-8 shows an example of how functions are mapped into a bank of 16 UDBs. The primary programmable resources of the UDB are two PLDs, one datapath and one status/control register. These resources are allocated independently, because they have independently selectable clocks, and therefore unused blocks are allocated to other unrelated functions.

An example of this is the 8-bit Timer in the upper left corner of the array. This function only requires one datapath in the UDB, and therefore the PLD resources may be allocated to another function. A function such as a Quadrature Decoder may require more PLD logic than one UDB can supply and in this case can utilize the unused PLD blocks in the 8-bit Timer UDB. Programmable resources in the UDB array are generally homogeneous so functions can be mapped to arbitrary boundaries in the array.

Figure 7-8. Function Mapping Example in a Bank of UDBs

7.4 DSI Routing Interface Description

The DSI routing interface is a continuation of the horizontal and vertical routing channels at the top and bottom of the UDB array core. It provides general purpose programmable routing between device peripherals, including UDBs, I/Os, analog peripherals, interrupts, DMA and fixed function peripherals.

Figure 7-9 illustrates the concept of the digital system interconnect, which connects the UDB array routing matrix with other device peripherals. Any digital core or fixed function peripheral that needs programmable routing is connected to this interface.

Signals in this category include:

- Interrupt requests from all digital peripherals in the system.
- DMA requests from all digital peripherals in the system.
- Digital peripheral data signals that need flexible routing to I/Os.
- Digital peripheral data signals that need connections to UDBs.
- Connections to the interrupt and DMA controllers.
- Connection to I/O pins.
- Connection to analog system digital signals.

8.2 Delta-sigma ADC

Some CY8C36 devices offer a delta-sigma ADC. This ADC offers differential input, high resolution and excellent linearity, making it a good ADC choice for measurement applications. The converter can be configured to output 12-bit resolution at data rates of up to 192 ksps. At a fixed clock rate, resolution can be traded for faster data rates as shown in Table 8-1 and Figure 8-3.

Table 8-1. Delta-sigma ADC Performance

Bits	Maximum Sample Rate (sps)	SINAD (dB)
12	192 k	66
8	384 k	43

Figure 8-3. Delta-sigma ADC Sample Rates, Range = ±1.024 V

8.2.1 Functional Description

The ADC connects and configures three basic components, input buffer, delta-sigma modulator, and decimator. The basic block diagram is shown in Figure 8-4. The signal from the input muxes is delivered to the delta-sigma modulator either directly or through the input buffer. The delta-sigma modulator performs the actual analog to digital conversion. The modulator over-samples the input and generates a serial data stream output. This high speed data stream is not useful for most applications without some type of post processing, and so is passed to the decimator through the Analog Interface block. The decimator converts the high speed serial data stream into parallel ADC results. The modulator/decimator frequency response is $[(\sin x)/x]^4$.

Resolution and sample rate are controlled by the Decimator. Data is pipelined in the decimator; the output is a function of the last four samples. When the input multiplexer is switched, the output data is not valid until after the fourth sample after the switch.

8.2.2 Operational Modes

The ADC can be configured by the user to operate in one of four modes: Single Sample, Multi Sample, Continuous, or Multi Sample (Turbo). All four modes are started by either a write to the start bit in a control register or an assertion of the Start of Conversion (SoC) signal. When the conversion is complete, a status bit is set and the output signal End of Conversion (EoC) asserts high and remains high until the value is read by either the DMA controller or the CPU.

8.2.2.1 Single Sample

In Single Sample mode, the ADC performs one sample conversion on a trigger. In this mode, the ADC stays in standby state waiting for the SoC signal to be asserted. When SoC is signaled the ADC performs four successive conversions. The first three conversions prime the decimator. The ADC result is valid and available after the fourth conversion, at which time the EoC signal is generated. To detect the end of conversion, the system may poll a control register for status or configure the external EoC signal to generate an interrupt or invoke a DMA request. When the transfer is done the ADC reenters the standby state where it stays until another SoC event.

8.2.2.2 Continuous

Continuous sample mode is used to take multiple successive samples of a single input signal. Multiplexing multiple inputs should not be done with this mode. There is a latency of three conversion times before the first conversion result is available. This is the time required to prime the decimator. After the first result, successive conversions are available at the selected sample rate.

8.2.2.3 Multi Sample

Multi sample mode is similar to continuous mode except that the ADC is reset between samples. This mode is useful when the input is switched between multiple signals. The decimator is re-primed between each sample so that previous samples do not affect the current conversion. Upon completion of a sample, the next sample is automatically initiated. The results can be transferred using either firmware polling, interrupt, or DMA.

More information on output formats is provided in the Technical Reference Manual.

8.5 Opamps

The CY8C56LP family of devices contain four general purpose opamps.

Figure 8-7. Opamp

The opamp is uncommitted and can be configured as a gain stage or voltage follower on external or internal signals.

See Figure 8-8. In any configuration, the input and output signals can all be connected to the internal global signals and monitored with an ADC, or comparator. The configurations are implemented with switches between the signals and GPIO pins.

Figure 8-8. Opamp Configurations

a) Voltage Follower -X Vout to Pin Opamp Vin b) External Uncommitted Opamp Vout to GPIO Opamp \square 🕅 Vp to GPIO 🛛 Vn to GPIO c) Internal Uncommitted Opamp Vn To Internal Signals Vout to Pin Opamp Vp GPIO Pin

The opamp has three speed modes, slow, medium, and fast. The slow mode consumes the least amount of quiescent power and the fast mode consumes the most power. The inputs are able to swing rail-to-rail. The output swing is capable of rail-to-rail operation at low current output, within 50 mV of the rails. When driving high current loads (about 25 mA) the output voltage may only get within 500 mV of the rails.

8.6 Programmable SC/CT Blocks

The CY8C56LP family of devices contains four switched capacitor/continuous time (SC/CT) blocks. Each switched capacitor/continuous time block is built around a single rail-to-rail high bandwidth opamp.

Switched capacitor is a circuit design technique that uses capacitors plus switches instead of resistors to create analog functions. These circuits work by moving charge between capacitors by opening and closing different switches. Nonoverlapping in phase clock signals control the switches, so that not all switches are ON simultaneously.

The PSoC Creator tool offers a user friendly interface, which allows you to easily program the SC/CT blocks. Switch control and clock phase control configuration is done by PSoC Creator so users only need to determine the application use parameters such as gain, amplifier polarity, V_{REF} connection, and so on.

The same opamps and block interfaces are also connectable to an array of resistors which allows the construction of a variety of continuous time functions.

The opamp and resistor array is programmable to perform various analog functions including

- Naked Operational Amplifier Continuous Mode
- Unity-Gain Buffer Continuous Mode
- Programmable Gain Amplifier (PGA) Continuous Mode
- Transimpedance Amplifier (TIA) Continuous Mode
- Up/Down Mixer Continuous Mode
- Sample and Hold Mixer (NRZ S/H) Switched Cap Mode
- First Order Analog to Digital Modulator Switched Cap Mode

8.6.1 Naked Opamp

The Naked Opamp presents both inputs and the output for connection to internal or external signals. The opamp has a unity gain bandwidth greater than 6.0 MHz and output drive current up to 650 μ A. This is sufficient for buffering internal signals (such as DAC outputs) and driving external loads greater than 7.5 kohms.

8.6.2 Unity Gain

The Unity Gain buffer is a Naked Opamp with the output directly connected to the inverting input for a gain of 1.00. It has a -3 dB bandwidth greater than 6.0 MHz.

Figure 11-1. Active Mode Current vs $F_{CPU},\,V_{DD}$ = 3.3 V, Temperature = 25 $^\circ\text{C}$

CYPRESS

Figure 11-3. Active Mode Current vs Temperature and $F_{CPU},\ V_{DD}$ = 3.3 V

Figure 11-2. I_{DD} vs Frequency at 25 °C

Table 11-3. AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
F _{CPU}	CPU frequency	$1.71 \text{ V} \le \text{V}_{\text{DDD}} \le 5.5 \text{ V}$	DC	-	80.01	MHz
F _{BUSCLK}	Bus frequency	$1.71 \text{ V} \le \text{V}_{\text{DDD}} \le 5.5 \text{ V}$	DC	-	80.01	MHz
S _{VDD} ^[28]	V _{DD} ramp rate		-	-	0.066	V/µs
T _{IO_INIT} ^[28]	Time from $V_{DDD}/V_{DDA}/V_{CCD}/V_{CCA} \ge IPOR$ to I/O ports set to their reset states		-	_	10	μs
T _{STARTUP} ^[28]	Time from $V_{DDD}/V_{DDA}/V_{CCD}/V_{CCA} \ge PRES$ to CPU executing code at reset vector	V _{CCA} /V _{DDA} = regulated from V _{DDA} /V _{DDD} , no PLL used, fast IMO boot mode (48 MHz typ.)	-	-	33	μs
		V_{CCA}/V_{CCD} = regulated from V_{DDA}/V_{DDD} , no PLL used, slow IMO boot mode (12 MHz typ.)	-	-	66	μs
T _{SLEEP} ^[28]	Wakeup from sleep mode – Application of non-LVD interrupt to beginning of execution of next CPU instruction		-	-	25	μs
T _{HIBERNATE} [28]	Wakeup form hibernate mode – Application of external interrupt to beginning of execution of next CPU instruction		-	-	150	μs

Note

28. Based on device characterization (not production tested).

Figure 11-15. GPIO Output High Voltage and Current

Table 11-9. GPIO AC Specifications^[36]

Parameter	Description	Conditions	Min	Тур	Max	Units
TriseF	Rise time in Fast Strong Mode	3.3 V V _{DDIO} Cload = 25 pF	_	-	6	ns
TfallF	Fall time in Fast Strong Mode	$3.3 \text{ V V}_{\text{DDIO}} \text{ Cload} = 25 \text{ pF}$	-	-	6	ns
TriseS	Rise time in Slow Strong Mode	$3.3 \text{ V V}_{\text{DDIO}} \text{ Cload} = 25 \text{ pF}$	_	-	60	ns
TfallS	Fall time in Slow Strong Mode	$3.3 \text{ V V}_{\text{DDIO}} \text{ Cload} = 25 \text{ pF}$	_	-	60	ns
	GPIO output operating frequency					
	2.7 V \leq V _{DDIO} \leq 5.5 V, fast strong drive mode	90/10% V _{DDIO} into 25 pF	-	-	33	MHz
Fgpioout	1.71 V \leq V _{DDIO} < 2.7 V, fast strong drive mode	90/10% V _{DDIO} into 25 pF	_	-	20	MHz
	$3.3 \text{ V} \leq \text{V}_{\text{DDIO}} \leq 5.5 \text{ V}$, slow strong drive mode	90/10% V _{DDIO} into 25 pF	-	-	7	MHz
	1.71 V \leq V _{DDIO} < 3.3 V, slow strong drive mode	90/10% V _{DDIO} into 25 pF	-	-	3.5	MHz
Fgpioin	GPIO input operating frequency	90/10% V _{DDIO}	-	-	33	MHz

Figure 11-16. GPIO Output Low Voltage and Current

Figure 11-17. SIO Output High Voltage and Current, Unregulated Mode

CYPRESS

Figure 11-19. SIO Output High Voltage and Current, Regulated Mode

Figure 11-18. SIO Output Low Voltage and Current, Unregulated Mode

Figure 11-30. Opamp Noise vs Frequency, Power Mode = High, V_{DDA} = 5 V

Figure 11-32. Opamp Step Response, Falling

Table 11-21. Delta-sigma ADC AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Startup time		-	-	4	Samples
THD	Total harmonic distortion ^[44]	Buffer gain = 1, 12-bit, Range = ±1.024 V	_	-	0.0032	%
12-Bit Resolu	tion Mode					
SR12	Sample rate, continuous, high power ^[44]	Range = ±1.024 V, unbuffered	4	-	192	ksps
BW12	Input bandwidth at max sample rate ^[44]	Range = ±1.024 V, unbuffered	_	44	_	kHz
SINAD12int	Signal to noise ratio, 12-bit, internal reference ^[44]	Range = ±1.024 V, unbuffered	66	-	_	dB
8-Bit Resoluti	on Mode					
SR8	Sample rate, continuous, high power ^[44]	Range = ±1.024 V, unbuffered	8	-	384	ksps
BW8	Input bandwidth at max sample rate ^[44]	Range = ±1.024 V, unbuffered	_	88	_	kHz
SINAD8int	Signal to noise ratio, 8-bit, internal reference ^[44]	Range = ±1.024 V, unbuffered	43	-	_	dB

Table 11-22. Delta-sigma ADC Sample Rates, Range = ±1.024 V

Resolution,	Conti	nuous	Multi-S	Sample
Bits	Min	Max	Min	Max
8	8000	384000	1911	91701
9	6400	307200	1543	74024
10	5566	267130	1348	64673
11	4741	227555	1154	55351
12	4000	192000	978	46900

Figure 11-33. Delta-sigma ADC IDD vs sps, Range = \pm 1.024 V, Continuous Sample Mode, Input Buffer Bypassed

Note 44. Based on device characterization (Not production tested).

11.5.3 Voltage Reference

Table 11-23. Voltage Reference Specifications

Parameter	Description	Condition	S	Min	Тур	Max	Units
V _{REF} ^[45]	Precision reference voltage	Initial trimming, 25 °C		1.023 (–0.1%)	1.024	1.025 (+0.1%)	V
	After typical PCB assembly, post Typical (non-optimized)	–40 °C	_	±0.5	-	%	
	reflow	board layout and 250 °C solder reflow. Device may be calibrated after assembly to improve performance.	25 °C	-	±0.2	-	%
			85 °C	_	±0.2	-	%
			105 °C	_	±0.3	_	%
	Temperature drift ^[46]			-	-	30	ppm/°C
	Long term drift ^[46]			-	100	-	ppm/Khr
	Thermal cycling drift (stability) ^[46]			_	100	_	ppm

Figure 11-34. Vref vs Temperature

Figure 11-35. Vref Long-term Drift

Notes

45. V_{REF} is measured after packaging, and thus accounts for substrate and die attach stresses.

46. Based on device characterization (Not production tested).

11.5.9 Mixer

The mixer is created using a SC/CT analog block; see the Mixer component datasheet in PSoC Creator for full electrical specifications and APIs.

Table 11-34. Mixer DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{OS}	Input offset voltage	High power mode, V_{IN} = 1.024 V, V _{REF} = 1.024 V	-	_	15	mV
	Quiescent current		-	0.9	2	mA
G	Gain		_	0	_	dB

Table 11-35. Mixer AC Specifications^[59]

Parameter	Description	Conditions	Min	Тур	Max	Units
f _{LO}	Local oscillator frequency	Down mixer mode	_	-	4	MHz
f _{in}	Input signal frequency	Down mixer mode	_	-	14	MHz
f _{LO}	Local oscillator frequency	Up mixer mode	_	-	1	MHz
f _{in}	Input signal frequency	Up mixer mode	-	-	1	MHz
SR	Slew rate		3	-	-	V/µs

11.5.10 Transimpedance Amplifier

The TIA is created using a SC/CT analog block; see the TIA component datasheet in PSoC Creator for full electrical specifications and APIs.

Table 11-36. Transimpedance Amplifier (TIA) DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{IOFF}	Input offset voltage		-	-	10	mV
Rconv	Conversion resistance ^[60]	R = 20K; 40 pF load	-25	-	+35	%
		R = 30K; 40 pF load	-25	-	+35	%
		R = 40K; 40 pF load	-25	-	+35	%
		R = 80K; 40 pF load	-25	-	+35	%
		R = 120K; 40 pF load	-25	-	+35	%
		R = 250K; 40 pF load	-25	-	+35	%
		R= 500K; 40 pF load	-25	-	+35	%
		R = 1M; 40 pF load	-25	-	+35	%
	Quiescent current ^[59]		-	1.1	2	mA

Table 11-37. Transimpedance Amplifier (TIA) AC Specifications^[59]

Parameter	Description	Conditions	Min	Тур	Max	Units
BW	Input bandwidth (–3 dB)	R = 20K; –40 pF load	1200	1	-	kHz
		R = 120K;	240	1	I	kHz
		R = 1M; –40 pF load	25	-	-	kHz

Notes

^{59.} Based on device characterization (Not production tested).

^{60.} Conversion resistance values are not calibrated. Calibrated values and details about calibration are provided in PSoC Creator component datasheets. External precision resistors can also be used.

Table 11-50. Fixed I²C AC Specifications^[67]

Parameter	Description	Conditions	Min	Тур	Max	Units
	Bit rate		-	-	1	Mbps

11.6.5 Controller Area Network

Table 11-51. CAN DC Specifications^[67, 68]

Parameter	Description	Conditions	Min	Тур	Max	Units
I _{DD}	Block current consumption		-	-	200	μA

Table 11-52. CAN AC Specifications^[67, 68]

Parameter	Description	Conditions	Min	Тур	Max	Units
	Bit rate	Minimum 8 MHz clock	_	_	1	Mbit

11.6.6 Digital Filter Block

Table 11-53. DFB DC Specifications^[68]

Parameter	Description	Conditions	Min	Тур	Max	Units
	DFB operating current	64-tap FIR at F _{DFB}				
		500 kHz (6.7 ksps)	-	0.16	0.27	mA
		1 MHz (13.4 ksps)	-	0.33	0.53	mA
		10 MHz (134 ksps)	-	3.3	5.3	mA
		48 MHz (644 ksps)	-	15.7	25.5	mA
		80 MHz (1.07 Msps)	-	26.0	42.5	mA

Table 11-54. DFB AC Specifications^[68]

Parameter	Description	Conditions	Min	Тур	Max	Units
F _{DFB}	DFB operating frequency		DC	-	80.01	MHz

11.6.7 USB

Table 11-55. USB DC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
V _{USB_5}	Device supply (V _{DDD}) for USB operation	USB configured, USB regulator enabled	4.35	-	5.25	V
V _{USB_3.3}		USB configured, USB regulator bypassed	3.15	-	3.6	V
V _{USB_3}		USB configured, USB regulator bypassed ^[69]	2.85	-	3.6	V
IUSB_Configured	Device supply current in device	V _{DDD} = 5 V, F _{CPU} = 1.5 MHz	-	10	-	mA
	active mode, bus clock and IMO = 24 MHz	V _{DDD} = 3.3 V, F _{CPU} = 1.5 MHz	_	8	-	mA
IUSB_Suspended	Device supply current in device sleep mode	V _{DDD} = 5 V, connected to USB host, PICU configured to wake on USB resume signal	-	0.5	-	mA
		V _{DDD} = 5 V, disconnected from USB host	-	0.3	-	mA
		V _{DDD} = 3.3 V, connected to USB host, PICU configured to wake on USB resume signal	-	0.5	-	mA
		V _{DDD} = 3.3 V, disconnected from USB host	_	0.3	_	mA
Notes						

67. Based on device characterization (Not production tested).

69. Rise/fall time matching (TR) not guaranteed, see Table 11-15 on page 82.

^{68.} Refer to ISO 11898 specification for details.

11.8.3 Interrupt Controller

Table 11-71. Interrupt Controller AC Specifications

Parameter	Description	Conditions	Min	Тур	Max	Units
	Delay from interrupt signal input to ISR code execution from main line code ^[80]		-	-	12	Tcy CPU
	Delay from interrupt signal input to ISR code execution from ISR code (tail-chaining) ^[80]		_	_	6	Tcy CPU

11.8.4 JTAG Interface

Figure 11-74. JTAG Interface Timing

Table 11-72. JTAG Interface AC Specifications^[81]

Parameter	Description	Conditions	Min	Тур	Max	Units
f_TCK	TCK frequency	$3.3 \text{ V} \leq \text{V}_{DDD} \leq 5 \text{ V}$	-	-	12 ^[82]	MHz
		$1.71 \text{ V} \le \text{V}_{\text{DDD}} < 3.3 \text{ V}$	-	-	7 ^[82]	MHz
T_TDI_setup	TDI setup before TCK high		(T/10)-5	-	-	ns
T_TMS_setup	TMS setup before TCK high		T/4	-	-	
T_TDI_hold	TDI, TMS hold after TCK high	T = 1/f_TCK max	T/4	_	-	
T_TDO_valid	TCK low to TDO valid	T = 1/f_TCK max	-	-	2T/5	
T_TDO_hold	TDO hold after TCK high	T = 1/f_TCK max	T/4	_	-	
T_nTRST	Minimum nTRST pulse width	f_TCK = 2 MHz	8	_	-	ns

Notes

^{80.} ARM Cortex-M3 NVIC spec. Visit www.arm.com for detailed documentation about the Cortex-M3 CPU.

Based on device characterization (Not production tested).
 f_TCK must also be no more than 1/3 CPU clock frequency.

Document History Page

Descriptio Document	n Title: PSo Number: 00	C [®] 5LP: CY)1-84935	8C56LP Family	y Datasheet Programmable System-on-Chip (PSoC [®])
Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	3825653	MKEA	12/07/2012	Datasheet for new CY8C56LP family.
*A	3897878	MKEA	02/07/2013	Removed Preliminary status. Updated characterization footnotes in Electrical Specifications. Changed number of opamps in Ordering Information Updated conditions for SAR ADC INL and DNL specifications in Table 11-24 Updated Table 11-78 (ILO AC Specifications). Changed "UDB Configuration" to "UDB Working Registers" in Table 5-5. Removed references to CAN. Updated VIDAC INL spec.
*В	3902085	MKEA	02/12/2013	Changed Hibernate wakeup time from 125 μs to 200 μs in Table 6-3 and Table 11-3.
*C	3917994	MKEA	01/08/2013	Added Controller Area Network (CAN) content. Added CY8C5667AXI-LP040, CY8C5668AXI-LP034, and CY8C5667LTI-L P041 parts in Ordering Information
*D	4114902	MKEA	09/30/2013	Added information about 1 KB cache in Features. Added warning on reset devices in the EEPROM section. Added DBGEN field in Table 5-3. Deleted statement about repeat start from the I ² C section. Removed T _{STG} spec from Table 11-1 and added a note clarifying the maximum storage temperature range. Updated chip Idd, regulator, opamp, delta-sigma ADC, SAR ADC, IDAC, and VDAC graphs. Added min and max values for the Regulator Output Capacitor parameter. Updated C _{IN} specs in GPIO DC Specifications and SIO DC Specifications. Updated rise and fall time specs in Fast Strong mode in Table 11-9, and deleted related graphs. Added I _{IB} parameter in Opamp DC Specifications Updated Vos spec conditions and changed TCVos max value from 0.55 to 1 in Table 11-20. Updated Voltage Reference Specifications and IMO AC Specifications. Updated 100-TQFP package diagram. Added Appendix for CSP package (preliminary).
*E	4225729	MKEA	12/24/2013	Added SIO Comparator Specifications. Changed THIBERNATE wakeup spec from 200 to 150 µs. Updated CSP package details and ordering information. Added 80 MHz parts in Table 12-1.
*F	4386988	MKEA	05/22/2014	Updated General Description and Features. Added More Information and PSoC Creator sections. Updated JTAG IDs in Ordering Information. Updated 100-TQFP package diagram.
*G	4587100	MKEA	12/08/2014	Added link to AN72845 in Note 3. Updated interrupt priority numbers in Section 4.4. Updated Section 5.4 to clarify the factory default values of EEPROM. Corrected ECCEN settings in Table 5-3. Updated Section 6.1.1 and Section 6.1.2. Added a note below Figure 6-4. Updated Figure 6-12. Changed 'Control Store RAM' to 'Dynamic Configuration RAM' in Figure 7-4 and changed Section 7.2.2.2 heading to 'Dynamic Configuration RAM'. Updated Section 7.8.