

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	80C51
Core Size	8-Bit
Speed	60MHz
Connectivity	I ² C, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	34
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-VQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/at89c51re2-rltum

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 3. C51 Core SFRs

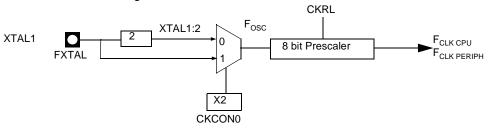
Mnemonic	Add	Name	7	6	5	4	3	2	1	0
ACC	E0h	Accumulator								
В	F0h	B Register								
PSW	D0h	Program Status Word	CY	AC	F0	RS1	RS0	OV	F1	Р
SP	81h	Stack Pointer								
DPL	82h	Data Pointer Low byte								
DPH	83h	Data Pointer High byte								

Table 4. System Management SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
PCON	87h	Power Control	SMOD1_0	SMOD0_0	-	POF	GF1	GF0	PD	IDL
AUXR	8Eh	Auxiliary Register 0	-	-	MO	XRS2	XRS1	XRS0	EXTRA M	AO
AUXR1	A2h	Auxiliary Register 1	EES	SP9	U2	-	GF2	0	-	DPS
CKRL	97h	Clock Reload Register	-	-	-	-	-	-	-	-
BMSEL	92h	Bank Memory Select	MBO2	MBO1	MBO0		-	FBS2	FBS1	FBS0
CKCON0	8Fh	Clock Control Register 0	TWIX2	WDX2	PCAX2	SIX2_0	T2X2	T1X2	T0X2	X2
CKCON1	AFh	Clock Control Register 1	-	-	-	-	-	-	SIX2_1	SPIX2

Table 5. Interrupt SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
IEN0	A8h	Interrupt Enable Control 0	EA	EC	ET2	ES	ET1	EX1	ET0	EX0
IEN1	B1h	Interrupt Enable Control 1	-	-	-	-	ES_1	ESPI	ETWI	EKBD
IPH0	B7h	Interrupt Priority Control High 0	-	PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H
IPL0	B8h	Interrupt Priority Control Low 0	-	PPCL	PT2L	PSL	PT1L	PX1L	PT0L	PX0L
IPH1	B3h	Interrupt Priority Control High 1	-	-	-	-	PSH_1	SPIH	IE2CH	KBDH
IPL1	B2h	Interrupt Priority Control Low 1	-	-	-	-	PSL_1	SPIL	IE2CL	KBDL


Table 6. Port SFRs

Mnemonic	Add	Name	7	6	5	4	3	2	1	0
P0	80h	8-bit Port 0								
P1	90h	8-bit Port 1								
P2	A0h	8-bit Port 2								
P3	B0h	8-bit Port 3								
P4	C0h	8-bit Port 4								

Enhanced	In comparison to the original 80C52, the AT89C51RE2 implements some new features, which
Features	are:
	X2 option
	Dual Data Pointer
	Extended RAM
	Extended stack
	Programmable Counter Array (PCA)
	Hardware Watchdog
	SPI interface
	4-level interrupt priority system
	power-off flag
	ONCE mode
	ALE disabling
	Enhanced features on the UART and the timer 2
X2 Feature	The AT89C51RE2 core needs only 6 clock periods per machine cycle. This feature called 'X2' provides the following advantages:
	• Divide frequency crystals by 2 (cheaper crystals) while keeping same CPU power.
	• Save power consumption while keeping same CPU power (oscillator power saving).
	• Save power consumption by dividing dynamically the operating frequency by 2 in operating and idle modes.
	 Increase CPU power by 2 while keeping same crystal frequency.
	In order to keep the original C51 compatibility, a divider by 2 is inserted between the XTAL1 sig- nal and the main clock input of the core (phase generator). This divider may be disabled by software.
Description	The clock for the whole circuit and peripherals is first divided by two before being used by the CPU core and the peripherals.
	This allows any cyclic ratio to be accepted on XTAL1 input. In X2 mode, as this divider is bypassed, the signals on XTAL1 must have a cyclic ratio between 40 to 60%.
	Figure 2 shows the clock generation block diagram. X2 bit is validated on the rising edge of the

Figure 2 shows the clock generation block diagram. X2 bit is validated on the rising edge of the XTAL1÷2 to avoid glitches when switching from X2 to STD mode. Figure 3 shows the switching mode waveforms.

Figure 2. Clock Generation Diagram

0010 70F6JNZ LOOP ; check for 0 terminator 0012 05A2 INC AUXR1 ; (optional) restore DPS

INC is a short (2 bytes) and fast (12 clocks) way to manipulate the DPS bit in the AUXR1 SFR. However, note that the INC instruction does not directly force the DPS bit to a particular state, but simply toggles it. In simple routines, such as the block move example, only the fact that DPS is toggled in the proper sequence matters, not its actual value. In other words, the block move routine works the same whether DPS is '0' or '1' on entry. Observe that without the last instruction (INC AUXR1), the routine will exit with DPS in the opposite state.

Memory Architecture

AT89C51RE2 features several on-chip memories:

- Flash memory: • containing 128 Kbytes of program memory (user space) organized into 128 bytes pages.
- Boot ROM: • 4K bytes for boot loader.
- 8K bytes internal XRAM •

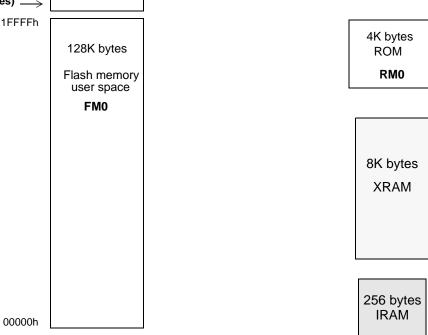

Physical memory organisation

Figure 5. Physical memory organisation

Fuse Configuration Byte(1 byte) FCB Hardware Security (1 byte) \longrightarrow HSB

Column Latches (128 bytes) \longrightarrow

1FFFFh

FCON Register

Table 23. FCON Register

FCON Register (S:D1h) Flash Control Register

7	6	5	4	3	2	1	0		
FPL3	FPL2	FPL1	FPL0	FPS	FMOD2	FMOD1	FMOD0		
Bit Number	Bit Mnemonic	Description							
7-4	FPL3:0		Programming Launch Command Bits Write 5Xh followed by AXh to launch the programming according to FMOD2:0. (see Fable 26.)						
3	FPS	When this bit i The MOVX @ When this bit i	DPTR, A instruis cleared:		the columns lat	·	pace		
2-0	FMOD2:0	Flash Mode These bits allo See Table 25.	ow to select the	e target memor	y area and oper	ation on FM0			

Reset Value= 0000 0000b

Table 29. Write MOVX @DPTR,A

FPS of FCCON	EA	XRAM ERAM	CL FM0
0	Х	winner	
1	1		winner
	0	winner	

Table 30. MOVC A, @A+DPTR executed from External code EA=0

FMOD2:0	FBS (Fetch)	MBO (Target)	MOVC A,@A+DPTR
Х	Х	Х	Read External Code

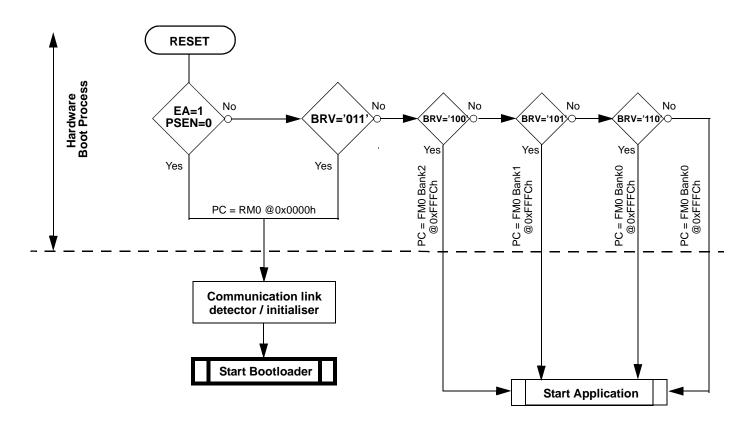
Table 31. MOVC A, @A+DPTR executed from External code EA=1, PC>=0x8000, FBS=Bank3

FMOD2:0	MBO (Target)	DPTR	MOVC A,@A+DPTR
x	х	< 0x8000	Depends on FLB2:0 Can Returns Random value, for secured part.
	Х	>= 0x8000	External code read

Bootloader Description

Entry points After reset only one bootloader entry point is possible. This entry point stands at address 0x0000 of the boot ROM memory. This entry point executes the boot process of the bootloader.

The bootloader entry point can be selected through two processes:


At reset, if the hardware conditions are applied, the bootloader entry point is accessed and executed.

At reset, if the hardware conditions are not set and the BRV2-0 is programmed '011', the bootloader entry point is accessed and the bootprocess is started.

Boot Process Description

The boot process consists in three main operations:

- The hardware boot process request detection
- The communication link detection (Uart or OCD)
- The start-up of the bootloader

Hardware boot process request detection The hardware boot process request is detected when the hardware conditions (under reset, EA=1 and PSEN=0) are received by the processor or when no hardware condition is applied and the BRV2:0 is configured '011'.

Communication link detection

- Two interfaces are available for ISP:
- UART0
- OCD UART

Erasing commands The erasing command is supported by the following areas:

Table 39. Memory space & Erase

Memory/Information Family	Comments/Restriction
FLASH	need security level check

Nothing is done on the other areas.

FLASH

The erasing command on the Flash memory:

- erases the four physical flash memory banks (from address 0000h to 1FFFFh).
- the HSB (Hardware Security Byte) is set at NO_PROTECTION:

– FLB2.0 = '111'

Registers

Table 46. TCON Register

TCON (S:88h) Timer/Counter Control Register

7	6	5	4	3	2	1	0	
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	
Bit Number	Bit Mnemonic	Description						
7	TF1		rdware when p	processor vecto ounter overflow			ws.	
6	TR1		Control Bit ff Timer/Count Timer/Counter					
5	TF0	Cleared by ha	Timer 0 Overflow Flag Cleared by hardware when processor vectors to interrupt routine. Set by hardware on Timer/Counter overflow, when Timer 0 register overflows.					
4	TR0		Control Bit ff Timer/Count Timer/Counter					
3	IE1		rdware when i	nterrupt is proce			1).	
2	IT1	Clear to select		t ve (level triggere ive (edge trigge			⁻ 1#).	
1	IEO	Cleared by ha	Interrupt 0 Edge Flag Cleared by hardware when interrupt is processed if edge-triggered (see IT0). Set by hardware when external interrupt is detected on INT0# pin.					
0	ITO	Clear to select		t ve (level triggere ive (edge trigge	,	• •	⁻ 0#).	

Reset Value = 0000 0000b

AT89C51RE2

Baud Rate Selection for UART 1 for Mode 1 and 3

The Baud Rate Generator for transmit and receive clocks can be selected separately via the T2CON and BDRCON_1 registers.

Figure 41. Baud Rate Selection for UART 1

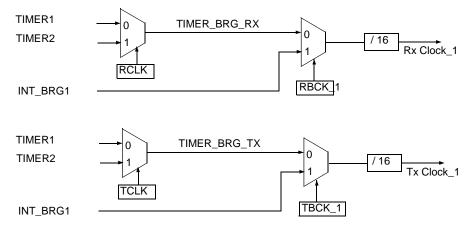


Table 67. Baud Rate Selection Table UART 1

TCLK (T2CON)	RCLK (T2CON)	TBCK_1 (BDRCON_1)	RBCK_1 (BDRCON_1)	Clock Source UART Tx_1	Clock Source UART Rx_1
0	0	0	0	Timer 1	Timer 1
1	0	0	0	Timer 2	Timer 1
0	1	0	0	Timer 1	Timer 2
1	1	0	0	Timer 2	Timer 2
Х	0	1	0	INT_BRG_1	Timer 1
Х	1	1	0	INT_BRG_1	Timer 2
0	Х	0	1	Timer 1	INT_BRG_1
1	Х	0	1	Timer 2	INT_BRG_1
Х	Х	1	1	INT_BRG_1	INT_BRG_1

Table 77. PCON Register

PCON - Power Control Register (87h)

7	6	5	4	3	2	1	0		
SMOD1_0	SMOD0_0	-	POF	GF1	GF0	PD	IDL		
Bit Number	Bit Mnemonic		Description						
7	SMOD1_0		erial port Mode bit 1 for UART et to select double baud rate in mode 1, 2 or 3.						
6	SMOD0_0	Cleared to se	erial port Mode bit 0 for UART leared to select SM0 bit in SCON register. et to select FE bit in SCON register.						
5	-	Reserved The value rea	Reserved the value read from this bit is indeterminate. Do not set this bit.						
4	POF	Cleared to re	ower-Off Flag leared to recognize next reset type. et by hardware when VCC rises from 0 to its nominal voltage. Can also be set by oftware.						
3	GF1	Cleared by u	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.						
2	GF0	Cleared by u	General purpose Flag Cleared by user for general purpose usage. Set by user for general purpose usage.						
1	PD	Cleared by h	Power-Down mode bit Cleared by hardware when reset occurs. Set to enter power-down mode.						
0	IDL	Idle mode bi Cleared by h Set to enter i	ardware when	interrupt or rese	et occurs.				

Reset Value = 00X1 0000b Not bit addressable

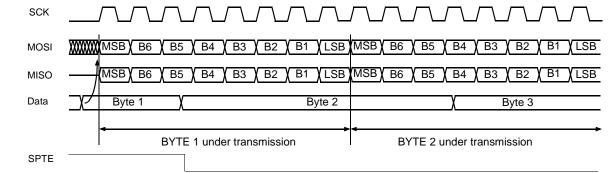
Power-off flag reset value will be 1 only after a power on (cold reset). A warm reset doesn't affect the value of this bit.

AT89C51RE2

Table 104.	Status in	Slave Recei	ver Mode	(Continued)
	oluluo III	010101100001	voi mouo	(Contantaoa)

		Application S	oftware	e Respo	nse			
Status		To/from SSDAT		To SS	CON			
Code (SSCS)	Status of the 2-wire bus and 2-wire hardware		STA	ѕто	SI	АА	Next Action Taken By 2-wire Software	
		Read data byte or	0	0	0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA Switched to the not addressed slave mode; own	
		Read data byte or	0	0	0	1	SLA will be recognised; GCA will be recognised if GC=logic 1	
98h	98h Previously addressed with general call; data has been received; NOT ACK has been returned	Read data byte or	1	0	0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA. A START condition will be transmitted when the bus becomes free	
		Read data byte	1	0	0	1	Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1. A START condition will be transmitted when the bus becomes free	
		No SSDAT action or	0	0	0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA Switched to the not addressed slave mode; own	
		No SSDAT action or	0	0	0	1	SLA will be recognised; GCA will be recognised if GC=logic 1	
A0h	A STOP condition or repeated START condition has been received while still addressed as slave	No SSDAT action or	1	0	0	0	Switched to the not addressed slave mode; no recognition of own SLA or GCA. A START condition will be transmitted when the bus becomes free	
		No SSDAT action	1	0	0	1	Switched to the not addressed slave mode; own SLA will be recognised; GCA will be recognised if GC=logic 1. A START condition will be transmitted when the bus becomes free	





When a transmission is in progress a new data can be queued and sent as soon as transmission has been completed. So it is possible to transmit bytes without latency, useful in some applications.

The SPTE bit in SPSCR is set as long as the transmission buffer is free. It means that the user application can write SPDAT with the data to be transmitted until the SPTE becomes cleared.

Figure 62 shows a queuing transmission in master mode. Once the Byte 1 is ready, it is immediately sent on the bus. Meanwhile an other byte is prepared (and the SPTE is cleared), it will be sent at the end of the current transmission. The next data must be ready before the end of the current transmission.

In slave mode it is almost the same except it is the external master that start the transmission.

Also, in slave mode, if no new data is ready, the last value received will be the next data byte transmitted.

AT89C51RE2

Power Monitor The POR/PFD function monitors the internal power-supply of the CPU core memories and the peripherals, and if needed, suspends their activity when the internal power supply falls below a safety threshold. This is achieved by applying an internal reset to them.

By generating the Reset the Power Monitor insures a correct start up when AT89C51RE2 is powered up.

Description In order to startup and maintain the microcontroller in correct operating mode, V_{CC} has to be stabilized in the V_{CC} operating range and the oscillator has to be stabilized with a nominal amplitude compatible with logic level VIH/VIL.

These parameters are controlled during the three phases: power-up, normal operation and power going down. See Figure 66.

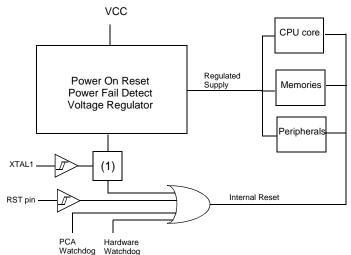
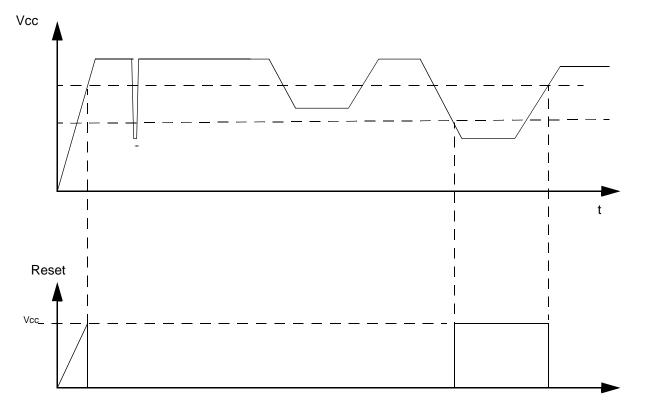


Figure 66. Power Monitor Block Diagram

Note: 1. Once XTAL1 High and low levels reach above and below VIH/VIL. a 1024 clock period delay will extend the reset coming from the Power Fail Detect. If the power falls below the Power Fail Detect threshold level, the Reset will be applied immediately.


The Voltage regulator generates a regulated internal supply for the CPU core the memories and the peripherals. Spikes on the external Vcc are smoothed by the voltage regulator.

The Power fail detect monitor the supply generated by the voltage regulator and generate a reset if this supply falls below a safety threshold as illustrated in the Figure 67 below.

Figure 67. Power Fail Detect

When the power is applied, the Power Monitor immediately asserts a reset. Once the internal supply after the voltage regulator reach a safety level, the power monitor then looks at the XTAL clock input. The internal reset will remain asserted until the Xtal1 levels are above and below VIH and VIL. Further more. An internal counter will count 1024 clock periods before the reset is de-asserted.

If the internal power supply falls below a safety level, a reset is immediately asserted.

Power-off Flag

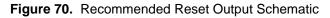
The power-off flag allows the user to distinguish between a "cold start" reset and a "warm start" reset.

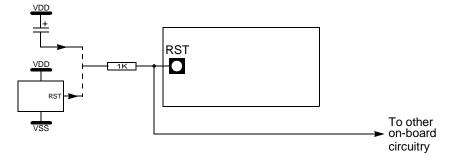
A cold start reset is the one induced by V_{CC} switch-on. A warm start reset occurs while V_{CC} is still applied to the device and could be generated for example by an exit from power-down.

The power-off flag (POF) is located in PCON register (Table 118). POF is set by hardware when V_{CC} rises from 0 to its nominal voltage. The POF can be set or cleared by software allowing the user to determine the type of reset.

Table 118. PCON Register

PCON - Power Control Register (87h)


7	6	5	4	3	2	1	0		
SMOD1	SMOD0	-	POF	GF1	GF0	PD	IDL		
Bit Number	Bit Mnemonic	Description							
7	SMOD1	•	erial port Mode bit 1 Set to select double baud rate in mode 1, 2 or 3.						
6	SMOD0			SCON register. register.					
5	-	Reserved The value rea	d from this bit i	s indeterminate	. Do not set this	s bit.			
4	POF		ognize next re		s nominal volta	ge. Can also be	e set by		
3	GF1			ourpose usage. ose usage.					
2	GF0			ourpose usage. ose usage.					
1	PD		mode bit rdware when re ower-down mo						
0	IDL	Idle mode bit Cleared by ha Set to enter id	rdware when ir	nterrupt or rese	t occurs.				


Reset Value = 00X1 0000b Not bit addressable

Reset Output

As detailed in Section "Hardware Watchdog Timer", page 124, the WDT generates a 96-clock period pulse on the RST pin. In order to properly propagate this pulse to the rest of the application in case of external capacitor or power-supply supervisor circuit, a 1 k Ω resistor must be added as shown Figure 70.

Table 121. AC Parameters for a Variab	e Clock
---------------------------------------	---------

Symbol	Туре	Standard Clock	X2 Clock	X parameter for -M ⁽¹⁾ range	X parameter for -L ⁽²⁾ range	Units
T _{LHLL}	Min	2 T - x	T - x	15	15	ns
T _{AVLL}	Min	Т - х	0.5 T - x	20	20	ns
T _{LLAX}	Min	Т - х	0.5 T - x	20	20	ns
T _{LLIV}	Max	4 T - x	2 T - x	35	35	ns
T _{LLPL}	Min	Т - х	0.5 T - x	15	15	ns
T _{PLPH}	Min	3 T - x	1.5 T - x	25	25	ns
T _{PLIV}	Max	3 T - x	1.5 T - x	45	45	ns
T _{PXIX}	Min	х	х	0	0	ns
T _{PXIZ}	Max	T - x	0.5 T - x	15	15	ns
T _{AVIV}	Max	5 T - x	2.5 T - x	45	45	ns
T _{PLAZ}	Max	х	х	10	10	ns

Notes: 1. '-L ' refers to 2V - 5.5V version.

2. ' -M ' refers to 4.5V to 5.5V version.

Document Revision History

Changes from	1.	Modified ordering information.
7663B to 7663C	2.	Various grammatical corections throughout document.
Changes from 7663C to 7663D	1.	TWI interface added.
Changes from	1.	Removed 64 and 68 pins package product version.
7663D to 7663E	2.	Minor correction on Table 69 on page 102.

AT89C51RE2

Ir	terrupt	71
R	egisters	73
Timer	2	77
A	uto-Reload Mode	77
Р	rogrammable Clock-Output	78
R	egisters	80
_		
-	ammable Counter Array PCA	
	CA Capture Mode	
	6-bit Software Timer/ Compare Mode	
Н	igh Speed Output Mode	91
Р	ulse Width Modulator Mode	92
Р	CA Watchdog Timer	93
	I/O Port	
F	raming Error Detection	94
A	utomatic Address Recognition	95
	egisters	
В	aud Rate Selection for UART 0 for Mode 1 and 3	98
В	aud Rate Selection for UART 1 for Mode 1 and 3	99
U	ART Registers 1	103
	upt System 1	
R	egisters 1	110
R		110
R Ir	egisters	110 117
R Ir Powe	egisters	110 117 1 18
R Ir Powe l Ir	egisters	110 117 1 18 118
R Ir Powe Ir Ic	egisters	110 117 1 18 118 118
R Ir Powe Ir Ic P	egisters	110 117 1 18 118 118 118
R Ir Powe Ir Ic P	egisters	110 117 1 18 118 118 118
R Ir Powe l Ir Ic R	egisters	110 117 1 18 118 118 118 121
R Ir Power Ir Ic P R Oscill	egisters	110 117 18 118 118 118 121
R Ir Ir Ic P R Oscill	egisters	110 117 18 118 118 118 121 22 122
R Ir Ir Ic P R Oscill	egisters	110 117 18 118 118 118 121 22 122
R Ir Ir Ic P R Oscill R F	egisters	110 117 1 18 118 118 118 121 122 122 123
R Ir Ir Ic P R Oscill R F Hardv	egisters	110 117 1 18 118 118 121 122 122 122
R Ir Powel Ir Ic P R Oscill R F Hardv U	egisters	110 117 1 18 118 118 118 121 122 122 123 123
R Ir Powel Ir Ic P R Oscill R F Hardv U	egisters	110 117 1 18 118 118 118 121 122 122 123 123
R Ir Ir Ic P R Oscill R F Hardv U W	egisters	110 117 1 18 118 118 118 121 122 122 123 124 124 125
R Ir Ir Ic P R Oscill R F Hardw U W Reduc	egisters	110 117 1 18 118 118 118 121 122 122 123 124 124 124 124
R Ir Power Ir Ic P R Oscill R F Hardw U W Reduce	egisters	110 117 1 18 118 118 118 121 122 122 122 122 123 124 124 125 126

