

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	150MHz
Connectivity	CANbus, EBI/EMI, Ethernet, I ² C, IrDA, SD, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	128
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	16K x 8
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 77x16b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	256-LBGA
Supplier Device Package	256-MAPPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk61fx512vmj15

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.2 Moisture handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
MSL	Moisture sensitivity level	—	3	_	1

1. Determined according to IPC/JEDEC Standard J-STD-020, *Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices*.

4.3 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	-2000	+2000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model	-500	+500	V	2
I _{LAT}	Latch-up current at ambient temperature of 105°C	-100	+100	mA	3

- 1. Determined according to JEDEC Standard JESD22-A114, *Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM)*.
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

4.4 Voltage and current operating ratings

Symbol	Description	Min.	Max.	Unit
V _{DD}	Digital supply voltage1	-0.3	3.8	V
V _{DD_INT}	Core supply voltage	-0.3	3.8	V
V _{DD_DDR}	DDR I/O supply voltage	-0.3	3.8	V
I _{DD}	Digital supply current	_	300	mA
I _{DD_INT}	Core supply current	—	185	mA
I _{DD_DDR}	DDR supply current	_	220	mA
V _{DIO}	Digital input voltage (except $\overline{\text{RESET}},$ EXTAL0/XTAL0, and EXTAL1/XTAL1) 2	-0.3	5.5	V
V _{DDDR}	DDR input voltage	-0.3	$V_{DD_DDR} + 0.3$	V
V _{AIO}	Analog ³ , RESET , EXTAL0/XTAL0, and EXTAL1/XTAL1 input voltage	-0.3	V _{DD} + 0.3	V
Ι _D	Maximum current single pin limit (applies to all digital pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{USB0_DP}	USB0_DP input voltage	-0.3	3.63	V
V _{USB1_DP}	USB1_DP input voltage	-0.3	3.63	V

General

- 1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.
- 2. Digital pins have an associated GPIO port function and have 5V tolerant inputs, except EXTAL and XTAL.
- 3. Internal pull-up/pull-down resistors disabled.
- 4. Characterized, not tested in production.
- Examples calculated using V_{IL} relation, V_{DD}, and max I_{IND}: Z_{IND}=V_{IL}/I_{IND}. This is the impedance needed to pull a high signal to a level below V_{IL} due to leakage when V_{IL} < V_{IN} < V_{DD}. These examples assume signal source low = 0 V. See Figure 2.
- 6. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}
- 7. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{DD}

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 100 MHz
- Bus clock = 50 MHz
- FlexBus clock = 50 MHz
- Flash clock = 25 MHz
- MCG mode: FEI

Table 5. Power mode transition operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 1.71 V to execution of the first instruction across the operating temperature range of the chip. • V_{DD} slew rate ≥ 5.7 kV/s • V_{DD} slew rate < 5.7 kV/s		300 1.7 V / (V _{DD} slew rate)	μs	1
	• VLLS1 \rightarrow RUN	—	160	μs	
	• VLLS2 \rightarrow RUN	—	114	μs	

Table continues on the next page...

5.2.7 Designing with radiated emissions in mind

To find application notes that provide guidance on designing your system to minimize interference from radiated emissions:

- 1. Go to www.freescale.com.
- 2. Perform a keyword search for "EMC design."

5.2.8 Capacitance attributes

Table 8. Capacitance attributes

Symbol	Description	Min.	Max.	Unit
C _{IN_A}	Input capacitance: analog pins	—	7	pF
C _{IN_D}	Input capacitance: digital pins	—	7	pF
C _{IN_D_io60}	Input capacitance: fast digital pins	—	9	pF

5.3 Switching specifications

5.3.1 Device clock specifications

Table 9. Device clock specifications

Symbol	Description	Min.	Max.	Unit	Notes	
	Normal run mod	e	•		•	
f _{SYS}	System and core clock	_	150	MHz		
fsys_usbfs	System and core clock when Full Speed USB in operation	20	_	MHz		
f _{SYS_USBHS}	System and core clock when High Speed USB in operation	60	_	MHz		
f _{ENET}	System and core clock when ethernet in operation			MHz		
	• 10 Mbps	5	_			
	• 100 Mbps	50	_			
f _{BUS}	Bus clock	_	75	MHz		
FB_CLK	FlexBus clock	_	50	MHz		
f _{FLASH}	Flash clock	_	25	MHz		
f _{DDR}	DDR clock	_	150	MHz		
f _{LPTMR}	LPTMR clock	_	25	MHz		
	VLPR mode ¹					

Table continues on the next page ...

Symbol	Description	Min.	Max.	Unit	Notes
f _{SYS}	System and core clock	_	4	MHz	
f _{BUS}	Bus clock	_	4	MHz	
FB_CLK	FlexBus clock	_	4	MHz	
f _{FLASH}	Flash clock	_	0.5	MHz	
f _{LPTMR}	LPTMR clock		4	MHz	

Table 9. Device clock specifications (continued)

1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

5.3.2 General switching specifications

These general purpose specifications apply to all pins configured for:

- GPIO signaling
- Other peripheral module signaling not explicitly stated elsewhere

Symbol Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter 1.5 Bus clock 1, 2 disabled) — Synchronous path cycles GPIO pin interrupt pulse width (digital glitch filter 100 3 ns disabled, analog filter enabled) - Asynchronous path GPIO pin interrupt pulse width (digital glitch filter 16 3 ns disabled, analog filter disabled) — Asynchronous path External reset pulse width (digital glitch filter disabled) 100 ns 3 Mode select (EZP_CS) hold time after reset 2 Bus clock deassertion cycles Port rise and fall time (high drive strength) 4 · Slew disabled 1.71 ≤ V_{DD} ≤ 2.7V 14 ns • $2.7 \le V_{DD} \le 3.6V$ 8 ns · Slew enabled • $1.71 \le V_{DD} \le 2.7V$ 36 ns • $2.7 \le V_{DD} \le 3.6V$ 24 ns Port rise and fall time (low drive strength) 5 · Slew disabled 1.71 ≤ V_{DD} ≤ 2.7V 14 ns • $2.7 \le V_{DD} \le 3.6V$ 8 ns · Slew enabled 36 ns

Table 10. General switching specifications

6.1.2 JTAG electricals

Table 13.	JTAG limited	voltage range	electricals
-----------	--------------	---------------	-------------

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	25	
	Serial Wire Debug	0	50	
J2	TCLK cycle period	1/J1	_	ns
J3	TCLK clock pulse width			
	Boundary Scan	50	_	ns
	JTAG and CJTAG	20	_	ns
	Serial Wire Debug	10	_	ns
J4	TCLK rise and fall times	_	3	ns
J5	Boundary scan input data setup time to TCLK rise	20	—	ns
J6	Boundary scan input data hold time after TCLK rise	2.4	—	ns
J7	TCLK low to boundary scan output data valid	—	25	ns
J8	TCLK low to boundary scan output high-Z	—	25	ns
J9	TMS, TDI input data setup time to TCLK rise	8	_	ns
J10	TMS, TDI input data hold time after TCLK rise	1	—	ns
J11	TCLK low to TDO data valid	_	17	ns
J12	TCLK low to TDO high-Z		17	ns
J13	TRST assert time	100		ns
J14	TRST setup time (negation) to TCLK high	8	_	ns

Table 14. JTAG full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	20	
	Serial Wire Debug	0	40	
J2	TCLK cycle period	1/J1	_	ns
J3	TCLK clock pulse width			
	Boundary Scan	50	—	ns
	JTAG and CJTAG	25	—	ns
	Serial Wire Debug	12.5	—	ns
J4	TCLK rise and fall times	—	3	ns

6.3.2 Oscillator electrical specifications

6.3.2.1 Oscillator DC electrical specifications Table 16. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	_	3.6	V	
I _{DDOSC}	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	—	500	—	nA	
	• 4 MHz	—	200	—	μA	
	• 8 MHz (RANGE=01)	—	300	_	μΑ	
	• 16 MHz	—	950	_	μΑ	
	• 24 MHz	—	1.2	_	mA	
	• 32 MHz	—	1.5	_	mA	
I _{DDOSC}	Supply current — high-gain mode (HGO=1)					1
	• 32 kHz	—	25	_	μA	
	• 4 MHz	—	400	_	μA	
	• 8 MHz (RANGE=01)	—	500	_	μΑ	
	• 16 MHz	—	2.5	_	mA	
	• 24 MHz	—	3	_	mA	
	• 32 MHz	—	4	_	mA	
C _x	EXTAL load capacitance					2, 3
Cy	XTAL load capacitance	_	—	—		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_	_		MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10		MΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)	—	_	_	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1		MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_			kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200		kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_	_	_	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	

Figure 14. Address latch cycle timing

Figure 15. Write data latch cycle timing

 Table 28. Flexbus full voltage range switching specifications (continued)

Num	Description	Min.	Max.	Unit	Notes
FB4	Data and FB_TA input setup	13.7	—	ns	2
FB5	Data and FB_TA input hold	0.5	_	ns	2

1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W, FB_TBST, FB_TSIZ[1:0], FB_ALE, and FB_TS.

2. Specification is valid for all FB_AD[31:0] and $\overline{\text{FB}_{-}\text{TA}}.$

Figure 21. FlexBus read timing diagram

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
		No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	20.000		818.330	ksps	
C _{rate}	ADC conversion rate	16-bit mode No ADC hardware averaging Continuous conversions enabled, subsequent conversion time	37.037	_	461.467	ksps	5

Table 29. 16-bit ADC operating conditions (continued)

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.
- 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

Figure 23. ADC input impedance equivalency diagram

6.6.1.2 16-bit ADC electrical characteristics

				BBR,			_
Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
I _{DDA_ADC}	Supply current		0.215	_	1.7	mA	3
	ADC asynchronous	• ADLPC = 1, ADHSC = 0	1.2	2.4	3.9	MHz	t _{ADACK} = 1/
	clock source	• ADLPC = 1, ADHSC = 1	2.4	4.0	6.1	MHz	fadack
f _{ADACK}		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter	for sample ti	mes	I		1
TUE	Total unadjusted	12-bit modes	_	±4	±6.8	LSB ⁴	5
	error	 <12-bit modes 	_	±1.4	±2.1		
DNL	Differential non-	12-bit modes	—	±0.7	-1.1 to +1.9	LSB ⁴	5
		 <12-bit modes 	_	±0.2	-0.3 to 0.5		
INL	Integral non-linearity	12-bit modes	—	±1.0	-2.7 to	LSB ⁴	5
		<12-bit modes	_	±0.5	+1.9		
					-0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	—	-4	-5.4	LSB ⁴	$V_{ADIN} = V_{DDA}^{5}$
		<12-bit modes	—	-1.4	-1.8		
EQ	Quantization error	16-bit modes	—	-1 to 0	—	LSB ⁴	
		• ≤13-bit modes	_	-	±0.5		
ENOB	Effective number of	16-bit differential mode					6
	bits	• Avg = 32	12.8	14.5	_	bits	
		• Avg = 4	11.9	13.8	_	bits	
		16-bit single-ended mode					
		• Avg = 32	12.2	13.9	_	bito	
		• Avg = 4	11.4	13.1		DIIS	
						bits	
SINAD	Signal-to-noise plus distortion	See ENOB	6.02 >	KENOB +	1.76	dB	
THD	Total harmonic	16-bit differential mode				dB	7
	distortion	• Avg = 32	—	-94	_		
						dB	
		16-bit single-ended mode	—	-85	_		
		• Avg = 32					
SFDR	Spurious free	16-bit differential mode		05		dB	7
	aynamic range	• Avg = 32	82	95		40	
			70		—	dВ	
		I D-DIT SINGIE-ENDED MODE	/8	90			

Table 30. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Table continues on the next page...

Peripheral operating requirements and behaviors

Figure 25. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode

6.6.1.3 16-bit ADC with PGA operating conditions Table 31. 16-bit ADC with PGA operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{DDA}	Supply voltage	Absolute	1.71	—	3.6	V	
V _{REFPGA}	PGA ref voltage		VREF_OU T	VREF_OU T	VREF_OU T	V	2, 3
V _{ADIN}	Input voltage		V _{SSA}	_	V _{DDA}	V	
V _{CM}	Input Common Mode range		V _{SSA}	_	V _{DDA}	V	
R _{PGAD}	Differential input	Gain = 1, 2, 4, 8	_	128	—	kΩ	IN+ to IN- ⁴
	impedance	Gain = 16, 32	_	64	—		
		Gain = 64	_	32	—		
R _{AS}	Analog source resistance		_	100	—	Ω	5
Τ _S	ADC sampling time		1.25	_	—	μs	6
C _{rate}	ADC conversion	≤ 13 bit modes	18.484	—	450	Ksps	7
	rate	No ADC hardware averaging					
		Continuous conversions enabled					
		Peripheral clock = 50 MHz					
		16 bit modes	37.037	—	250	Ksps	8

rempheral operating requirements and behaviors

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
		Gain=1, Average=32	11.0	14.3	—	bits	
		Gain=2, Average=32	7.9	13.8	_	bits	
		• Gain=4, Average=32	7.3	13.1	—	bits	
		• Gain=8, Average=32	6.8	12.5	—	bits	
		Gain=16, Average=32	6.8	11.5	_	bits	
		• Gain=32, Average=32	7.5	10.6	_	bits	
		• Gain=64, Average=32					
SINAD	Signal-to-noise plus distortion ratio	See ENOB	6.02	× ENOB +	1.76	dB	

Table 32. 16-bit ADC with PGA characteristics (continued)

- 1. Typical values assume V_{DDA} =3.0V, Temp=25°C, f_{ADCK}=6MHz unless otherwise stated.
- 2. This current is a PGA module adder, in addition to ADC conversion currents.
- Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong function of input common mode voltage (V_{CM}) and the PGA gain.
- 4. Gain = 2^{PGAG}
- 5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.
- 6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the PGA reference voltage and gain setting.

6.6.2 CMP and 6-bit DAC electrical specifications

Table 33. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71	—	3.6	V
I _{DDHS}	Supply current, High-speed mode (EN=1, PMODE=1)	—	_	200	μA
I _{DDLS}	Supply current, low-speed mode (EN=1, PMODE=0)	—	_	20	μA
V _{AIN}	Analog input voltage	$V_{\rm SS} - 0.3$	_	V _{DD}	V
V _{AIO}	Analog input offset voltage	—	_	20	mV
V _H	Analog comparator hysteresis ¹				
	 CR0[HYSTCTR] = 00 	_	5	_	mV
	 CR0[HYSTCTR] = 01 	_	10	_	mV
	• CR0[HYSTCTR] = 10	_	20	_	mV
	 CR0[HYSTCTR] = 11 	_	30	_	mV
V _{CMPOh}	Output high	V _{DD} – 0.5	_		V
V _{CMPOI}	Output low	—	—	0.5	V
t _{DHS}	Propagation delay, high-speed mode (EN=1, PMODE=1)	20	50	200	ns
t _{DLS}	Propagation delay, low-speed mode (EN=1, PMODE=0)	80	250	600	ns
	Analog comparator initialization delay ²	—	—	40	μs
I _{DAC6b}	6-bit DAC current adder (enabled)	_	7	_	μA

rempheral operating requirements and behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V _{DDA} and temperature=25C	1.1915	1.195	1.1977	V	1
V _{out}	Voltage reference output — factory trim	1.1584	—	1.2376	V	1
V _{out}	Voltage reference output — user trim	1.193	—	1.197	V	1
V _{step}	Voltage reference trim step	_	0.5	—	mV	1
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range)	_	—	80	mV	1
I _{bg}	Bandgap only current	—	—	80	μA	1
I _{hp}	High-power buffer current	—	—	1	mA	1
ΔV_{LOAD}	Load regulation				mV	1, 2
	• current = + 1.0 mA	_	2	_		
	• current = - 1.0 mA	_	5	_		
T _{stup}	Buffer startup time	—	_	100	μs	
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range)	_	2	_	mV	1

Table 37. VREF full-range operating behaviors

1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.

2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 38. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	

Table 39. VREF limited-range operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim	1.173	1.225	V	

6.7 Timers

See General switching specifications.

6.8 Communication interfaces

Figure 36. DSPI classic SPI timing — slave mode

6.8.9 Inter-Integrated Circuit Interface (I²C) timing Table 49. I²C timing

Characteristic	Symbol	Standa	Standard Mode		Fast Mode		
		Minimum	Maximum	Minimum	Maximum		
SCL Clock Frequency	f _{SCL}	0	100	0	400 ¹	kHz	
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6		μs	
LOW period of the SCL clock	t _{LOW}	4.7	_	1.25	—	μs	
HIGH period of the SCL clock	t _{HIGH}	4	_	0.6	—	μs	
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	_	0.6	_	μs	
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ²	3.45 ³	04	0.9 ²	μs	
Data set-up time	t _{SU} ; DAT	250 ⁵	_	100 ^{3,6}	—	ns	
Rise time of SDA and SCL signals	t _r	—	1000	20 +0.1C _b ⁷	300	ns	
Fall time of SDA and SCL signals	t _f	—	300	20 +0.1C _b ⁶	300	ns	
Set-up time for STOP condition	t _{SU} ; STO	4	_	0.6	—	μs	
Bus free time between STOP and START condition	t _{BUF}	4.7	_	1.3	—	μs	
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns	

- 1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only be achieved when using a pin configured for high drive across the full voltage range and when using the a pin configured for low drive with VDD ≥ 2.7 V.
- The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines.
- 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 4. Input signal Slew = 10 ns and Output Load = 50 pF
- 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- A Fast mode I²C bus device can be used in a Standard mode I2C bus system, but the requirement t_{SU; DAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a

Num	Symbol	Description	Min.	Max.	Unit
		Operating voltage	1.71	3.6	V
		Card input clock			
SD1	fpp	Clock frequency (low speed)	0	400	kHz
	fpp	Clock frequency (SD\SDIO full speed\high speed)	0	25\50	MHz
	fpp	Clock frequency (MMC full speed\high speed)	0	20\50	MHz
	f _{OD}	Clock frequency (identification mode)	0	400	kHz
SD2	t _{WL}	Clock low time	7	—	ns
SD3	t _{WH}	Clock high time	7	—	ns
SD4	t _{TLH}	Clock rise time	_	3	ns
SD5	t _{THL}	Clock fall time	_	3	ns
		SDHC output / card inputs SDHC_CMD, SDHC_DAT	(reference to	SDHC_CLK)	
SD6	t _{OD}	SDHC output delay (output valid)	-5	6.5	ns
		SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to	SDHC_CLK)	
SD7	t _{ISU}	SDHC input setup time	5	—	ns
SD8	t _{IH}	SDHC input hold time	1.3	_	ns

Table 51. SDHC switching specifications over the full operating voltage range

Figure 38. SDHC timing

6.8.12 I2S/SAI switching specifications

This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP]

Peripheral operating requirements and behaviors

Figure 42. I2S/SAI timing — slave modes

6.8.12.3 VLPR, VLPW, and VLPS mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes.

 Table 56.
 I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	62.5	_	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	250	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	45	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	0	_	ns
S7	I2S_TX_BCLK to I2S_TXD valid	—	45	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	-1.6	_	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	45	_	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns

onnensions

- 1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.
- 2. Fixed external capacitance of 20 pF.
- 3. REFCHRG = 2, EXTCHRG=0.
- 4. REFCHRG = 0, EXTCHRG = 10.
- 5. $V_{DD} = 3.0 V.$
- 6. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.
- 7. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.
- 8. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; lext = 16.
- 9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; lext = 16.
- 10. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; lext = 16.
- 11. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes. Sensitivity depends on the configuration used. The documented values are provided as examples calculated for a specific configuration of operating conditions using the following equation: (C_{ref} * I_{ext})/(I_{ref} * PS * NSCN)

The typical value is calculated with the following configuration:

I_{ext} = 6 μA (EXTCHRG = 2), PS = 128, NSCN = 2, I_{ref} = 16 μA (REFCHRG = 7), C_{ref} = 1.0 pF

The minimum value is calculated with the following configuration:

I_{ext} = 2 μA (EXTCHRG = 0), PS = 128, NSCN = 32, I_{ref} = 32 μA (REFCHRG = 15), C_{ref} = 0.5 pF

The highest possible sensitivity is the minimum value because it represents the smallest possible capacitance that can be measured by a single count.

- 12. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1 electrode, EXTCHRG = 7.
- 13. REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window.

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number				
256-pin MAPBGA	98ASA00346D				

8 Pinout

8.1 Pins with active pull control after reset

The following pins are actively pulled up or down after reset:

256 MAP BGA	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
E14	PTC4/ LLWU_P8	DISABLED		PTC4/ LLWU_P8	SPI0_PCS0	UART1_TX	FTM0_CH3	FB_AD11/ NFC_DATA8	CMP1_OUT	I2S1_TX_ BCLK	
E15	PTC5/ LLWU_P9	DISABLED		PTC5/ LLWU_P9	SPI0_SCK	LPTMR0_ ALT2	I2S0_RXD0	FB_AD10/ NFC_DATA7	CMP0_OUT	I2S1_TX_FS	
F12	PTC6/ LLWU_P10	CMP0_IN0	CMP0_IN0	PTC6/ LLWU_P10	SPI0_SOUT	PDB0_EXTRG	I2S0_RX_ BCLK	FB_AD9/ NFC_DATA6	I2S0_MCLK		
G12	PTC7	CMP0_IN1	CMP0_IN1	PTC7	SPI0_SIN	USB_SOF_ OUT	I2S0_RX_FS	FB_AD8/ NFC_DATA5			
H12	PTC8	ADC1_SE4b/ CMP0_IN2	ADC1_SE4b/ CMP0_IN2	PTC8		FTM3_CH4	I2S0_MCLK	FB_AD7/ NFC_DATA4			
F11	PTC9	ADC1_SE5b/ CMP0_IN3	ADC1_SE5b/ CMP0_IN3	PTC9		FTM3_CH5	I2S0_RX_ BCLK	FB_AD6/ NFC_DATA3	FTM2_FLT0		
G11	PTC10	ADC1_SE6b	ADC1_SE6b	PTC10	I2C1_SCL	FTM3_CH6	I2S0_RX_FS	FB_AD5/ NFC_DATA2	I2S1_MCLK		
H11	PTC11/ LLWU_P11	ADC1_SE7b	ADC1_SE7b	PTC11/ LLWU_P11	I2C1_SDA	FTM3_CH7	12S0_RXD1	FB_RW_b/ NFC_WE			
J12	PTC12	DISABLED		PTC12		UART4_RTS_ b		FB_AD27	FTM3_FLT0		
K13	PTC13	DISABLED		PTC13		UART4_CTS_ b		FB_AD26			
J11	PTC14	DISABLED		PTC14		UART4_RX		FB_AD25			
K12	PTF9	CMP2_IN4	CMP2_IN4	PTF9			UART3_RTS_ b				
L12	PTF10	CMP2_IN5	CMP2_IN5	PTF10			UART3_CTS_ b				
F10	PTC15	DISABLED		PTC15		UART4_TX		FB_AD24			
N7	VSS	VSS	VSS								
L10	VDD	VDD	VDD								
K11	PTF11	DISABLED		PTF11			UART2_RTS_ b				
L11	PTF12	DISABLED		PTF12			UART2_CTS_ b				
F9	PTC16	DISABLED		PTC16	CAN1_RX	UART3_RX	ENET0_1588_ TMR0	FB_CS5_b/ FB_TSIZ1/ FB_BE23_16_ b	NFC_RB		
E9	PTC17	DISABLED		PTC17	CAN1_TX	UART3_TX	ENET0_1588_ TMR1	FB_CS4_b/ FB_TSIZ0/ FB_BE31_24_ b	NFC_CE0_b		
M9	PTC18	DISABLED		PTC18		UART3_RTS_ b	ENET0_1588_ TMR2	FB_TBST_b/ FB_CS2_b/ FB_BE15_8_b	NFC_CE1_b		
M8	PTC19	DISABLED		PTC19		UART3_CTS_ b	ENET0_1588_ TMR3	FB_CS3_b/ FB_BE7_0_b	FB_TA_b		
L8	PTD0/ LLWU_P12	DISABLED		PTD0/ LLWU_P12	SPI0_PCS0	UART2_RTS_ b	FTM3_CH0	FB_ALE/ FB_CS1_b/ FB_TS_b	12S1_RXD1		

NP

Pinout

256	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
MAP BGA											
C12	DDR A3	DISABLED		DDR A3							
E10	DDR VDD	DDR VDD		DDR VDD							
D12	DDR_VSS	DDR_VSS		DDR_VSS							
C10	DDR_A4	DISABLED		DDR_A4							
A13	DDR_A5	DISABLED		DDR_A5							
A14	DDR_A6	DISABLED		DDR_A6							
D11	DDR_A7	DISABLED		DDR_A7							
A15	DDR_A8	DISABLED		DDR_A8							
E12	DDR_VDD	DDR_VDD		DDR_VDD							
E3	DDR_VSS	DDR_VSS		DDR_VSS							
B16	DDR_CKE	DISABLED		DDR_CKE							
B15	DDR_A9	DISABLED		DDR_A9							
B13	DDR_A10	DISABLED		DDR_A10							
B14	DDR_A11	DISABLED		DDR_A11							
C15	DDR_A12	DISABLED		DDR_A12							
D16	DDR_A13	DISABLED		DDR_A13							
D15	DDR_A14	DISABLED		DDR_A14							
E16	DDR_RAS_B	DISABLED		DDR_RAS_B							
C13	DDR_CAS_B	DISABLED		DDR_CAS_B							
D14	DDR_CS_B	DISABLED		DDR_CS_B							
D13	DDR_WE_B	DISABLED		DDR_WE_B							

8.3 K61 Pinouts

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. Freescale reserves the right to make changes without further notice to any products herein.

Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, the Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2012–2015 Freescale Semiconductor, Inc.

Document Number K61P256M150SF3 Revision 6, 09/2015

