

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, Temp Sensor, WDT
Number of I/O	32
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1.25K x 8
Voltage - Supply (Vcc/Vdd)	2.8V ~ 3.6V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f018-gqr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Figure 6.3. CPT0CN: Comparator 0 Control Register	39
	Figure 6.4. CPT1CN: Comparator 1 Control Register	40
	Table 6.1. Comparator Electrical Characteristics	41
7.	VOLTAGE REFERENCE	. 42
	Figure 7.1. Voltage Reference Functional Block Diagram	
	Figure 7.2. REFOCN: Reference Control Register	
	Table 7.1. Reference Electrical Characteristics	
8.	CIP-51 CPU	
0.	Figure 8.1. CIP-51 Block Diagram.	
	8.1. INSTRUCTION SET	
	Table 8.1. CIP-51 Instruction Set Summary	
	8.2. MEMORY ORGANIZATION	
	Figure 8.2. Memory Map	
	8.3. SPECIAL FUNCTION REGISTERS.	
	Table 8.2. Special Function Register Memory Map	
	Table 8.3. Special Function Registers	
	Figure 8.3. SP: Stack Pointer	
	Figure 8.4. DPL: Data Pointer Low Byte	
	Figure 8.5. DPH: Data Pointer High Byte	
	Figure 8.6. PSW: Program Status Word	
	Figure 8.7. ACC: Accumulator	
	Figure 8.8. B: B Register	
	8.4. INTERRUPT HANDLER	
	Table 8.4. Interrupt Summary	
	Figure 8.9. IE: Interrupt Enable	61
	Figure 8.10. IP: Interrupt Priority	
	Figure 8.11. EIE1: Extended Interrupt Enable 1	63
	Figure 8.12. EIE2: Extended Interrupt Enable 2	64
	Figure 8.13. EIP1: Extended Interrupt Priority 1	65
	Figure 8.14. EIP2: Extended Interrupt Priority 2	
	8.5. Power Management Modes	67
	Figure 8.15. PCON: Power Control Register	68
9.	FLASH MEMORY	. 69
	9.1. Programming The Flash Memory	69
	Table 9.1. FLASH Memory Electrical Characteristics	69
	9.2. Non-volatile Data Storage	
	9.3. Security Options	
	Figure 9.1. PSCTL: Program Store RW Control	
	Figure 9.2. Flash Program Memory Security Bytes	
	Figure 9.3. FLACL: Flash Access Limit	
	Figure 9.4. FLSCL: Flash Memory Timing Prescaler	
10.	EXTERNAL RAM	. 74
	Figure 10.1. EMI0CN: External Memory Interface Control	74
11.	RESET SOURCES	
	Figure 11.1. Reset Sources Diagram	75
	11.1. Power-on Reset	76
	11.2. Software Forced Reset	
	Figure 11.2. VDD Monitor Timing Diagram	
	11.3. Power-fail Reset	
	11.4. External Reset	
	11.5. Missing Clock Detector Reset	
	11.6. Comparator 0 Reset	
	11.7. External CNVSTR Pin Reset	
	11.8. Watchdog Timer Reset	77

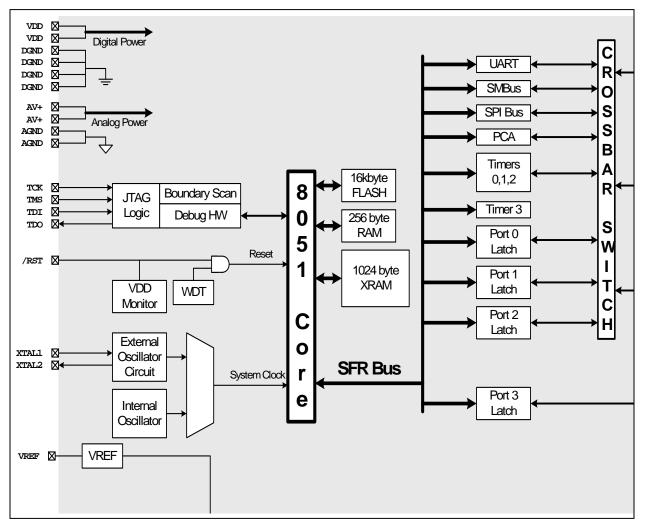
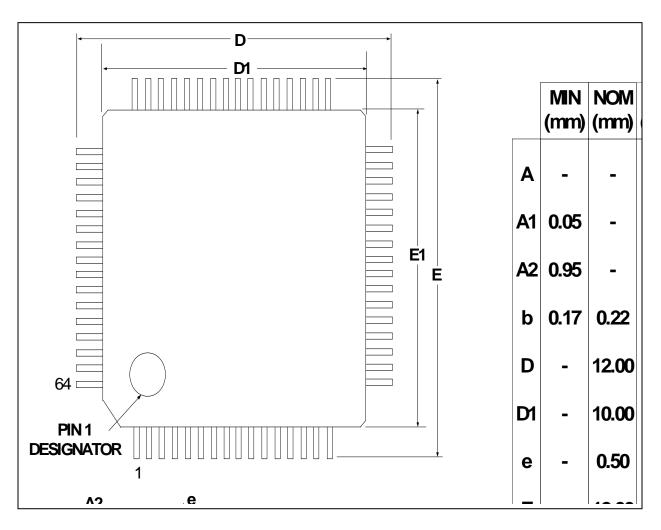
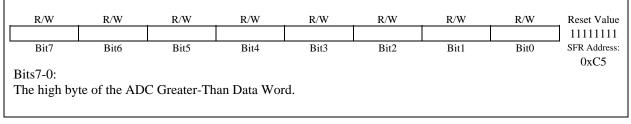



Figure 1.2. C8051F019 Block Diagram

Figure 4.2. TQFP-64 Package Drawing



5.3. ADC Programmable Window Detector

The ADC programmable window detector is very useful in many applications. It continuously compares the ADC output to user-programmed limits and notifies the system when an out-of-band condition is detected. This is especially effective in an interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response times. The window detector interrupt flag (ADWINT in ADCOCN) can also be used in polled mode. The high and low bytes of the reference words are loaded into the ADC Greater-Than and ADC Less-Than registers (ADC0GTH, ADC0GTL, ADC0LTH, and ADC0LTL). Figure 5.14 and Figure 5.15 show example comparisons for reference. Notice that the window detector flag can be asserted when the measured data is inside or outside the user-programmed limits, depending on the programming of the ADC0GTX and ADC0LTX registers.

Figure 5.10. ADC0GTH: ADC Greater-Than Data High Byte Register

Figure 5.11. ADC0GTL: ADC Greater-Than Data Low Byte Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	11111111 SFR Address: 0xC4
Definition:	te of the ADC er-Than Data							

Figure 5.12. ADC0LTH: ADC Less-Than Data High Byte Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value 00000000
Bit7 Bits7-0: The high by	Bit6 wte of the AD	Bit5 C Less-Than	Bit4 Data Word.	Bit3	Bit2	Bit1	Bit0	SFR Address: 0xC7

Figure 5.13. ADC0LTL: ADC Less-Than Data Low Byte Register

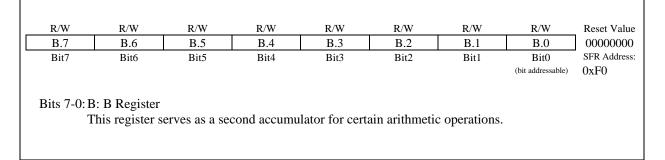

	•					• •		
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
								00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xC6
Bits7-0:								
These bits a	are the low by	te of the AD	C Less-Than	Data Word.				
Definition:								
ADC Less-	Than Data Wo	ord = ADC0	LTH:ADC0I	TL				

Figure 8.7.	ACC: Accumulator
I Igui C 0.7.	noon neculiation

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
ACC.7	ACC.6	ACC.5	ACC.4	ACC.3	ACC.2	ACC.1	ACC.0	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
							(bit addressable)	0xE0
	ACC: Accumu		lator for arith	nmetic operat	ions.			

Figure 8.8. B: B Register

Figure 8.10. IP: Interrupt Priority

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
-	-	PT2	PS	PT1	PX1	PT0	PX0	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address
							(bit addressable)	0xB8
Bits7-6	: UNUSED. Re	ad = 11b, W	rite = don't o	care.				
Bit5:	PT2 Timer 2 I This bit sets th			intomunto				
	0: Timer 2 int							
	1: Timer 2 int							
		r	81) · · · ·				
Bit4:	PS: Serial Port							
	This bit sets th 0: UART inte				nterrupts.			
	1: UART inte							
	1. Orner inte	inapis set to	ingii priority					
Bit3:	PT1: Timer 1							
	This bit sets th							
	0: Timer 1 int 1: Timer 1 int							
	1: Timer I int	errupts set to	nign priorit	y level.				
Bit2:	PX1: External							
	This bit sets th				nterrupts.			
	0: External In							
	1: External In	terrupt 1 set	to high prior	ity level.				
Bit1:	PT0: Timer 0	Interrupt Prie	ority Control					
	This bit sets th							
	0: Timer 0 int	1	1 .					
	1: Timer 0 int	errupt set to	high priority	level.				
Bit0:	PX0: External	Interrupt 0 I	Priority Cont	rol.				
	This bit sets th				nterrupts.			
	0: External In	-	-	•				
	1: External In	terrupt 0 set	to high prior	ity level.				

8.5. Power Management Modes

The CIP-51 core has two software programmable power management modes: Idle and Stop. Idle mode halts the CPU while leaving the external peripherals and internal clocks active. In Stop mode, the CPU is halted, all interrupts and timers (except the Missing Clock Detector) are inactive, and the system clock is stopped. Since clocks are running in Idle mode, power consumption is dependent upon the system clock frequency and the number of peripherals left in active mode before entering Idle. Stop mode consumes the least power. Figure 8.15 describes the Power Control Register (PCON) used to control the CIP-51's power management modes.

Although the CIP-51 has Idle and Stop modes built in (as with any standard 8051 architecture), power management of the entire MCU is better accomplished by enabling/disabling individual peripherals as needed. Each analog peripheral can be disabled when not in use and put into low power mode. Digital peripherals, such as timers or serial buses, draw little power whenever they are not in use. Turning off the oscillator saves even more power, but requires a reset to restart the MCU.

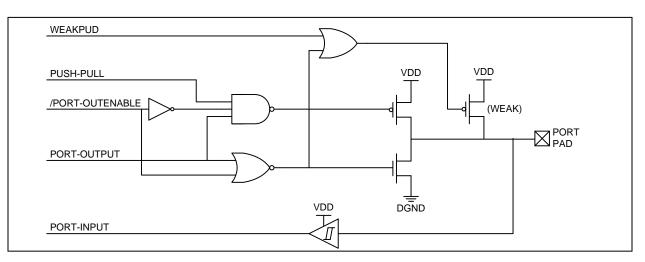
8.5.1. Idle Mode

Setting the Idle Mode Select bit (PCON.0) causes the CIP-51 to halt the CPU and enter Idle mode as soon as the instruction that sets the bit completes. All internal registers and memory maintain their original data. All analog and digital peripherals can remain active during Idle mode.

Idle mode is terminated when an enabled interrupt or /RST is asserted. The assertion of an enabled interrupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU will resume operation. The pending interrupt will be serviced and the next instruction to be executed after the return from interrupt (RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0x0000.

Note: If the instruction following the write of the IDLE bit is a single-byte instruction and an interrupt occurs during the execution phase of the instruction that sets the IDLE bit, the CPU may not wake from Idle mode when a future interrupt occurs. Any instructions that set the IDLE bit should be followed by an instruction that has 2 or more opcode bytes, for example:

// in 'C': PCON = 0x01; PCON = PCON;	<pre>// set IDLE bit // followed by a 3-cycle dummy instruction</pre>
; in assembly: ORL PCON, #01h MOV PCON, PCON	; set IDLE bit ; followed by a 3-cycle dummy instruction


If enabled, the WDT will eventually cause an internal watchdog reset and thereby terminate the Idle mode. This feature protects the system from an unintended permanent shutdown in the event of an inadvertent write to the PCON register. If this behavior is not desired, the WDT may be disabled by software prior to entering the Idle mode if the WDT was initially configured to allow this operation. This provides the opportunity for additional power savings, allowing the system to remain in the Idle mode indefinitely, waiting for an external stimulus to wake up the system. Refer to Section 11.8 Watchdog Timer for more information on the use and configuration of the WDT.

8.5.2. Stop Mode

Setting the Stop Mode Select bit (PCON.1) causes the CIP-51 to enter Stop mode as soon as the instruction that sets the bit completes. In Stop mode, the CPU and oscillators are stopped, effectively shutting down all digital peripherals. Each analog peripheral must be shut down individually prior to entering Stop Mode. Stop mode can only be terminated by an internal or external reset. On reset, the CIP-51 performs the normal reset sequence and begins program execution at address 0x0000.

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Value
SYSCKE	T2EXE	T2E	INT1E	T1E	INT0E	T0E	CP10EN	00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Address:
								0xE2
Bit7:	SYSCKE: SY	SCLK Outpu	it Enable Bit					
	0: SYSCLK u	ınavailable a	t Port pin.					
	1: SYSCLK of	output routed	to Port Pin.					
Bit6:	T2EXE: T2EX	K Enable Bit						
	0: T2EX unav	vailable at Po	ort pin.					
	1: T2EX rout	ed to Port Pi	n.					
Bit5:	T2E: T2 Enab	le Bit						
	0: T2 unavaila	able at Port p	oin.					
	1: T2 routed t	o Port Pin.						
Bit4:	INT1E: /INT1							
	0: /INT1 unav		-					
	1: /INT1 rout		n.					
Bit3:	T1E: T1 Enab							
	0: T1 unavail	-	oin.					
	1: T1 routed t							
Bit2:	INTOE: /INTO							
	0: /INTO unav		1					
	1: /INT0 rout		n.					
Bit1:	T0E: T0 Enab							
	0: T0 unavail	-	oin.					
	1: T0 routed t							
Bit0:	CP1OEN: Con			Bit				
	0: CP1 unava		pin.					
	1: CP1 routed	to Port Pin.						

Figure 13.4. XBR1: Port I/O CrossBar Register 1

14.6.1. Control Register

The SMBus Control register SMB0CN is used to configure and control the SMBus interface. All of the bits in the register can be read or written by software. Two of the control bits are also affected by the SMBus hardware. The Serial Interrupt flag (SI, SMB0CN.3) is set to logic 1 by the hardware when a valid serial interrupt condition occurs. It can only be cleared by software. The Stop flag (STO, SMB0CN.4) is cleared to logic 0 by hardware when a STOP condition is present on the bus.

Setting the ENSMB flag to logic 1 enables the SMBus interface. Clearing the ENSMB flag to logic 0 disables the SMBus interface and removes it from the bus. Momentarily clearing the ENSMB flag and then resetting it to logic 1 will reset a SMBus communication. However, ENSMB should not be used to temporarily remove a device from the bus since the bus state information will be lost. Instead, the Assert Acknowledge (AA) flag should be used to temporarily remove the device from the bus (see description of AA flag below).

Setting the Start flag (STA, SMB0CN.5) to logic 1 will put the SMBus in a master mode. If the bus is free, the SMBus hardware will generate a START condition. If the bus is not free, the SMBus hardware waits for a STOP condition to free the bus and then generates a START condition after a 5 μ s delay per the SMB0CR value. (In accordance with the SMBus protocol, the SMBus interface also considers the bus free if the bus is idle for 50 μ s and no STOP condition was recognized.) If STA is set to logic 1 while the SMBus is in master mode and one or more bytes have been transferred, a repeated START condition will be generated. To ensure proper operation, the STO flag should be explicitly cleared before setting STA to a logic 1.

When the Stop flag (STO, SMB0CN.4) is set to logic 1 while the SMBus interface is in master mode, the hardware generates a STOP condition on the SMBus. In a slave mode, the STO flag may be used to recover from an error condition. In this case, a STOP condition is not generated on the SMBus, but the SMBus hardware behaves as if a STOP condition has been received and enters the "not addressed" slave receiver mode. The SMBus hardware automatically clears the STO flag to logic 0 when a STOP condition is detected on the bus.

The Serial Interrupt flag (SI, SMB0CN.3) is set to logic 1 by hardware when the SMBus interface enters one of 27 possible states. If interrupts are enabled for the SMBus interface, an interrupt request is generated when the SI flag is set. The SI flag must be cleared by software. While SI is set to logic 1, the clock-low period of the serial clock will be stretched and the serial transfer is suspended.

The Assert Acknowledge flag (AA, SMB0CN.2) is used to set the level of the SDA line during the acknowledge clock cycle on the SCL line. Setting the AA flag to logic 1 will cause an ACKNOWLEDGE (low level on SDA) to be sent during the acknowledge cycle if the device has been addressed. Setting the AA flag to logic 0 will cause a NOT ACKNOWLEDGE (high level on SDA) to be sent during acknowledge cycle. After the transmission of a byte in slave mode, the slave can be temporarily removed from the bus by clearing the AA flag. The slave's own address and general call address will be ignored. To resume operation on the bus, the AA flag must be reset to logic 1 to allow the slave's address to be recognized.

Setting the SMBus Free Timer Enable bit (FTE, SMB0CN.1) to logic 1 enables the SMBus Free Timeout feature. If SCL and SDA remain high for the SMBus Free Timeout given in the SMBus Clock Rate Register (Figure 14.5), the bus will be considered free and a Start will be generated if pending. The bus free period should be greater than 50µs.

Setting the SMBus timeout enable bit (TOE, SMB0CN.0) to logic 1 enables Timer 3 to count up when the SCL line is low and Timer 3 is enabled. If Timer 3 overflows, a Timer 3 interrupt will be generated, which will alert the CPU that a SMBus SCL low timeout has occurred.

14.6.2. Clock Rate Register

R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu 00000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Addres 0xCF
	SMB0CR.[7:0 The SMB0CR mode. The 8 The timer cour The SMB0CR unsigned 8-bit Hz: The resulting \$	Clock Rate : -bit word sto nts up, and w setting shou value in regi SMB0CR SCL signal h	register cont red in the S hen it rolls c ld be bounde ister SMB0C < ((288 - 0.8 igh and low	rols the frequ MB0CR Reg over to 0x00, ed by the follo R, and <i>SYSC</i> 35 * SYSCL	(ister preload the SCL loginary constraints) (in the SCL loginary constra	Is a dedicated ic state toggle on, where <i>SN</i> stem clock fre	d 8-bit timer es. <i>MBOCR</i> is the equency in	r
	Using the sam the following	ne value of S equation:	MB0CR fro	OCR) / SYSCA m above, the 6 – SMBOCR	e Bus Free T	-	od is given i	n

Figure 14.5. SMB0CR: SMBus Clock Rate Register

15.1. Signal Descriptions

The four signals used by the SPI (MOSI, MISO, SCK, NSS) are described below.

15.1.1. Master Out, Slave In

The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It is used to serially transfer data from the master to the slave. Data is transferred most-significant bit first.

15.1.2. Master In, Slave Out

The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device. It is used to serially transfer data from the slave to the master. Data is transferred most-significant bit first. A SPI slave places the MISO pin in a high-impedance state when the slave is not selected.

15.1.3. Serial Clock

The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used to synchronize the transfer of data between the master and slave on the MOSI and MISO lines.

15.1.4. Slave Select

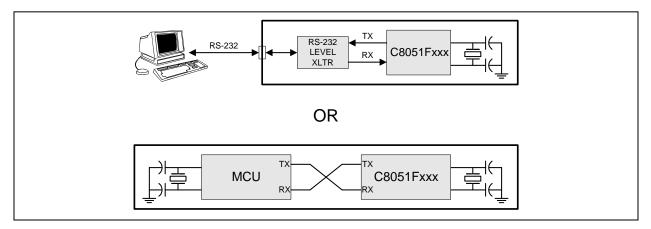
The slave select (NSS) signal is an input used to select the SPI module when in slave mode by a master, or to disable the SPI module when in master mode. When in slave mode, it is pulled low to initiate a data transfer and remains low for the duration of the transfer.

15.4. SPI Special Function Registers

The SPI is accessed and controlled through four special function registers in the system controller: SPIOCN Control Register, SPIODAT Data Register, SPIOCFG Configuration Register, and SPIOCKR Clock Rate Register. The four special function registers related to the operation of the SPI Bus are described in the following section.

Figure 15.5.	SPI0CEG:	SPI	Configuration	Register
11gui c 15.5.	DI IUCI G.		Comiguiation	Register

R/W	R/W		R	R	R	R/W	R/W	R/W	Reset Valu
CKPHA	CKPO	L B	BC2	BC1	BC0	SPIFRS2	SPIFRS1	SPIFRS0	00000111
Bit7	Bit6	E	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	SFR Addres 0x9A
Bit7:	CKPHA: S	SPI Clock	Phase.						
	This bit co	ontrols the	e SPI cloc	k phase.					
	0: Data san	mpled on	first edge	of SCK pe	eriod.				
	1: Data sai	mpled on	second e	lge of SCK	period.				
Bit6:	CKPOL: S	SPI Clock	Polarity.						
	This bit co	ontrols the	e SPI cloc	k polarity.					
	0: SCK lin	ne low in i	idle state.						
	1: SCK lin	he high in	idle state						
Bits5-3:	BC2-BC0:	: SPI Bit (Count.						
	Indicates w	which of t	the up to 8	8 bits of the	e SPI word h	nave been tran	smitted.		
		BC2-BC	0	Bit Tra	nsmitted				
	0	0	0	Bit 0	(LSB)				
	0	0	1	Bit 1					
	0	1	0	Bit 2					
	0	4	1	D'- 0					
	0	1	1	Bit 3					
	0	0	0	Bit 3 Bit 4					
	-		-						
	1	0	0	Bit 4					
	1 1 1 1	0 0 1 1	0 1 0 1	Bit 4 Bit 5 Bit 6 Bit 7					
Bits2-0:	1111SPIFRS2-These three	0 0 1 SPIFRS0 ee bits dete ata transfe	0 1 0 1 : SPI Fran ermine th er in mast	Bit 4 Bit 5 Bit 6 Bit 7 ne Size. e number o er mode. T	(MSB) If bits to shi They are ign	ft in/out of the ored in slave		gister	
Bits2-0:	1 1 1 1 SPIFRS2 These thre during a data	0 0 1 SPIFRS0: se bits dete ata transfe SPIFRS	0 1 0 : SPI Frar ermine th er in mast	Bit 4Bit 5Bit 6Bit 7ne Size.e number oer mode. TBits Shi	(MSB) If bits to shi They are ign			gister	
Bits2-0:	1 1 1 1 SPIFRS2-: These three during a data 0	0 0 1 SPIFRS0: ee bits dete ata transfe SPIFRS 0	0 1 0 : SPI Frar ermine th er in mast	Bit 4Bit 5Bit 6Bit 7ne Size.e number oer mode. TBits Shi1	(MSB) If bits to shi They are ign			gister	
Bits2-0:	11111SPIFRS2-3These three during a data data data data data data data d	0 0 1 SPIFRS0: we bits detern ata transfe SPIFRS 0 0 0	0 1 0 1 : SPI Frar ermine th er in mast 0 1	Bit 4Bit 5Bit 6Bit 7ne Size.e number oer mode. TBits Shi12	(MSB) If bits to shi They are ign			gister	
Bits2-0:	1 1 1 1 SPIFRS2-: These three during a data 0	0 0 1 SPIFRS0: ee bits dete ata transfe SPIFRS 0	0 1 0 : SPI Frar ermine th er in mast	Bit 4Bit 5Bit 6Bit 7ne Size.e number oer mode. TBits Shi1	(MSB) If bits to shi They are ign			gister	
Bits2-0:	111111SPIFRS2-3These threeduring a data000000	0 0 1 SPIFRS0: ee bits dete ata transfe SPIFRS 0 0 1	0 1 0 1 : SPI Fran ermine th er in mast 0 1 0	Bit 4Bit 5Bit 6Bit 7ne Size.e number oer mode. TBits Shi123	(MSB) If bits to shi They are ign			gister	
Bits2-0:	111111SPIFRS2-3These threeduring a data000000	0 0 1 SPIFRS0 ee bits dete ata transfe SPIFRS 0 0 0 1 1	0101: SPI Franceermine the er in mast01010	Bit 4Bit 5Bit 6Bit 7ne Size.e number oer mode. TBits Shi1234	(MSB) If bits to shi They are ign			gister	
Bits2-0:	111111SPIFRS2-3These threeduring a data000000	0 0 1 1 SPIFRS0 ee bits dete ata transfe SPIFRS 0 0 0 1 1 0	0 1 0 1 : SPI Frar ermine th er in mast 0 1 0 1 0	Bit 4Bit 5Bit 6Bit 7ne Size.e number oer mode. 7Bits Shi12345	(MSB) If bits to shi They are ign			gister	



The Timer 2 overflow rate, when in *Baud Rate Generator Mode* and using an internal clock source, is determined solely by the Timer 2 16-bit reload value (RCAP2H:RCAP2L). The Timer 2 clock source is fixed at SYSCLK/2. The Timer 2 overflow rate can be calculated as follows:

$T2_OVERFLOWRATE = (SYSCLK/2) / (65536 - [RCAP2H:RCAP2L]).$

Timer 2 can be selected as the baud rate generator for RX and/or TX by setting RCLK (T2CON.5) and/or TCLK (T2CON.4), respectively. When either RCLK or TCLK is set to logic 1, Timer 2 interrupts are automatically disabled and the timer is forced into *Baud Rate Generator Mode* with SYSCLK/2 as its clock source. If a different timebase is required, setting the C/T2 bit (T2CON.1) to logic 1 will allow Timer 2 to be clocked from the external input pin T2. See the Timers section for complete timer configuration details.

Figure 16.5. UART Modes 1, 2, and 3 Interconnect Diagram

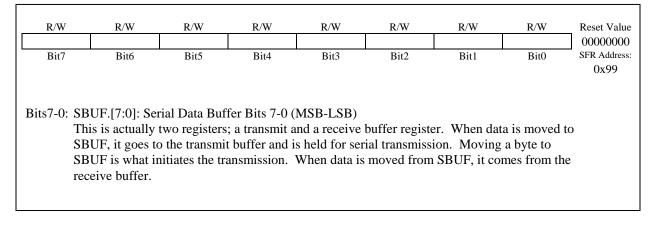
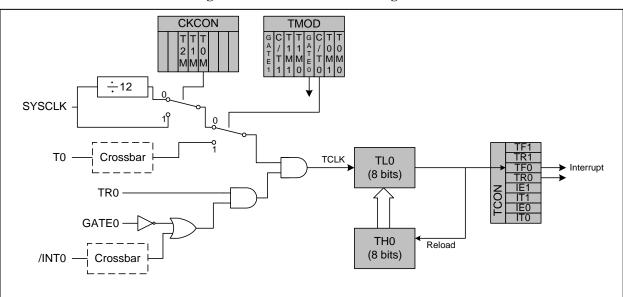
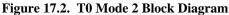

-							
Oscillator Frequency (MHz)	Divide Factor	Timer 1 Load Value*	Resulting Baud Rate**				
24.0	208	0xF3	115200 (115384)				
23.592	205	0xF3	115200 (113423)				
22.1184	192	0xF4	115200				
18.432	160	0xF6	115200				
16.5888	144	0xF7	115200				
14.7456	128	0xF8	115200				
12.9024	112	0xF9	115200				
11.0592	96	0xFA	115200				
9.216	80	0xFB	115200				
7.3728	64	0xFC	115200				
5.5296	48	0xFD	115200				
3.6864	32	0xFE	115200				
1.8432	16	0xFF	115200				
24.576	320	0xEC	76800				
25.0	434	0xE5	57600 (57870)				
25.0	868	0xCA	28800				
24.576	848	0xCB	28800 (28921)				
24.0	833	0xCC	28800 (28846)				
23.592	819	0xCD	28800 (28911)				
22.1184	768	0xD0	28800				
18.432	640	0xD8	28800				
16.5888	576	0xDC	28800				
14.7456	512	0xE0	28800				
12.9024	448	0xE4	28800				
11.0592	384	0xE8	28800				
9.216	320	0xEC	28800				
7.3728	256	0xF0	28800				
5.5296	192	0xF4	28800				
3.6864	128	0xF8	28800				
1.8432	64	0xFC	28800				

Table 16.2. Oscillator Frequencies for Standard Baud Rates

* Assumes SMOD=1 and T1M=1.

** Numbers in parenthesis show the actual baud rate.


Figure 16.8	SBUF: Serial	(UART) Data	Buffer Register
-------------	---------------------	-------------	------------------------



17.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload

Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start value. The TL0 holds the count and TH0 holds the reload value. When the count in TL0 overflows from all ones to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is not changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be correct. When in Mode 2, Timer 1 operates identically to Timer 0. Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0.

Figure 17.7. TL0: Timer 0 Low Byte

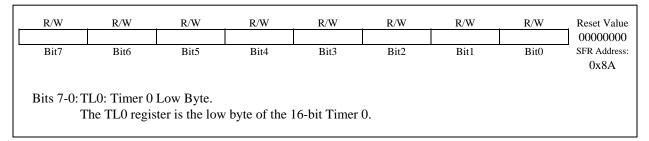
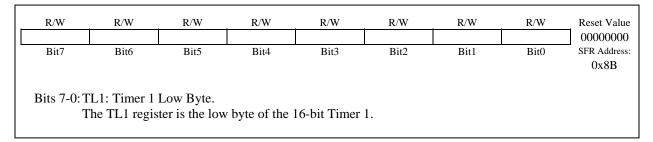



Figure 17.8. TL1: Timer 1 Low Byte

Figure 17.9. TH0: Timer 0 High Byte

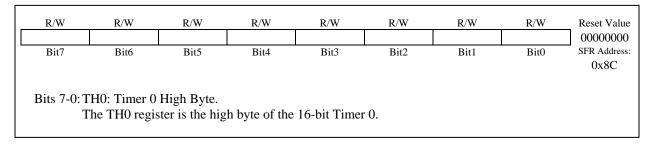
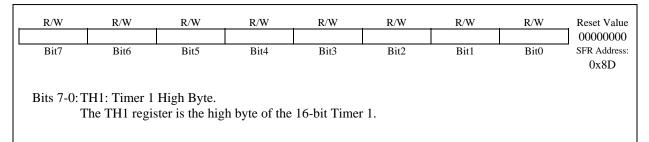
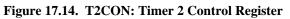
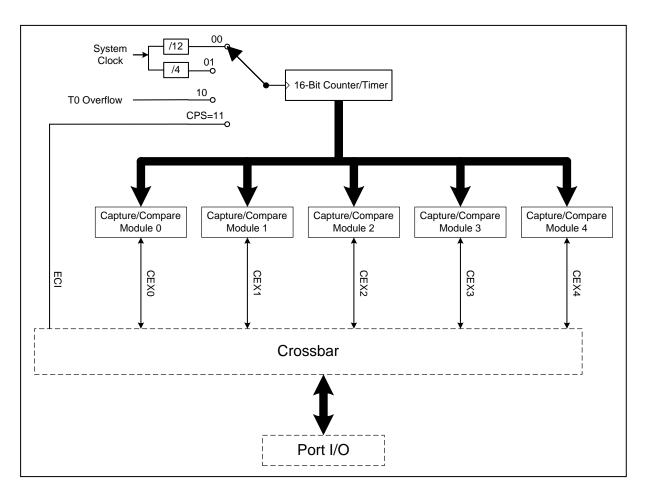




Figure 17.10. TH1: Timer 1 High Byte


R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Reset Valu
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2	0000000
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0 (bit addressable)	SFR Addres 0xC8
Bit7:	TF2: Timer 2 Set by hardwa the Timer 2 in interrupt servi cleared by sof	re when Tim terrupt is ena ce routine. T	er 2 overflo bled, setting This bit is no	g this bit cause t automaticall	es the CPU to y cleared by	o vector to th hardware ar	ne Timer 2 nd must be	
Bit6:	EXF2: Timer Set by hardwa the T2EX input this bit causes automatically	tre when eith ut pin and EX the CPU to	er a capture XEN2 is logi vector to the	c 1. When th Timer 2 Inter	e Timer 2 int rupt service	terrupt is ena routine. Th	abled, setting	
Bit5:	RCLK: Receiv Selects which 0: Timer 1 ove 1: Timer 2 ove	timer is used erflows used	for the UA	clock.	clock in mod	es 1 or 3.		
Bit4:	TCLK: Transi Selects which 0: Timer 1 ove 1: Timer 2 ove	timer is used erflows used	for the UA	clock.	clock in mo	des 1 or 3.		
Bit3:	EXEN2: Time Enables high- operating in B 0: High-to-lov 1: High-to-lov	to-low transit aud Rate Get v transitions	tions on T2E nerator mod on T2EX igi	e. nored.	-	bloads when	Timer 2 is not	;
Bit2:	TR2: Timer 2 This bit enable 0: Timer 2 dis 1: Timer 2 ena	es/disables T abled.						
Bit1:	C/T2: Counter 0: Timer Fund 1: Counter Fu (T2).	ction: Timer	2 increment					
Bit0:	CP/RL2: Capt This bit select be logic 1 for captures or rel in auto-reload 0: Auto-reload 1: Capture on	s whether Tin high-to-low t loads. If RC mode. I on Timer 2	mer 2 functions of the constitution of the con	n T2EX to be K is set, this b high-to-low t	recognized a it is ignored ransition at 7	and used to t and Timer 2	rigger will function	

18. PROGRAMMABLE COUNTER ARRAY

The Programmable Counter Array (PCA) provides enhanced timer functionality while requiring less CPU intervention than the standard 8051 counter/timers. The PCA consists of a dedicated 16-bit counter/timer and five 16-bit capture/compare modules. Each capture/compare module has its own associated I/O line (CEXn) which is routed through the Crossbar to Port I/O when enabled (see Section 13.1 for details on configuring the Crossbar). The counter/timer is driven by a configurable timebase that can select between four inputs as its source: system clock divided by twelve, system clock divided by four, Timer 0 overflow, or an external clock signal on the ECI line. The PCA is configured and controlled through the system controller's Special Function Registers. The basic PCA block diagram is shown in Figure 18.1.

137

Figure 19.5. FLASHDAT: JTAG Flash Data Register

							D 1 D 1 0			Reset Valu
DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0	FAIL	FBUSY	000000000
Bit9	Bit8	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
This register is used to read or write data to the Flash memory across the JTAG interface.										
Bits9-2	: DATA7-	0: Flash D	ata Byte.							
Bit1:	FAIL: Fl	ash Fail Bi	it.							
	0: Pr	evious Fla	sh memory	y operation	n was succ	essful.				
		evious Fla cation was	•	y operation	n failed. U	Isually ind	icates the a	ssociated	memory	
Bit0:	FBUSY:	Flash Bus	y Bit.							
	0: Fl	ash interfa	ce logic is	not busy.						
		ash interfa ot initiate a	U	•	g a request	t. Reads o	r writes wh	ile FBUS	Y = 1 will	

Figure 19.6. FLASHSCL: JTAG Flash Scale Register

								Reset Value			
FOSE	FRAE	-	-	FLSCL3	FLSCL2	FLSCL1	FLSCL0	00000000			
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0				
0	This register controls the Flash read timing circuit and the prescaler required to generate the correct timing for Flash operations.										
	 Bit7: FOSE: Flash One-Shot Enable Bit. 0: Flash read strobe is a full clock-cycle wide. 1: Flash read strobe is 50nsec. 										
		output enable ory. output enable	and sense and sense and sense and gital supply	•	le are always	on. This ca	n be used to				
Bits5-4:	UNUSED. Re	ead = 00b, W	rite = don't o	care.							
,	Bits3-0: FLSCL3-0: Flash Prescaler Control Bits. The FLSCL3-0 bits control the prescaler used to generate timing signals for Flash operations. Its value should be written before any Flash operations are initiated. The value written should be the smallest integer for which:										
	$FLSCL[3:0] > log_2(f_{SYSCLK} / 50 kHz)$										
	Where f _{SYSCLK} disallowed wh	•	-	•	ash read/write	e/erase opera	tions are				

