



#### Welcome to E-XFL.COM

#### Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

### Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

#### Details

| Product Status                  | Obsolete                                                                 |
|---------------------------------|--------------------------------------------------------------------------|
| Core Processor                  | ARM920T                                                                  |
| Number of Cores/Bus Width       | 1 Core, 32-Bit                                                           |
| Speed                           | 100MHz                                                                   |
| Co-Processors/DSP               | -                                                                        |
| RAM Controllers                 | SDRAM                                                                    |
| Graphics Acceleration           | No                                                                       |
| Display & Interface Controllers | LCD                                                                      |
| Ethernet                        | -                                                                        |
| SATA                            | -                                                                        |
| USB                             | USB 1.x (1)                                                              |
| Voltage - I/O                   | 1.8V, 3.0V                                                               |
| Operating Temperature           | -40°C ~ 85°C (TA)                                                        |
| Security Features               | -                                                                        |
| Package / Case                  | 225-LFBGA                                                                |
| Supplier Device Package         | 225-MAPBGA (13x13)                                                       |
| Purchase URL                    | https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9328mxscvp10r2 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



- Power Management Features
- Operating Voltage Range: 1.7 V to 1.9 V core, 1.7 V to 3.3 V I/O
- 225-contact MAPBGA Package

# 1.2 Target Applications

The i.MXS applications processor is designed to meet the needs of medical instrumentation, low-end PDAs, point-of-sale terminals, security systems and other applications requiring a basic device based on ARM technology with support for open operating systems. Like other members of the i.MX family, the i.MXS is designed for high performance and low-power to maximize battery life.

# **1.3 Ordering Information**

Table 1 provides ordering information.

| Table | 1. | i.MXS | Ordering | Information |
|-------|----|-------|----------|-------------|
|-------|----|-------|----------|-------------|

| Package Type       | Frequency | Temperature   | Solderball Type | Order Number       |
|--------------------|-----------|---------------|-----------------|--------------------|
| 225-contact MAPBGA | 100 MHz   | 0°C to 70°C   | Pb-free         | MC9328MXSVP10(R2)  |
|                    |           | -40°C to 85°C | Pb-free         | MC9328MXSCVP10(R2) |

# 1.4 Conventions

This document uses the following conventions:

- $\overline{\text{OVERBAR}}$  is used to indicate a signal that is active when pulled low: for example,  $\overline{\text{RESET}}$ .
- Logic level one is a voltage that corresponds to Boolean true (1) state.
- Logic level zero is a voltage that corresponds to Boolean false (0) state.
- To set a bit or bits means to establish logic level one.
- To *clear* a bit or bits means to establish logic level zero.
- A signal is an electronic construct whose state conveys or changes in state convey information.
- A *pin* is an external physical connection. The same pin can be used to connect a number of signals.
- Asserted means that a discrete signal is in active logic state.
  - Active low signals change from logic level one to logic level zero.
  - Active high signals change from logic level zero to logic level one.
- *Negated* means that an asserted discrete signal changes logic state.
  - Active low signals change from logic level zero to logic level one.
  - Active high signals change from logic level one to logic level zero.
- LSB means *least significant bit* or *bits*, and MSB means *most significant bit* or *bits*. References to low and high bytes or words are spelled out.
- Numbers preceded by a percent sign (%) are binary. Numbers preceded by a dollar sign (\$) or *0x* are hexadecimal.



Signals and Connections

|         | 225         | Primary |     | Alterna     | te               | GP  | 10   |             |              |     |       |         |
|---------|-------------|---------|-----|-------------|------------------|-----|------|-------------|--------------|-----|-------|---------|
| Voltage | BGA<br>Ball | Signal  | Dir | Pull-<br>Up | Signal           | Dir | Mux  | Pull<br>-Up | AIN          | BIN | AOUT  | Default |
| NVDD1   | P5          | A2      | 0   |             |                  |     |      |             |              |     |       |         |
| NVDD1   | M5          | EB3     | 0   |             |                  |     |      |             |              |     |       |         |
| NVDD1   | N6          | D8      | I/O | 69K         |                  |     |      |             |              |     |       |         |
| NVDD1   | R5          | OE      | 0   |             |                  |     |      |             |              |     |       |         |
| NVDD1   | P6          | A1      | 0   |             |                  |     |      |             |              |     |       |         |
| NVDD1   | L7          | CS5     | 0   |             |                  |     | PA23 | 69K         |              |     |       | PA23    |
| NVDD1   | R6          | D7      | I/O | 69K         |                  |     |      |             |              |     |       |         |
| NVDD1   | M7          | CS4     | 0   |             |                  |     | PA22 | 69K         |              |     |       | PA22    |
| NVDD1   | R7          | A0      | 0   |             |                  |     | PA21 | 69K         |              |     |       | A0      |
| NVDD1   | N7          | CS3     | 0   |             | CSD1             |     |      |             |              |     |       | CSD1    |
| NVDD1   | P7          | D6      | I/O | 69K         |                  |     |      |             |              |     |       |         |
| NVDD1   | K3          | CS2     | 0   |             | CSD0             |     |      |             |              |     |       | CSD0    |
| NVDD1   | R8          | SDCLK   | 0   |             |                  |     |      |             |              |     |       |         |
| NVDD1   | M8          | CS1     | 0   |             |                  |     |      |             |              |     |       |         |
| NVDD1   | N8          | CS0     | 0   |             |                  |     |      |             |              |     |       |         |
| NVDD1   | P8          | D5      | I/O | 69K         |                  |     |      |             |              |     |       |         |
| NVDD1   | L9          | ECB     | I   |             | ETMTRAC<br>EPKT7 |     | PA20 | 69K         |              |     |       | ECB     |
| NVDD1   | R9          | D4      | I/O | 69K         |                  |     |      |             |              |     |       |         |
| NVDD1   | R10         | LBA     | 0   |             | ETMTRAC<br>EPKT6 |     | PA19 | 69K         |              |     |       | LBA     |
| NVDD1   | R11         | D3      | I/O | 69K         |                  |     |      |             |              |     |       |         |
| NVDD1   | M9          | BCLK    |     |             | ETMTRAC<br>EPKT5 |     | PA18 | 69K         |              |     |       | BCLK    |
| NVDD1   | L8          | D2      | I/O | 69K         |                  |     |      |             |              |     |       |         |
| NVDD1   | N9          | PA17    |     |             | ETMTRAC<br>EPKT4 |     | PA17 | 69K         | Reser<br>ved |     | DTACK | PA17    |
| NVDD1   | K10         | D1      | I/O | 69K         |                  |     |      |             |              |     |       |         |
| NVDD1   | M10         | RW      |     |             |                  |     |      |             |              |     |       |         |
| NVDD1   | P10         | MA11    | 0   |             |                  |     |      |             |              |     |       |         |
| NVDD1   | P9          | MA10    | 0   |             |                  |     |      |             |              |     |       |         |
| NVDD1   | N10         | D0      | I/O | 69K         |                  |     |      |             |              |     |       |         |
| NVDD1   | R12         | DQM3    | 0   |             |                  |     |      |             |              |     |       |         |
| NVDD1   | N11         | DQM2    | 0   |             |                  |     |      |             |              |     |       |         |
| NVDD1   | P11         | DQM1    | 0   |             |                  |     |      |             |              |     |       |         |
| NVDD1   | N12         | DQM0    | 0   |             |                  |     |      |             |              |     |       |         |
| NVDD1   | P12         | RAS     | 0   |             |                  |     |      |             |              |     |       |         |
| NVDD1   | R13         | CAS     | 0   |             |                  |     |      |             |              |     |       |         |
| NVDD1   | R14         | SDWE    | 0   |             |                  |     |      |             |              |     |       |         |

Table 3. MC9328MXS Signal Multiplexing Scheme (Continued)



**Signals and Connections** 

|                       | 225         | Primary                                     |        | Alterna     | ate    | GP  | 0    |             |     |     |      |         |
|-----------------------|-------------|---------------------------------------------|--------|-------------|--------|-----|------|-------------|-----|-----|------|---------|
| I/O Supply<br>Voltage | BGA<br>Ball | Signal                                      | Dir    | Pull-<br>Up | Signal | Dir | Mux  | Pull<br>-Up | AIN | BIN | AOUT | Default |
| NVDD1                 | N13         | SDCKE0                                      | 0      |             |        |     |      |             |     |     |      |         |
| NVDD1                 | P13         | SDCKE1                                      | 0      |             |        |     |      |             |     |     |      |         |
| NVDD1                 | P15         | RESET_S<br>F                                | 0      |             |        |     |      |             |     |     |      |         |
| NVDD1                 | P14         | CLKO                                        | 0      |             |        |     |      |             |     |     |      |         |
| AVDD1                 | R15         | AVDD1                                       | Static |             |        |     |      |             |     |     |      |         |
| QVDD2                 | M13         | QVDD2                                       | Static |             |        |     |      |             |     |     |      |         |
| AVDD1                 | N15         | TRST                                        | I      | 69K         |        |     |      |             |     |     |      |         |
| AVDD1                 | N14         | TRISTATE                                    | I      |             |        |     |      |             |     |     |      |         |
| AVDD1                 | M15         | EXTAL16<br>M                                | I      |             |        |     |      |             |     |     |      |         |
| AVDD1                 | L14         | XTAL16M                                     | 0      |             |        |     |      |             |     |     |      |         |
| AVDD1                 | L15         | EXTAL32<br>K                                | I      |             |        |     |      |             |     |     |      |         |
| AVDD1                 | K15         | XTAL32K                                     | 0      |             |        |     |      |             |     |     |      |         |
| AVDD1                 | M14         | $\frac{\overline{RESET_I}}{\overline{N}^2}$ | I      | 69K         |        |     |      |             |     |     |      |         |
| AVDD1                 | K14         | RESET_O<br>UT                               | 0      |             |        |     |      |             |     |     |      |         |
| AVDD1                 | L12         | POR <sup>2</sup>                            | I      |             |        |     |      |             |     |     |      |         |
| AVDD1                 | K13         | BIG_ENDI<br>AN <sup>3</sup>                 | I      |             |        |     |      |             |     |     |      |         |
| AVDD1                 | M12         | BOOT3 <sup>3</sup>                          | I      |             |        |     |      |             |     |     |      |         |
| AVDD1                 | K11         | BOOT2 <sup>3</sup>                          | I      |             |        |     |      |             |     |     |      |         |
| AVDD1                 | J14         | BOOT1 <sup>3</sup>                          | I      |             |        |     |      |             |     |     |      |         |
| AVDD1                 | J15         | BOOT0 <sup>3</sup>                          | I      |             |        |     |      |             |     |     |      |         |
| NVDD2                 | J13         | TDO <sup>4</sup>                            | 0      |             |        |     |      |             |     |     |      |         |
| NVDD2                 | H15         | TMS                                         | Ι      | 69K         |        |     |      |             |     |     |      |         |
| NVDD2                 | J12         | тск                                         | Ι      | 69K         |        |     |      |             |     |     |      |         |
| NVDD2                 | K12         | TDI                                         | I      | 69K         |        |     |      |             |     |     |      |         |
| NVDD2                 | J11         | I2C_SCL                                     | 0      |             |        |     | PA16 | 69K         |     |     |      | PA16    |
| NVDD2                 | H14         | I2C_SDA                                     | I/O    |             |        |     | PA15 | 69K         |     |     |      | PA15    |
| NVDD2                 | H13         | Reserved                                    | I      |             |        |     | PA14 | 69K         |     |     |      | PA14    |
| NVDD2                 | G14         | Reserved                                    | I      |             |        |     | PA13 | 69K         |     |     |      | PA13    |
| NVDD2                 | H12         | Reserved                                    | I      |             |        |     | PA12 | 69K         |     |     |      | PA12    |
| NVDD2                 | G13         | Reserved                                    | I      |             |        |     | PA11 | 69K         |     |     |      | PA11    |
| NVDD2                 | J10         | Reserved                                    | I      |             |        |     | PA10 | 69K         |     |     |      | PA10    |
| NVDD2                 | G15         | Reserved                                    | I      |             |        |     | PA9  | 69K         |     |     |      | PA9     |

## Table 3. MC9328MXS Signal Multiplexing Scheme (Continued)



|         | 225         | Primary |        | Alterna     | Alternate |     | 010 |             |     |     |      |         |
|---------|-------------|---------|--------|-------------|-----------|-----|-----|-------------|-----|-----|------|---------|
| Voltage | BGA<br>Ball | Signal  | Dir    | Pull-<br>Up | Signal    | Dir | Mux | Pull<br>-Up | AIN | BIN | AOUT | Default |
| NVDD2   | H10         | NVDD2   | Static |             |           |     |     |             |     |     |      |         |
|         | G9          | NVSS    | Static |             |           |     |     |             |     |     |      |         |
| QVDD3   | F11         | QVDD3   | Static |             |           |     |     |             |     |     |      |         |
|         | G10         | QVSS    | Static |             |           |     |     |             |     |     |      |         |
| NVDD2   | C15         | NVDD2   | Static |             |           |     |     |             |     |     |      |         |
|         | H9          | NVSS    | Static |             |           |     |     |             |     |     |      |         |
| QVDD4   | D7          | QVDD4   | Static |             |           |     |     |             |     |     |      |         |
|         | L13         | QVSS    | Static |             |           |     |     |             |     |     |      |         |
| NVDD3   | D9          | NVDD3   | Static |             |           |     |     |             |     |     |      |         |
|         | J9          | NVSS    | Static |             |           |     |     |             |     |     |      |         |
|         | K9          | NVSS    | Static |             |           |     |     |             |     |     |      |         |
| NVDD4   | G7          | NVDD4   | Static |             |           |     |     |             |     |     |      |         |
| NVDD1   | F6          | NVDD1   | Static |             |           |     |     |             |     |     |      |         |
| NVDD1   | L6          | NVDD1   | Static |             |           |     |     |             |     |     |      |         |
| NVDD1   | M6          | NVDD1   | Static |             |           |     |     |             |     |     |      |         |
| NVDD1   | K8          | NVDD1   | Static |             |           |     |     |             |     |     |      |         |
|         | L10         | NVSS    | Static |             |           |     |     |             |     |     |      |         |
|         | L11         | NVSS    | Static |             |           |     |     |             |     |     |      |         |
|         | M11         | NVSS    | Static |             |           |     |     |             |     |     |      |         |

| Table 3. MC9328MXS | Signal Multiplexing | Scheme (Continued) |
|--------------------|---------------------|--------------------|
|--------------------|---------------------|--------------------|

<sup>1</sup> Pull down this input with  $1K\Omega$  resistor to GND.

<sup>2</sup> External circuit required to drive this input.

 $^3\,$  Tie this input high (to AVDD) or pull down with 1K $\Omega$  resistor to GND.

<sup>4</sup> Pull up this output with a resistor to NVDD2.

NP

**Functional Description and Application Information** 



Figure 5. EIM Bus Timing Diagram

| Table 12. | EIM | Bus | Timing | Parameter | Table |
|-----------|-----|-----|--------|-----------|-------|
|-----------|-----|-----|--------|-----------|-------|

| Pof No  | Paramotor                          |      | 1.8 ± 0.1 V |      |     | Unit    |     |     |
|---------|------------------------------------|------|-------------|------|-----|---------|-----|-----|
| nei No. |                                    |      | Typical     | Max  | Min | Typical | Max | onn |
| 1a      | Clock fall to address valid        | 2.48 | 3.31        | 9.11 | 2.4 | 3.2     | 8.8 | ns  |
| 1b      | Clock fall to address invalid      | 1.55 | 2.48        | 5.69 | 1.5 | 2.4     | 5.5 | ns  |
| 2a      | Clock fall to chip-select valid    | 2.69 | 3.31        | 7.87 | 2.6 | 3.2     | 7.6 | ns  |
| 2b      | Clock fall to chip-select invalid  | 1.55 | 2.48        | 6.31 | 1.5 | 2.4     | 6.1 | ns  |
| 3a      | Clock fall to Read (Write) Valid   | 1.35 | 2.79        | 6.52 | 1.3 | 2.7     | 6.3 | ns  |
| Зb      | Clock fall to Read (Write) Invalid | 1.86 | 2.59        | 6.11 | 1.8 | 2.5     | 5.9 | ns  |







## Table 14. DTACK WAIT Read Cycle DMA Enabled: WSC = 111111, DTACK\_SEL=1, HCLK=96MHz

| Numbor | Characteristic                                                        | 3.0 ±      | 0.3 V     | Unit |
|--------|-----------------------------------------------------------------------|------------|-----------|------|
| Number | Characteristic                                                        | Minimum    | Maximum   |      |
| 1      | OE and EB assertion time                                              | See note 2 | -         | ns   |
| 2      | CS pulse width                                                        | 3Т         | -         | ns   |
| 3      | $\overline{OE}$ negated before $\overline{CS5}$ is negated            | 1.5T-0.68  | 1.5T-0.06 | ns   |
| 4      | Address inactived before $\overline{\text{CS}}$ negated               | -          | 0.05      | ns   |
| 5      | Wait asserted after $\overline{CS5}$ asserted                         | -          | 1020T     | ns   |
| 6      | Wait asserted to OE negated                                           | 2T+1.57    | 3T+7.33   | ns   |
| 7      | Data hold timing after OE negated                                     | T-1.49     | -         | ns   |
| 8      | Data ready after wait is asserted                                     | -          | Т         | ns   |
| 9      | $\overline{\text{CS}}$ deactive to next $\overline{\text{CS}}$ active | Т          | -         | ns   |
| 10     | OE negate after EB negate                                             | 0.06       | 0.18      | ns   |
| 11     | Wait becomes low after CS5 asserted                                   | 0          | 1019T     | ns   |



### Table 14. DTACK WAIT Read Cycle DMA Enabled: WSC = 111111, DTACK\_SEL=1, HCLK=96MHz (Continued)

| Number | Characteristic   | 3.0 ± 0.3 V |         |      |  |  |
|--------|------------------|-------------|---------|------|--|--|
| Humbor |                  | Minimum     | Maximum | onic |  |  |
| 12     | Wait pulse width | 1T          | 1020T   | ns   |  |  |
| NL 1   |                  |             |         |      |  |  |

Note:

1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)

2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur only when EBC bit in CS5L register is clear.

3. Address becomes valid and CS asserts at the start of read access cycle.

4. The external wait input requirement is eliminated when CS5 is programmed to use internal wait state.

## 4.4.2.3 WAIT Write Cycle without DMA



Figure 8. WAIT Write Cycle without DMA

## Table 15. WAIT Write Cycle without DMA: WSC = 111111, DTACK\_SEL=1, HCLK=96MHz

| Numbor | Characteristic                                | 3.0 ± 0    | Unit      |      |
|--------|-----------------------------------------------|------------|-----------|------|
| Number | Characteristic                                | Minimum    | Maximum   | onit |
| 1      | CS5 assertion time                            | See note 2 | -         | ns   |
| 2      | EB assertion time                             | See note 2 | -         | ns   |
| 3      | CS5 pulse width                               | 3Т         | -         | ns   |
| 4      | RW negated before CS5 is negated              | 2.5T-3.63  | 2.5T-1.16 | ns   |
| 5      | RW negated to Address inactive                | 64.22      | -         | ns   |
| 6      | Wait asserted after $\overline{CS5}$ asserted | -          | 1020T     | ns   |



| Number | Characteristic                                                        | 3.0 ± (    | 11        |    |
|--------|-----------------------------------------------------------------------|------------|-----------|----|
|        |                                                                       | Minimum    | Maximum   |    |
| 1      | CS5 assertion time                                                    | See note 2 | _         | ns |
| 2      | EB assertion time                                                     | See note 2 | _         | ns |
| 3      | CS5 pulse width                                                       | 3Т         | _         | ns |
| 4      | $\overline{RW}$ negated before $\overline{CS5}$ is negated            | 2.5T-3.63  | 2.5T-1.16 | ns |
| 5      | Address inactived after CS negated                                    | -          | 0.09      | ns |
| 6      | Wait asserted after $\overline{CS5}$ asserted                         | _          | 1020T     | ns |
| 7      | Wait asserted to $\overline{RW}$ negated                              | T+2.66     | 2T+7.96   | ns |
| 8      | Data hold timing after $\overline{RW}$ negated                        | 2T+0.03    | _         | ns |
| 9      | Data ready after $\overline{CS5}$ is asserted                         | _          | Т         | ns |
| 10     | $\overline{\text{CS}}$ deactive to next $\overline{\text{CS}}$ active | Т          | _         | ns |
| 11     | EB negate after CS negate                                             | 0.5T       | 0.5T+0.5  |    |
| 12     | Wait becomes low after $\overline{CS5}$ asserted                      | 0          | 1019T     | ns |
| 13     | Wait pulse width                                                      | 1T         | 1020T     | ns |

### Table 16. WAIT Write Cycle DMA Enabled: WSC = 111111, DTACK\_SEL=1, HCLK=96MHz

Note:

1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)

2. CS5 assertion can be controlled by CSA bits. EB assertion also can be programmable by WEA bits in CS5L register.

3. Address becomes valid and  $\overline{RW}$  asserts at the start of write access cycle.

4. The external wait input requirement is eliminated when  $\overline{CS5}$  is programmed to use internal wait state.

# 4.4.3 EIM External Bus Timing

The External Interface Module (EIM) is the interface to devices external to the i.MXS, including generation of chip-selects for external peripherals and memory. The timing diagram for the EIM is shown in Figure 5, and Table 12 defines the parameters of signals.



**Functional Description and Application Information** 



Figure 10. WSC = 1, A.HALF/E.HALF



**Functional Description and Application Information** 



Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register **Figure 12. WSC = 1, OEA = 1, A.WORD/E.HALF** 



























| Ref No. | Parameter                         | 1.8 ± 0.1 V |         | 3.0 ±   | Unit    |      |
|---------|-----------------------------------|-------------|---------|---------|---------|------|
|         |                                   | Minimum     | Maximum | Minimum | Maximum | Unit |
| 1       | System CLK frequency <sup>1</sup> | 0           | 87      | 0       | 100     | MHz  |
| 2a      | Clock high time <sup>1</sup>      | 3.3         | -       | 5/10    | -       | ns   |
| 2b      | Clock low time <sup>1</sup>       | 7.5         | -       | 5/10    | -       | ns   |
| 3a      | Clock fall time <sup>1</sup>      | -           | 5       | _       | 5/10    | ns   |
| 3b      | Clock rise time <sup>1</sup>      | -           | 6.67    | -       | 5/10    | ns   |
| 4a      | Output delay time <sup>1</sup>    | 5.7         | -       | 5       | -       | ns   |
| 4b      | Output setup time <sup>1</sup>    | 5.7         | _       | 5       | _       | ns   |

Table 22. PWM Output Timing Parameter Table

<sup>1</sup>  $C_L$  of PWMO = 30 pF

# 4.8 SDRAM Controller

This section shows timing diagrams and parameters associated with the SDRAM (synchronous dynamic random access memory) Controller.



| Ref No. | Parameter                     | 1.8 ±             | 0.1 V   | 3.0 ±            | Unit    |      |
|---------|-------------------------------|-------------------|---------|------------------|---------|------|
| nei no. |                               | Minimum           | Maximum | Minimum          | Maximum | Unit |
| 1       | SDRAM clock high-level width  | 2.67              | _       | 4                | _       | ns   |
| 2       | SDRAM clock low-level width   | 6                 | _       | 4                | _       | ns   |
| 3       | SDRAM clock cycle time        | 11.4              | -       | 10               | _       | ns   |
| 4       | Address setup time            | 3.42              | -       | 3                | _       | ns   |
| 5       | Address hold time             | 2.28              | -       | 2                | _       | ns   |
| 6       | Precharge cycle period        | t <sub>RP</sub> 1 | -       | t <sub>RP1</sub> | -       | ns   |
| 7       | Auto precharge command period | t <sub>RC1</sub>  | _       | t <sub>RC1</sub> | _       | ns   |

## Table 25. SDRAM Refresh Timing Parameter Table

 $\frac{1}{t_{RP}}$  and  $t_{RC}$  = SDRAM clock cycle time. These settings can be found in the *MC9328MXS reference manual*.





| Ref No.                                                                      | Parameter                                   | 1.8 ±         | 1.8 ± 0.1 V               |         | 3.0 ± 0.3 V |      |  |
|------------------------------------------------------------------------------|---------------------------------------------|---------------|---------------------------|---------|-------------|------|--|
|                                                                              |                                             | Minimum       | Maximum                   | Minimum | Maximum     | Unit |  |
| 6                                                                            | STCK high to STFS (wl) high <sup>3</sup>    | 1.48          | 4.45                      | 1.3     | 3.9         | ns   |  |
| 7                                                                            | SRCK high to SRFS (wI) high <sup>3</sup>    | -1.1          | -1.5                      | -1.1    | -1.5        | ns   |  |
| 8                                                                            | STCK high to STFS (wl) low <sup>3</sup>     | 2.51          | 4.33                      | 2.2     | 3.8         | ns   |  |
| 9                                                                            | SRCK high to SRFS (wI) low <sup>3</sup>     | 0.1           | -0.8                      | 0.1     | -0.8        | ns   |  |
| 10                                                                           | STCK high to STXD valid from high impedance | 14.25         | 15.73                     | 12.5    | 13.8        | ns   |  |
| 11a                                                                          | STCK high to STXD high                      | 0.91          | 3.08                      | 0.8     | 2.7         | ns   |  |
| 11b                                                                          | STCK high to STXD low                       | 0.57          | 3.19                      | 0.5     | 2.8         | ns   |  |
| 12                                                                           | STCK high to STXD high impedance            | 12.88         | 13.57                     | 11.3    | 11.9        | ns   |  |
| 13                                                                           | SRXD setup time before SRCK low             | 21.1          | _                         | 18.5    | _           | ns   |  |
| 14                                                                           | SRXD hold time after SRCK low               | 0             | -                         | 0       | -           | ns   |  |
|                                                                              | External Clock Operation (                  | Port C Primar | y Function <sup>2</sup> ) |         |             |      |  |
| 15                                                                           | STCK/SRCK clock period <sup>1</sup>         | 92.8          | _                         | 81.4    | _           | ns   |  |
| 16                                                                           | STCK/SRCK clock high period                 | 27.1          | _                         | 40.7    | _           | ns   |  |
| 17                                                                           | STCK/SRCK clock low period                  | 61.1          | -                         | 40.7    | _           | ns   |  |
| 18                                                                           | STCK high to STFS (bl) high <sup>3</sup>    | _             | 92.8                      | 0       | 81.4        | ns   |  |
| 19                                                                           | SRCK high to SRFS (bl) high <sup>3</sup>    | _             | 92.8                      | 0       | 81.4        | ns   |  |
| 20                                                                           | STCK high to STFS (bl) low <sup>3</sup>     | _             | 92.8                      | 0       | 81.4        | ns   |  |
| 21                                                                           | SRCK high to SRFS (bl) low <sup>3</sup>     | -             | 92.8                      | 0       | 81.4        | ns   |  |
| 22                                                                           | STCK high to STFS (wI) high <sup>3</sup>    | -             | 92.8                      | 0       | 81.4        | ns   |  |
| 23                                                                           | SRCK high to SRFS (wI) high <sup>3</sup>    | -             | 92.8                      | 0       | 81.4        | ns   |  |
| 24                                                                           | STCK high to STFS (wl) low <sup>3</sup>     | -             | 92.8                      | 0       | 81.4        | ns   |  |
| 25                                                                           | SRCK high to SRFS (wI) low <sup>3</sup>     | _             | 92.8                      | 0       | 81.4        | ns   |  |
| 26                                                                           | STCK high to STXD valid from high impedance | 18.01         | 28.16                     | 15.8    | 24.7        | ns   |  |
| 27a                                                                          | STCK high to STXD high                      | 8.98          | 18.13                     | 7.0     | 15.9        | ns   |  |
| 27b                                                                          | STCK high to STXD low                       | 9.12          | 18.24                     | 8.0     | 16.0        | ns   |  |
| 28                                                                           | STCK high to STXD high impedance            | 18.47         | 28.5                      | 16.2    | 25.0        | ns   |  |
| 29                                                                           | SRXD setup time before SRCK low             | 1.14          | -                         | 1.0     | -           | ns   |  |
| 30                                                                           | SRXD hole time after SRCK low               | 0             | -                         | 0       | -           | ns   |  |
| Synchronous Internal Clock Operation (Port C Primary Function <sup>2</sup> ) |                                             |               |                           |         |             |      |  |
| 31                                                                           | SRXD setup before STCK falling              | 15.4          | -                         | 13.5    | -           | ns   |  |
| 32                                                                           | SRXD hold after STCK falling                | 0             | -                         | 0       | -           | ns   |  |

## Table 29. SSI (Port C Primary Function) Timing Parameter Table (Continued)



Pin-Out and Package Information

# 5.1 MAPBGA 225 Package Dimensions

Figure 54 illustrates the 225 MAPBGA 13 mm × 13 mm package.



## Case Outline 1304B



#### How to Reach Us:

Home Page: www.freescale.com

E-mail: support@freescale.com

#### USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

#### Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

#### Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064, Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

#### Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street Tai Po Industrial Estate Tai Po, N.T., Hong Kong +800 2666 8080 support.asia@freescale.com

#### For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800-521-6274 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MC9328MXS Rev. 3 12/2006 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale<sup>™</sup> and the Freescale logo are trademarks of Freescale Semiconductor, Inc. ARM and the ARM POWERED logo are the registered trademarks of ARM Limited. ARM9, ARM920T, and ARM9TDMI are the trademarks of ARM Limited. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2006. All rights reserved.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

