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1.7. Analog to Digital Converter  
The C8051F018/9 have an on-chip 10-bit SAR ADC with a 9-channel input multiplexer.  With a maximum 
throughput of 100ksps, the ADC offers true 10-bit accuracy with an INL of 1LSB. The ADC has a maximum 
throughput of 100ksps.  There is also an on-board 15ppm voltage reference, or an external reference may be used 
via the VREF pin. 
 
The ADC is under full control of the CIP-51 microcontroller via the Special Function Registers.  One input channel 
is tied to an internal temperature sensor, while the other eight channels are available externally.  Each pair of the 
eight external input channels can be configured as either two single-ended inputs or a single differential input.  The 
system controller can also put the ADC into shutdown to save power. 

 
Conversions can be started in four ways; a software command, an overflow on Timer 2, an overflow on Timer 3, or 
an external signal input.  This flexibility allows the start of conversion to be triggered by software events, external 
HW signals, or convert continuously.  A completed conversion causes an interrupt, or a status bit can be polled in 
software to determine the end of conversion.  The resulting 10-bit data word is latched into two SFRs upon 
completion of a conversion.  The data can be right or left justified in these registers under software control. 

 
Compare registers for the ADC data can be configured to interrupt the controller when ADC data is within a 
specified window.  The ADC can monitor a key voltage continuously in background mode, but not interrupt the 
controller unless the converted data is within the specified window. 
 

Figure 1.9.  ADC Diagram 
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Figure 5.15.  10-Bit ADC Window Interrupt Examples, Left Justified Data 
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Table 6.1.  Comparator Electrical Characteristics 

VDD = 3.0V, AV+ = 3.0V, -40C to +85C unless otherwise specified. 
PARAMETER CONDITIONS MIN TYP MAX UNITS 

Response Time1 (CP+) – (CP-) = 100mV (Note 1)  4  s 
Response Time2 (CP+) – (CP-) = 10mV (Note 1)  12  s 
Common Mode Rejection 
Ratio 

  1.5 4 mV/V 

Positive Hysteresis1 CPnHYP1-0 = 00  0 1 mV 
Positive Hysteresis2 CPnHYP1-0 = 01 2 4.5 7 mV 
Positive Hysteresis3 CPnHYP1-0 = 10 4 9 13 mV 
Positive Hysteresis4 CPnHYP1-0 = 11 10 17 25 mV 
Negative Hysteresis1 CPnHYN1-0 = 00  0 1 mV 
Negative Hysteresis2 CPnHYN1-0 = 01 2 4.5 7 mV 
Negative Hysteresis3 CPnHYN1-0 = 10 4 9 13 mV 
Negative Hysteresis4 CPnHYN1-0 = 11 10 17 25 mV 
Inverting or Non-inverting 
Input Voltage Range 

 -0.25  (AV+)  
+ 0.25 

V 

Input Capacitance   7  pF 
Input Bias Current  -5 0.001 +5 nA 
Input Offset Voltage  -10  +10 mV 
POWER SUPPLY 
Power-up Time CPnEN from 0 to 1  20  s 
Power Supply Rejection    0.1 1 mV/V 
Supply Current Operating Mode (each comparator) at DC  1.5 10 A 
 
Note 1:  CPnHYP1-0 = CPnHYN1-0 = 00. 
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7. VOLTAGE REFERENCE 
The voltage reference circuit consists of a 1.2V, 15ppm/C (typical) bandgap voltage reference generator and a 
gain-of-two output buffer amplifier. The reference voltage on VREF can be connected to external devices in the 
system, as long as the maximum load seen by the VREF pin is less than 200A to AGND (see Figure 7.1).   
   
If a different reference voltage is required, an external reference can be connected to the VREF pin and the internal 
bandgap and buffer amplifier disabled in software.  The external reference voltage must still be less than AV+ -
0.3V.  The Reference Control Register, REF0CN (defined in Figure 7.2), provides the means to enable or disable 
the bandgap and buffer amplifier.  The BIASE bit in REF0CN enables the bias circuitry for the ADC while the 
REFBE bit enables the bandgap reference and buffer amplifier which drive the VREF pin.  When disabled, the 
supply current drawn by the bandgap and buffer amplifier falls to less than 1A (typical) and the output of the 
buffer amplifier enters a high impedance state.   If the internal bandgap is used as the reference voltage generator, 
BIASE and REFBE must both be set to 1.  If an external reference is used, REFBE must be set to 0 and BIASE 
must be set to 1.  If the ADC is not being used, both of these bits can be set to 0 to conserve power.  The electrical 
specifications for the Voltage Reference are given in Table 7.1. 
 
The temperature sensor connects to the highest order input of the A/D converter’s input multiplexer.  The TEMPE 
bit within REF0CN enables and disables the temperature sensor.  While disabled, the temperature sensor defaults to 
a high impedance state and any A/D measurements performed on the sensor while disabled result in meaningless 
data. 

 

Figure 7.1.  Voltage Reference Functional Block Diagram 
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8.3.  SPECIAL FUNCTION REGISTERS 
The direct-access data memory locations from 0x80 to 0xFF constitute the special function registers (SFRs).  The 
SFRs provide control and data exchange with the CIP-51’s resources and peripherals.  The CIP-51 duplicates the 
SFRs found in a typical 8051 implementation as well as implementing additional SFRs used to configure and access 
the sub-systems unique to the MCU.  This allows the addition of new functionality while retaining compatibility 
with the MCS-51™ instruction set.  Table 8.3 lists the SFRs implemented in the CIP-51 System Controller.   
   
The SFR registers are accessed any time the direct addressing mode is used to access memory locations from 0x80 
to 0xFF.  SFRs with addresses ending in 0x0 or 0x8 (e.g. P0, TCON, P1, SCON, IE, etc.) are bit-addressable as well 
as byte-addressable.  All other SFRs are byte-addressable only.  Unoccupied addresses in the SFR space are 
reserved for future use.  Accessing these areas will have an indeterminate effect and should be avoided.  Refer to the 
corresponding pages of the datasheet, as indicated in Table 8.3, for a detailed description of each register. 

 

Table 8.2.  Special Function Register Memory Map 

F8 SPI0CN PCA0H PCA0CPH0 PCA0CPH1 PCA0CPH2 PCA0CPH3 PCA0CPH4 WDTCN 

F0 B      EIP1 EIP2 

E8 ADC0CN PCA0L PCA0CPL0 PCA0CPL1 PCA0CPL2 PCA0CPL3 PCA0CPL4 RSTSRC 

E0 ACC XBR0 XBR1 XBR2   EIE1 EIE2 

D8 PCA0CN PCA0MD PCA0CPM0 PCA0CPM1 PCA0CPM2 PCA0CPM3 PCA0CPM4  

D0 PSW REF0CN       

C8 T2CON  RCAP2L RCAP2H TL2 TH2  SMB0CR 

C0 SMB0CN SMB0STA SMB0DAT SMB0ADR ADC0GTL ADC0GTH ADC0LTL ADC0LTH 

B8 IP  AMX0CF AMX0SL ADC0CF  ADC0L ADC0H 

B0 P3 OSCXCN OSCICN    FLSCL FLACL 

A8 IE     PRT1IF  EMI0CN 

A0 P2    PRT0CF PRT1CF PRT2CF PRT3CF 

98 SCON SBUF SPI0CFG SPI0DAT  SPI0CKR CPT0CN CPT1CN 

90 P1 TMR3CN TMR3RLL TMR3RLH TMR3L TMR3H   

88 TCON TMOD TL0 TL1 TH0 TH1 CKCON PSCTL 

80 P0 SP DPL DPH    PCON 

 0(8) 1(9) 2(A) 3(B) 4(C) 5(D) 6(E) 7(F) 
 
 Bit Addressable   
 

Table 8.3.  Special Function Registers 

SFRs are listed in alphabetical order.  All undefined SFR locations are reserved. 
 

Address Register Description Page No. 

0xE0 ACC Accumulator 58 

0xBC ADC0CF ADC Configuration 28 

0xE8 ADC0CN ADC Control 31 

0xC5 ADC0GTH ADC Greater-Than Data Word (High Byte) 33 

0xC4 ADC0GTL ADC Greater-Than Data Word (Low Byte) 33 

0xBF ADC0H ADC Data Word (High Byte) 32 

0xBE ADC0L ADC Data Word (Low Byte) 32 

0xC7 ADC0LTH ADC Less-Than Data Word (High Byte) 33 

0xC6 ADC0LTL ADC Less-Than Data Word (Low Byte) 33 
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8.3.1. Register Descriptions 
Following are descriptions of SFRs related to the operation of the CIP-51 System Controller.  Reserved bits should 
not be set to logic l. Future product versions may use these bits to implement new features in which case the reset 
value of the bit will be logic 0, selecting the feature’s default state.  Detailed descriptions of the remaining SFRs are 
included in the sections of the datasheet associated with their corresponding system function. 

  

Figure 8.3.  SP: Stack Pointer 

 
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value 

        00000111 
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address: 

        0x81 

 
 
 
 

 

Figure 8.4.  DPL: Data Pointer Low Byte 

 
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value 

        00000000 
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address: 

        0x82 

 
 
 
 
 
 

Figure 8.5.  DPH: Data Pointer High Byte 

 

R/W R/W R/W R/W R/W R/W R/W R/W Reset Value 
        00000000 

Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address: 

        0x83 

 
 
 
 
 
 
 
  

Bits 7-0: SP: Stack Pointer. 
The stack pointer holds the location of the top of the stack.  The stack pointer is 
incremented before every PUSH operation.  The SP register defaults to 0x07 after reset.  

Bits 7-0: DPL: Data Pointer Low.   
The DPL register is the low byte of the 16-bit DPTR.  DPTR is used to access indirectly 
addressed RAM and Flash Memory.  

Bits 7-0: DPH: Data Pointer High.   
The DPH register is the high byte of the 16-bit DPTR.  DPTR is used to access indirectly 
addressed RAM and Flash Memory.  
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Figure 8.10.  IP: Interrupt Priority 

 
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value 

- - PT2 PS PT1 PX1 PT0 PX0 00000000 
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address: 

       (bit addressable) 0xB8 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bits7-6: UNUSED.  Read = 11b, Write = don’t care. 
 
Bit5: PT2 Timer 2 Interrupt Priority Control.   

This bit sets the priority of the Timer 2 interrupts.     
 0:  Timer 2 interrupts set to low priority level. 
 1:  Timer 2 interrupts set to high priority level. 
  
Bit4: PS: Serial Port (UART) Interrupt Priority Control.   

This bit sets the priority of the Serial Port (UART) interrupts.     
 0:  UART interrupts set to low priority level. 
 1:  UART interrupts set to high priority level. 
 
Bit3: PT1: Timer 1 Interrupt Priority Control.   

This bit sets the priority of the Timer 1 interrupts.     
 0:  Timer 1 interrupts set to low priority level. 
 1:  Timer 1 interrupts set to high priority level. 
 
Bit2: PX1: External Interrupt 1 Priority Control.  

This bit sets the priority of the External Interrupt 1 interrupts.     
 0:  External Interrupt 1 set to low priority level. 
 1:  External Interrupt 1 set to high priority level. 
 
Bit1: PT0: Timer 0 Interrupt Priority Control.   

This bit sets the priority of the Timer 0 interrupts.     
 0:  Timer 0 interrupt set to low priority level. 
 1:  Timer 0 interrupt set to high priority level. 
 
Bit0: PX0: External Interrupt 0 Priority Control.   

This bit sets the priority of the External Interrupt 0 interrupts.     
 0:  External Interrupt 0 set to low priority level. 
 1:  External Interrupt 0 set to high priority level. 
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Figure 9.4.  FLSCL: Flash Memory Timing Prescaler 

 
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value 

FOSE FRAE - - FLASCL 10001111 
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address: 

        0xB6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bit7: FOSE: Flash One-Shot Timer Enable 
 0:  Flash One-shot timer disabled.  

1:  Flash One-shot timer enabled 
Bit6: FRAE: Flash Read Always Enable 
 0:  Flash reads per one-shot timer 

1:  Flash always in read mode 
Bits5-4: UNUSED.  Read = 00b, Write = don’t care. 
Bits3-0: FLASCL: Flash Memory Timing Prescaler. 

This register specifies the prescaler value for a given system clock required to generate the 
correct timing for Flash write/erase operations.  If the prescaler is set to 1111b, Flash 
write/erase operations are disabled. 
0000: System Clock < 50kHz 
0001: 50kHz   System Clock < 100kHz 
0010: 100kHz   System Clock < 200kHz 
0011: 200kHz   System Clock < 400kHz 
0100: 400kHz   System Clock < 800kHz 
0101: 800kHz   System Clock < 1.6MHz 
0110: 1.6MHz   System Clock < 3.2MHz 
0111: 3.2MHz   System Clock < 6.4MHz 
1000: 6.4MHz   System Clock < 12.8MHz 
1001: 12.8MHz   System Clock < 25.6MHz 
1010: 25.6MHz   System Clock < 51.2MHz * 
1011, 1100, 1101, 1110: Reserved Values 
1111: Flash Memory Write/Erase Disabled 
 
The prescaler value is the smallest value satisfying the following equation: 
FLASCL > log2(System Clock / 50kHz) 

 
* For test purposes.  The C8051F018/9 is not guaranteed for operation over 25MHz. 
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Figure 11.4.  RSTSRC: Reset Source Register 

 
R R/W R/W R/W R R R/W R Reset Value 

JTAGRST CNVRSEF C0RSEF SWRSEF WDTRSF MCDRSF PORSF PINRSF xxxxxxxx 
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address: 

        0xEF 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(Note: Do not use read-modify-write operations on this register.) 
 
Bit7: JTAGRST.  JTAG Reset Flag. 

0:  JTAG is not currently in reset state. 
 1:  JTAG is in reset state. 
Bit6: CNVRSEF: Convert Start Reset Source Enable and Flag 
 Write 

0:  CNVSTR is not a reset source 
 1:  CNVSTR is a reset source (active low) 
 Read 

0:  Source of prior reset was not from CNVSTR 
 1:  Source of prior reset was from CNVSTR 
Bit5: C0RSEF: Comparator 0 Reset Enable and Flag 
 Write 

0:  Comparator 0 is not a reset source 
 1:  Comparator 0 is a reset source (active low) 
 Read  
 Note: The value read from C0RSEF is not defined if Comparator 0 has not been enabled as a 

reset source. 
0:  Source of prior reset was not from Comparator 0 

 1:  Source of prior reset was from Comparator 0 
Bit4: SWRSF: Software Reset Force and Flag 
 Write 
 0:  No Effect 
 1:  Forces an internal reset.  /RST pin is not affected. 

Read 
 0:  Prior reset source was not from write to the SWRSF bit. 
 1:  Prior reset source was from write to the SWRSF bit. 
Bit3: WDTRSF: Watchdog Timer Reset Flag 
 0:  Source of prior reset was not from WDT timeout. 
 1:  Source of prior reset was from WDT timeout. 
Bit2: MCDRSF: Missing Clock Detector Flag 
 0:  Source of prior reset was not from Missing Clock Detector timeout. 
 1:  Source of prior reset was from Missing Clock Detector timeout. 
Bit1: PORSF: Power-On Reset Force and Flag 
 Write 
 0:  No effect 
 1:  Forces a Power-On Reset.  /RST is driven low. 

Read 
 0:  Source of prior reset was not from POR. 
 1:  Source of prior reset was from POR. 
Bit0: PINRSF: HW Pin Reset Flag 
 0:  Source of prior reset was not from /RST pin. 
 1:  Source of prior reset was from /RST pin. 
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Figure 13.13.  P3: Port3 Register 

 
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value 

P3.7 P3.6 P3.5 P3.4 P3.3 P3.2 P3.1 P3.0 11111111 
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address: 

       (bit addressable) 0xB0 

 
 
 
 
 
 
 
 
 
 

Figure 13.14.  PRT3CF: Port3 Configuration Register 

 
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value 

        00000000 
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address: 

        0xA7 

 
 
 
 
 
 
 

Table 13.2.  Port I/O DC Electrical Characteristics 

VDD = 2.8 to 3.6V, -40C to +85C unless otherwise specified. 
PARAMETER CONDITIONS MIN TYP MAX UNITS 

Output High Voltage IOH = -10uA, Port I/O push-pull 
 
IOH = -3mA, Port I/O push-pull 
 
IOH = -10mA, Port I/O push-pull 
 

VDD – 
0.1 

VDD – 
0.7 

 
 
 
 

VDD – 
0.8 

 V 

Output Low Voltage IOL = 10uA 
IOL = 8.5mA 
IOL = 25mA 

  
 

1.0 

0.1 
0.6 

 

V 

Input High Voltage  0.7 x 
VDD 

  V 

Input Low Voltage    0.3 x 
VDD 

V 

Input Leakage Current DGND < Port Pin < VDD, Pin Tri-state 
Weak Pull-up Off 
Weak Pull-up On 

  
 

30 

 
1 

 

A 

Capacitive Loading   5  pF 
 
 

Bits7-0: P3.[7:0]  
(Write) 
0:  Logic Low Output. 
1:  Logic High Output (high-impedance if corresponding PRT3CF.n bit = 0) 
(Read) 
0:  P3.n is logic low. 
1:  P3.n is logic high. 

Bits7-0: PRT3CF.[7:0]: Output Configuration Bits for P3.7-P3.0 (respectively) 
0:  Corresponding P3.n Output mode is Open-Drain. 
1:  Corresponding P3.n Output mode is Push-Pull. 
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14.2.4. Slave Receiver Mode 
Serial data is received on SDA while the serial clock is received on SCL.  First, a byte is received that contains an 
address and data direction bit.  In this case the data direction bit (R/W) will be logic 0 to indicate a “WRITE” 
operation.  If the received address matches the slave’s assigned address (or a general call address is received) one or 
more bytes of serial data are received from the master.  After each byte is received, an acknowledge bit is 
transmitted by the slave.  The master outputs START and STOP conditions to indicate the beginning and end of the 
serial transfer. 
 
14.3. Arbitration 
A master may start a transfer only if the bus is free.  The bus is free after a STOP condition or after the SCL and 
SDA lines remains high for a specified time.  Two or more master devices may attempt to generate a START 
condition at the same time.  Since the devices that generated the START condition may not be aware that other 
masters are contending for the bus, an arbitration scheme is employed.  The master devices continue to transmit 
until one of the masters transmits a HIGH level, while the other(s) master transmits a LOW level on SDA. The first 
master(s) transmitting the HIGH level on SDA looses the arbitration and is required to give up the bus. 
 
14.4. Clock Low Extension 
SMBus provides a clock synchronization mechanism, similar to I2C, which allows devices with different speed 
capabilities to coexist on the bus.  A clock-low extension is used during a transfer in order to allow slower slave 
devices to communicate with faster masters.  The slave can hold the SCL line LOW to extend the clock low period, 
effectively decreasing the serial clock frequency. 
 
14.5. Timeouts 

14.5.1. SCL Low Timeout 
If the SCL line is held low by a slave device on the bus, no further communication is possible.  Furthermore, the 
master cannot force the SCL line high to correct the error condition.  To solve this problem, the SMBus protocol 
specifies that devices participating in a transfer must detect any clock cycle held low longer than 25ms as a 
“timeout” condition.  Devices that have detected the timeout condition must reset the communication no later than 
10ms after detecting the timeout condition.   
 
One of the MCU’s general-purpose timers, operating in 16-bit auto-reload mode, can be used to monitor the SCL 
line for this timeout condition.  Timer 3 is specifically designed for this purpose.  (Refer to the Timer 3 Section 
17.3. for detailed information on Timer 3 operation.) 
 

14.5.2. SCL High (SMBus Free) Timeout 
The SMBus specification stipulates that if a device holds the SCL and SDA lines high for more that 50usec, the bus 
is designated as free.  The SMB0CR register is used to detect this condition when the FTE bit in SMB0CN is set. 
 
14.6. SMBus Special Function Registers 
The SMBus serial interface is accessed and controlled through five SFRs: SMB0CN Control Register, SMB0CR 
Clock Rate Register, SMB0ADR Address Register, SMB0DAT Data Register and SMB0STA Status Register.  The 
system device may have one or more SMBus serial interfaces implemented.  The five special function registers 
related to the operation of the SMBus interface are described in the following section. 
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14.6.1. Control Register 
The SMBus Control register SMB0CN is used to configure and control the SMBus interface.  All of the bits in the 
register can be read or written by software.  Two of the control bits are also affected by the SMBus hardware.  The 
Serial Interrupt flag (SI, SMB0CN.3) is set to logic 1 by the hardware when a valid serial interrupt condition occurs.  
It can only be cleared by software.  The Stop flag (STO, SMB0CN.4) is cleared to logic 0 by hardware when a 
STOP condition is present on the bus.   
 
Setting the ENSMB flag to logic 1 enables the SMBus interface.  Clearing the ENSMB flag to logic 0 disables the 
SMBus interface and removes it from the bus.  Momentarily clearing the ENSMB flag and then resetting it to logic 
1 will reset a SMBus communication.   However, ENSMB should not be used to temporarily remove a device from 
the bus since the bus state information will be lost.  Instead, the Assert Acknowledge (AA) flag should be used to 
temporarily remove the device from the bus (see description of AA flag below). 
 
Setting the Start flag (STA, SMB0CN.5) to logic 1 will put the SMBus in a master mode.  If the bus is free, the 
SMBus hardware will generate a START condition.  If the bus is not free, the SMBus hardware waits for a STOP 
condition to free the bus and then generates a START condition after a 5s delay per the SMB0CR value.  (In 
accordance with the SMBus protocol, the SMBus interface also considers the bus free if the bus is idle for 50s and 
no STOP condition was recognized.)  If STA is set to logic 1 while the SMBus is in master mode and one or more 
bytes have been transferred, a repeated START condition will be generated.  To ensure proper operation, the STO 
flag should be explicitly cleared before setting STA to a logic 1. 
 
When the Stop flag (STO, SMB0CN.4) is set to logic 1 while the SMBus interface is in master mode, the hardware 
generates a STOP condition on the SMBus.  In a slave mode, the STO flag may be used to recover from an error 
condition.  In this case, a STOP condition is not generated on the SMBus, but the SMBus hardware behaves as if a 
STOP condition has been received and enters the “not addressed” slave receiver mode.  The SMBus hardware 
automatically clears the STO flag to logic 0 when a STOP condition is detected on the bus.   
 
The Serial Interrupt flag (SI, SMB0CN.3) is set to logic 1 by hardware when the SMBus interface enters one of 27 
possible states.  If interrupts are enabled for the SMBus interface, an interrupt request is generated when the SI flag 
is set.  The SI flag must be cleared by software.   While SI is set to logic 1, the clock-low period of the serial clock 
will be stretched and the serial transfer is suspended.   
 
The Assert Acknowledge flag (AA, SMB0CN.2) is used to set the level of the SDA line during the acknowledge 
clock cycle on the SCL line.  Setting the AA flag to logic 1 will cause an ACKNOWLEDGE (low level on SDA) to 
be sent during the acknowledge cycle if the device has been addressed.  Setting the AA flag to logic 0 will cause a 
NOT ACKNOWLEDGE (high level on SDA) to be sent during acknowledge cycle.  After the transmission of a 
byte in slave mode, the slave can be temporarily removed from the bus by clearing the AA flag.  The slave’s own 
address and general call address will be ignored.  To resume operation on the bus, the AA flag must be reset to logic 
1 to allow the slave’s address to be recognized. 
 
Setting the SMBus Free Timer Enable bit (FTE, SMB0CN.1) to logic 1 enables the SMBus Free Timeout feature.  If 
SCL and SDA remain high for the SMBus Free Timeout given in the SMBus Clock Rate Register (Figure 14.5), the 
bus will be considered free and a Start will be generated if pending.  The bus free period should be greater than 
50s. 
 
Setting the SMBus timeout enable bit (TOE, SMB0CN.0) to logic 1 enables Timer 3 to count up when the SCL line 
is low and Timer 3 is enabled.  If Timer 3 overflows, a Timer 3 interrupt will be generated, which will alert the CPU 
that a SMBus SCL low timeout has occurred. 
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in an “off-line” state.  In a multiple-master environment, the system controller should check the state of the 
SLVSEL flag (SPI0CN.2) to ensure the bus is free before setting the MSTEN bit and initiating a data transfer. 
 
15.3. Serial Clock Timing 
As shown in Figure 15.4, four combinations of serial clock phase and polarity can be selected using the clock 
control bits in the SPI Configuration Register (SPI0CFG).  The CKPHA bit (SPI0CFG.7) selects one of two clock 
phases (edge used to latch the data).  The CKPOL bit (SPI0CFG.6) selects between an active-high or active-low 
clock.  Both master and slave devices must be configured to use the same clock phase and polarity.  Note: the SPI 
should be disabled (by clearing the SPIEN bit, SPI0CN.0) while changing the clock phase and polarity. 
 
The SPI Clock Rate Register (SPI0CKR) as shown in Figure 15.7 controls the master mode serial clock frequency.  
This register is ignored when operating in slave mode. 
 

Figure 15.4.  Data/Clock Timing Diagram 
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16.1.3. Mode 2: 9-Bit UART, Fixed Baud Rate 
Mode 2 provides asynchronous, full-duplex communication using a total of eleven bits per data byte: a start bit, 8 
data bits (LSB first), a programmable ninth data bit, and a stop bit (see timing diagram in Figure 16.6). On transmit, 
the ninth data bit is determined by the value in TB8 (SCON.3).  It can be assigned the value of the parity flag P in 
the PSW or used in multiprocessor communications.  On receive, the ninth data bit goes into RB8 (SCON.2) and the 
stop bit is ignored.  
 
Data transmission begins when an instruction writes a data byte to the SBUF register.  The TI Transmit Interrupt 
Flag (SCON.1) is set at the end of the transmission (the beginning of the stop-bit time).  Data reception can begin 
any time after the REN Receive Enable bit (SCON.4) is set to logic 1.  After the stop bit is received, the data byte 
will be loaded into the SBUF receive register if the following conditions are met: RI must be logic 0, and if SM2 is 
logic 1, the 9th bit must be logic 1. 
 
If these conditions are met, the eight bits of data are stored in SBUF, the ninth bit is stored in RB8 and the RI flag is 
set.  If these conditions are not met, SBUF and RB8 will not be loaded and the RI flag will not be set.  An interrupt 
will occur if enabled when either TI or RI are set. 
 
The baud rate in Mode 2 is a direct function of the system clock frequency as follows:   

 
Mode 2 Baud Rate = 2SMOD * (SYSCLK / 64). 

 
The SMOD bit (PCON.7) selects whether to divide SYSCLK by 32 or 64.  In the formula, 2 is raised to the power 
SMOD, resulting in a baud rate of either 1/32 or 1/64 of the system clock frequency.  On reset, the SMOD bit is 
logic 0, thus selecting the lower speed baud rate by default. 

Figure 16.6.  UART Modes 2 and 3 Timing Diagram 

 
 
 
 
 
 
 

16.1.4. Mode 3: 9-Bit UART, Variable Baud Rate 
Mode 3 is the same as Mode 2 in all respects except the baud rate is variable.  The baud rate is determined in the 
same manner as for Mode 1.   Mode 3 operation transmits 11 bits: a start bit, 8 data bits (LSB first), a programmable 
ninth data bit, and a stop bit.  Timer 1 or Timer 2 overflows generate the baud rate just as with Mode 1.  In 
summary, Mode 3 transmits using the same protocol as Mode 2 but with Mode 1 baud rate generation. 
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Figure 17.4.  TCON: Timer Control Register 

 
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value 

TF1 TR1 TF0 TR0  IE1 IT1 IE0 IT0 00000000 
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address: 

       (bit addressable) 0x88 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bit7: TF1: Timer 1 Overflow Flag. 
Set by hardware when Timer 1 overflows.  This flag can be cleared by software but is 
automatically cleared when the CPU vectors to the Timer 1 interrupt service routine. 
0:  No Timer 1 overflow detected. 
1:  Timer 1 has overflowed. 
 

Bit6: TR1: Timer 1 Run Control.   
 0:  Timer 1 disabled. 
 1:  Timer 1 enabled. 
 
Bit5: TF0: Timer 0 Overflow Flag. 

Set by hardware when Timer 0 overflows.  This flag can be cleared by software but is 
automatically cleared when the CPU vectors to the Timer 0 interrupt service routine. 
0:  No Timer 0 overflow detected. 
1:  Timer 0 has overflowed. 
 

Bit4: TR0: Timer 0 Run Control.   
 0:  Timer 0 disabled. 
 1:  Timer 0 enabled. 
 
Bit3: IE1: External Interrupt 1.   
 This flag is set by hardware when an edge/level of type defined by IT1 is detected.  It can 

be cleared by software but is automatically cleared when the CPU vectors to the External 
Interrupt 1 service routine if IT1 = 1.  This flag is the inverse of the /INT1 input signal’s 
logic level when IT1 = 0. 

 
Bit2: IT1: Interrupt 1 Type Select.   

This bit selects whether the configured /INT1 signal will detect falling edge or active-low 
level-sensitive interrupts. 
0:  /INT1 is level triggered. 
1:  /INT1 is edge triggered. 

 
Bit1: IE0: External Interrupt 0.   

This flag is set by hardware when an edge/level of type defined by IT0 is detected.  It can 
be cleared by software but is automatically cleared when the CPU vectors to the External 
Interrupt 0 service routine if IT0 = 1.  This flag is the inverse of the /INT0 input signal’s 
logic level when IT0 = 0. 

 
Bit0: IT0: Interrupt 0 Type Select.   

This bit selects whether the configured /INT0 signal will detect falling edge or active-low 
level-sensitive interrupts. 
0:  /INT0 is level triggered. 
1:  /INT0 is edge triggered. 
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17.2.2. Mode 1: 16-bit Counter/Timer with Auto-Reload 
The Counter/Timer with Auto-Reload mode sets the TF2 timer overflow flag when the counter/timer register 
overflows from 0xFFFF to 0x0000.  An interrupt is generated if enabled.  On overflow, the 16-bit value held in the 
two capture registers (RCAP2H, RCAP2L) is automatically loaded into the counter/timer register and the timer is 
restarted. 

 
Counter/Timer with Auto-Reload mode is selected by clearing the CP/RL2 bit.  Setting TR2 to logic 1 enables and 
starts the timer.  Timer 2 can use either the system clock or transitions on an external input pin as its clock source, as 
specified by the C/T2 bit.  If EXEN2 is set to logic 1, a high-to-low transition on T2EX will also cause Timer 2 to 
be reloaded.  If EXEN2 is cleared, transitions on T2EX will be ignored. 
 

Figure 17.12.  T2 Mode 1 Block Diagram 
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17.3. Timer 3 
Timer 3 is a 16-bit timer formed by the two 8-bit SFRs, TMR3L (low byte) and TMR3H (high byte).  The input for 
Timer 3 is the system clock (divided by either one or twelve as specified by the Timer 3 Clock Select bit T3M in the 
Timer 3 Control Register TMR3CN).  Timer 3 is always configured as an auto-reload timer, with the reload value 
held in the TMR3RLL (low byte) and TMR3RLH (high byte) registers.  Timer 3 can be used to start an ADC Data 
Conversion, for SMBus timing (see Section 14.5), or as a general-purpose timer.  Timer 3 does not have a counter 
mode. 
 

Figure 17.19.  Timer 3 Block Diagram 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17.20.  TMR3CN: Timer 3 Control Register 

 
R/W R/W R/W R/W R/W R/W R/W R/W Reset Value 

TF3 - - - - TR3 T3M - 00000000 
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 SFR Address: 

        0x91 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Bit7: TF3: Timer3 Overflow Flag. 
Set by hardware when Timer 3 overflows from 0xFFFF to 0x0000.  When the Timer 3 
interrupt is enabled, setting this bit causes the CPU to vector to the Timer 3 Interrupt 
service routine.  This bit is not automatically cleared by hardware and must be cleared by 
software.   

 
Bits6-3: UNUSED.  Read = 0000b, Write = don’t care. 
 
Bit2: TR3: Timer 3 Run Control.   

This bit enables/disables Timer 3.  
0: Timer 3 disabled. 
1: Timer 3 enabled. 

 
Bit1: T3M: Timer 3 Clock Select.   

This bit controls the division of the system clock supplied to Counter/Timer 3.   
 0:  Counter/Timer 3 uses the system clock divided by 12. 
 1:  Counter/Timer 3 uses the system clock. 
 
Bit0: UNUSED.  Read = 0, Write = don’t care. 
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18.1.1. Edge-triggered Capture Mode 
In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/timer and 
load it into the corresponding module’s 16-bit capture/compare register (PCA0CPLn and PCA0CPHn).  The CAPPn 
and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-
high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative 
edge).  When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1 and an interrupt 
request is generated if CCF interrupts are enabled.  The CCFn bit is not automatically cleared by hardware when the 
CPU vectors to the interrupt service routine, and must be cleared by software.   

Figure 18.3.  PCA Capture Mode Diagram 
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19.2. Flash Programming Commands 
The Flash memory can be programmed directly over the JTAG interface using the Flash Control, Flash Data, Flash 
Address, and Flash Scale registers.  These Indirect Data Registers are accessed via the JTAG Instruction Register.  
Read and write operations on indirect data registers are performed by first setting the appropriate DR address in the 
IR register.  Each read or write is then initiated by writing the appropriate Indirect Operation Code (IndOpCode) to 
the selected data register.  Incoming commands to this register have the following format: 
 

19:18 17:0  

IndOpCode WriteData  

 
IndOpCode:  These bit set the operation to perform according to the following table: 
 

IndOpCode Operation 
0x Poll 
10 Read 
11 Write 

 
The Poll operation is used to check the Busy bit as described below.  Although a Capture-DR is performed, no 
Update-DR is allowed for the Poll operation.  Since updates are disabled, polling can be accomplished by shifting 
in/out a single bit. 
 
The Read operation initiates a read from the register addressed by the IR.  Reads can be initiated by shifting only 2 
bits into the indirect register.  After the read operation is initiated, polling of the Busy bit must be performed to 
determine when the operation is complete. 
 
The write operation initiates a write of WriteData to the register addressed by the IR.  Registers of any width up to 
18 bits can be written.  If the register to be written contains fewer than 18 bits, the data in WriteData should be left-
justified, i.e. its MSB should occupy bit 17 above.  This allows shorter registers to be written in fewer JTAG clock 
cycles.  For example, an 8-bit register could be written by shifting only 10 bits.  After a Write is initiated, the Busy 
bit should be polled to determine when the next operation can be initiated.  The contents of the Instruction Register 
should not be altered while either a read or write operation is in progress. 
 
Outgoing data from the indirect Data Register has the following format: 
 

19 18:1 0 
0 ReadData Busy 

 
The Busy bit indicates that the current operation is not complete.  It goes high when an operation is initiated and 
returns low when complete.  Read and Write commands are ignored while Busy is high.  In fact, if polling for Busy 
to be low will be followed by another read or write operation, JTAG writes of the next operation can be made while 
checking for Busy to be low.  They will be ignored until Busy is read low, at which time the new operation will 
initiate.  This bit is placed at bit 0 to allow polling by single-bit shifts.  When waiting for a Read to complete and 
Busy is 0, the following 18 bits can be shifted out to obtain the resulting data.  ReadData is always right-justified.  
This allows registers shorter than 18 bits to be read using a reduced number of shifts.  For example, the result from a 
byte-read requires 9 bit shifts (Busy + 8 bits). 



  

 

153 Rev. 1.2   

C8051F018 
C8051F019 

19.3. Debug Support 
Each MCU has on-chip JTAG and debug circuitry that provide non-intrusive, full speed, in-circuit debug using the 
production part installed in the end application using the four pin JTAG I/F.  Silicon Laboratories’ debug system 
supports inspection and modification of memory and registers, setting breakpoints, watchpoints, single stepping, 
and run and halt commands.  No additional target RAM, program memory, or communications channels are 
required.  All the digital and analog peripherals are functional and work correctly (remain in sync) while debugging.  
The WDT is disabled when the MCU is halted during single stepping or at a breakpoint.   
 
The C8051F015DK is a development kit with all the hardware and software necessary to develop application code 
and perform in-circuit debugging with the C8051F018/9.  Each kit includes an Integrated Development 
Environment (IDE) which has a debugger and integrated 8051 assembler.  It has an RS-232 to JTAG protocol 
translator module referred to as the EC.  There is also a target application board with a C8051F015 installed and 
with a large prototyping area.  The kit also includes RS-232 and JTAG cables, and wall-mount power supply. 
 
 


