

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

E·XF

Product Status	Active
Core Processor	ARM920T
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	100MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	LCD
Ethernet	·
SATA	·
USB	USB 1.x (1)
Voltage - I/O	1.8V, 3V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	225-LFBGA
Supplier Device Package	225-MAPBGA (13x13)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mc9328mxsvp10

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Signals and Connections

2 Signals and Connections

Table 2 identifies and describes the i.MXS processor signals that are assigned to package pins. The signals are grouped by the internal module that they are connected to.

Signal Name	Function/Notes
	External Bus/Chip-Select (EIM)
A[24:0]	Address bus signals
D[31:0]	Data bus signals
EB0	MSB Byte Strobe—Active low external enable byte signal that controls D [31:24].
EB1	Byte Strobe—Active low external enable byte signal that controls D [23:16].
EB2	Byte Strobe—Active low external enable byte signal that controls D [15:8].
EB3	LSB Byte Strobe—Active low external enable byte signal that controls D [7:0].
OE	Memory Output Enable—Active low output enables external data bus.
CS [5:0]	Chip-Select—The chip-select signals \overline{CS} [3:2] are multiplexed with \overline{CSD} [1:0] and are selected by the Function Multiplexing Control Register (FMCR). By default \overline{CSD} [1:0] is selected.
ECB	Active low input signal sent by a flash device to the EIM whenever the flash device must terminate an on-going burst sequence and initiate a new (long first access) burst sequence.
LBA	Active low signal sent by a flash device causing the external burst device to latch the starting burst address.
BCLK (burst clock)	Clock signal sent to external synchronous memories (such as burst flash) during burst mode.
RW	$\overline{\text{RW}}$ signal—Indicates whether external access is a read (high) or write (low) cycle. Used as a $\overline{\text{WE}}$ input signal by external DRAM.
DTACK	DTACK signal—The external input data acknowledge signal. When using the external DTACK signal as a data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is not terminated by the external DTACK signal after 1022 clock counts have elapsed.
	Bootstrap
BOOT [3:0]	System Boot Mode Select—The operational system boot mode of the i.MXS processor upon system reset is determined by the settings of these pins.
	SDRAM Controller
SDBA [4:0]	SDRAM non-interleave mode bank address multiplexed with address signals A [15:11]. These signals are logically equivalent to core address p_addr [25:21] in SDRAM cycles.
SDIBA [3:0]	SDRAM interleave addressing mode bank address multiplexed with address signals A [19:16]. These signals are logically equivalent to core address p_addr [12:9] in SDRAM cycles.
MA [11:10]	SDRAM address signals
MA [9:0]	SDRAM address signals which are multiplexed with address signals A [10:1]. MA [9:0] are selected on SDRAM cycles.
DQM [3:0]	SDRAM data enable
CSD0	SDRAM Chip-select signal which is multiplexed with the $\overline{CS2}$ signal. These two signals are selectable by programming the system control register.

Table 2. i.MXS Signal Descriptions

	225	5 Primary		Alternate		GPIO						
I/O Supply Voltage	BGA Ball	Signal	Dir	Pull- Up	Signal	Dir	Mux	Pull -Up	AIN	BIN	AOUT	Default
NVDD1	G2	A18	0		ETMTRAC EPKT2	0	PA26	69K				A18
NVDD1	G4	D25	I/O	69K								
NVDD1	G1	A17	0		ETMTRAC EPKT1	0	PA25	69K				A17
NVDD1	H4	D24	I/O	69K								
NVDD1	H2	A16	0		ETMTRAC EPKT0	0	PA24	69K				A16
NVDD1	H3	D23	I/O	69K								
NVDD1	H1	A15	0									
NVDD1	H5	D22	I/O	69K								
NVDD1	J1	A14	0									
NVDD1	J3	D21	I/O	69K								
NVDD1	K1	A13	0									
NVDD1	J4	D20	I/O	69K								
NVDD1	J2	A12	0									
NVDD1	K4	D19	I/O	69K								
NVDD1	K2	A11	0									
NVDD1	L4	D18	I/O	69K								
NVDD1	L1	A10	0									
NVDD1	L3	D17	I/O	69K								
NVDD1	L2	A9	0									
NVDD1	M1	D16	I/O	69K								
NVDD1	N1	A8	0									
NVDD1	M2	D15	I/O	69K								
NVDD1	N2	A7	0									
NVDD1	P1	D14	I/O	69K								
NVDD1	R1	A6	0									
NVDD1	M3	D13	I/O	69K								
NVDD1	P2	A5	0									
NVDD1	N3	D12	I/O	69K								
NVDD1	P3	A4	0									
NVDD1	R2	D11	I/O	69K								
NVDD1	N4	EB0	0									
NVDD1	M4	D10	I/O	69K								
NVDD1	P4	A3	0									
NVDD1	R3	EB1	0									
NVDD1	N5	D9	I/O	69K								
NVDD1	R4	EB2	0									

Table 3. MC9328MX8	Signal Mu	Itiplexing S	Scheme (Co	ntinued)
--------------------	-----------	--------------	------------	----------

4.2 **DPLL Timing Specifications**

Parameters of the DPLL are given in Table 10. In this table, T_{ref} is a reference clock period after the pre-divider and T_{dck} is the output double clock period.

Parameter	Test Conditions	Minimum	Typical	Maximum	Unit
DPLL input clock freq range	Vcc = 1.8V	5	_	100	MHz
Pre-divider output clock freq range	Vcc = 1.8V	5	_	30	MHz
DPLL output clock freq range	Vcc = 1.8V	80	_	220	MHz
Pre-divider factor (PD)	-	1	-	16	-
Total multiplication factor (MF)	Includes both integer and fractional parts	5	-	15	-
MF integer part	-	5	-	15	-
MF numerator	Should be less than the denominator	0	-	1022	-
MF denominator	-	1	-	1023	-
Pre-multiplier lock-in time	-	-	-	312.5	μsec
Freq lock-in time after full reset	FOL mode for non-integer MF (does not include pre-multi lock-in time)	250	280 (56 μs)	300	T _{ref}
Freq lock-in time after partial reset	FOL mode for non-integer MF (does not include pre-multi lock-in time)	220	250 (50 μs)	270	T _{ref}
Phase lock-in time after full reset	FPL mode and integer MF (does not include pre-multi lock-in time)	300	350 (70 μs)	400	T _{ref}
Phase lock-in time after partial reset	FPL mode and integer MF (does not include pre-multi lock-in time)	270	320 (64 μs)	370	T _{ref}
Freq jitter (p-p)	-	-	0.005 (0.01%)	0.01	2•T _{dck}
Phase jitter (p-p)	Integer MF, FPL mode, Vcc=1.8V	-	1.0 (10%)	1.5	ns
Power supply voltage	-	1.7	-	2.5	V
Power dissipation	FOL mode, integer MF, f _{dck} = 100 MHz, Vcc = 1.8V	-	_	4	mW

Table 10. DPLL Specifications

4.3 Reset Module

The timing relationships of the Reset module with the POR and RESET_IN are shown in Figure 3 and Figure 4.

NOTE

Be aware that NVDD must ramp up to at least 1.8V before QVDD is powered up to prevent forward biasing.

Ref	Deveneter	1.8 ±	3.0 ± 0.3 V		Unit	
No.	Parameter	Min	Мах	Min	Max	Onit
1	Width of input POWER_ON_RESET	note ¹	_	note ¹	_	_
2	Width of internal POWER_ON_RESET (CLK32 at 32 kHz)	300	300	300	300	ms
3	7K to 32K-cycle stretcher for SDRAM reset	7	7	7	7	Cycles of CLK32
4	14K to 32K-cycle stretcher for internal system reset HRESERT and output reset at pin RESET_OUT	14	14	14	14	Cycles of CLK32
5	Width of external hard-reset RESET_IN	4	-	4	-	Cycles of CLK32
6	4K to 32K-cycle qualifier	4	4	4	4	Cycles of CLK32

¹ POR width is dependent on the 32 or 32.768 kHz crystal oscillator start-up time. Design margin should allow for crystal tolerance, i.MX chip variations, temperature impact, and supply voltage influence. Through the process of supplying crystals for use with CMOS oscillators, crystal manufacturers have developed a working knowledge of start-up time of their crystals. Typically, start-up times range from 400 ms to 1.2 seconds for this type of crystal.

If an external stable clock source (already running) is used instead of a crystal, the width of POR should be ignored in calculating timing for the start-up process.

4.4 External Interface Module

The External Interface Module (EIM) handles the interface to devices external to the i.MXS processor, including the generation of chip-selects for external peripherals and memory. The timing diagram for the EIM is shown in Figure 5, and Table 12 defines the parameters of signals.

4.4.2.1 WAIT Read Cycle without DMA

Table 13. WAIT Read Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz

Numbor	Chavastavistis	3.0 ± 0	Unit	
Number	Characteristic	Minimum	Maximum	Onit
1	OE and EB assertion time	See note 2	-	ns
2	CS5 pulse width	3Т	-	ns
3	OE negated to address inactive	56.81	57.28	ns
4	Wait asserted after \overline{OE} asserted	-	1020T	ns
5	Wait asserted to OE negated	2T+1.57	3T+7.33	ns
6	Data hold timing after OE negated	T-1.49	-	ns
7	Data ready after wait asserted	0	Т	ns
8	OE negated to CS negated	1.5T-0.68	1.5T-0.06	ns
9	OE negated after EB negated	0.06	0.18	ns
10	Become low after CS5 asserted	0	1019T	ns
11	Wait pulse width	1T	1020T	ns

Note:

1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)

2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur only when EBC bit in CS5L register is clear.

3. Address becomes valid and \overline{CS} asserts at the start of read access cycle.

4. The external wait input requirement is eliminated when $\overline{CS5}$ is programmed to use internal wait state.

Table 14. DTACK WAIT Read Cycle DMA Enabled: WSC = 111111, DTACK_SEL=1, HCLK=96MHz

Numbor	Characteristic	3.0 ±	Unit	
Number	Characteristic	Minimum	Maximum	
1	OE and EB assertion time	See note 2	-	ns
2	CS pulse width	3Т	-	ns
3	\overline{OE} negated before $\overline{CS5}$ is negated	1.5T-0.68	1.5T-0.06	ns
4	Address inactived before $\overline{\text{CS}}$ negated	-	0.05	ns
5	Wait asserted after $\overline{CS5}$ asserted	-	1020T	ns
6	Wait asserted to OE negated	2T+1.57	3T+7.33	ns
7	Data hold timing after OE negated	T-1.49	-	ns
8	Data ready after wait is asserted	-	Т	ns
9	$\overline{\text{CS}}$ deactive to next $\overline{\text{CS}}$ active	Т	-	ns
10	OE negate after EB negate	0.06	0.18	ns
11	Wait becomes low after CS5 asserted	0	1019T	ns

Functional Description and Application Information

Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register **Figure 12. WSC = 1, OEA = 1, A.WORD/E.HALF**

Functional Description and Application Information

Functional Description and Application Information

Figure 26. WSC = 2, OEA = 2, CNC = 3, BCM = 1, A.HALF/E.HALF

Functional Description and Application Information

4.4.4 Non-TFT Panel Timing

Figure 33. Non-TFT Panel Timing

Table 17.	Non	TFT	Panel	Timing	Diagram
-----------	-----	-----	-------	--------	---------

Symbol	Parameter	Allowed Register Minimum Value ^{1, 2}	Actual Value	Unit
T1	HSYN to VSYN delay ³	0	HWAIT2+2	Tpix ⁴
T2	HSYN pulse width	0	HWIDTH+1	Тріх
Т3	VSYN to SCLK	-	$0 \leq T3 \leq Ts^5$	-
T4	SCLK to HSYN	0	HWAIT1+1	Тріх

¹ Maximum frequency of LCDC_CLK is 48 MHz, which is controlled by Peripheral Clock Divider Register.

² Maximum frequency of SCLK is HCLK / 5, otherwise LD output will be wrong.

³ VSYN, HSYN and SCLK can be programmed as active high or active low. In the above timing diagram, all these 3 signals are active high.

⁴ Tpix is the pixel clock period which equals LCDC_CLK period * (PCD + 1).

⁵ Ts is the shift clock period. Ts = Tpix * (panel data bus width).

4.5 SPI Timing Diagrams

To use the internal transmit (TX) and receive (RX) data FIFOs when the SPI module is configured as a master, two control signals are used for data transfer rate control: the \overline{SS} signal (output) and the \overline{SPI}_RDY signal (input). The SPI1 Sample Period Control Register (PERIODREG1) can also be programmed to a fixed data transfer rate. When the SPI module is configured as a slave, the user can configure the SPI1 Control Register (CONTROLREG1) to match the external SPI master's timing. In this configuration, \overline{SS} becomes an input signal, and is used to latch data into or load data out to the internal data shift registers, as well as to increment the data FIFO. Figure 34 through Figure 38 show the timing relationship of the master SPI using different triggering mechanisms.

Functional Description and Application Information

Bof No.	Parameter	3.0 ± 0	Unit	
nei No.	Farameter	Minimum	Maximum	Onit
1	SPI_RDY to SS output low	2T ¹	_	ns
2	SS output low to first SCLK edge	3 • Tsclk ²	_	ns
3	Last SCLK edge to \overline{SS} output high	2 • Tsclk	-	ns
4	SS output high to SPI_RDY low	0	_	ns
5	SS output pulse width	Tsclk + WAIT ³	_	ns
6	SS input low to first SCLK edge	т	-	ns
7	SS input pulse width	Т	-	ns

Table 18. Timing Parameter Table for Figure 34 through Figure 38

¹ T = CSPI system clock period (PERCLK2).

² Tsclk = Period of SCLK.

³ WAIT = Number of bit clocks (SCLK) or 32.768 kHz clocks per Sample Period Control Register.

Figure 39. SPI SCLK Timing Diagram

Table 19. Timing Parameter Table for SPI SCLK

Ref No.	Parameter	3.0 ± 0	Unit	
		Minimum	Maximum	
8	SCLK frequency	0	10	MHz
9	SCLK pulse width	100	-	ns

4.6 LCD Controller

This section includes timing diagrams for the LCD controller. For detailed timing diagrams of the LCD controller with various display configurations, refer to the LCD controller chapter of the *MC9328MXS Reference Manual*.

Figure 40. SCLK to LD Timing Diagram

Figure 43. SDRAM Read Cycle Timing Diagram

Ref No.	Parameter	1.8 ± 0.1 V		3.0 ± 0.3 V		Unit
	Farameter	Minimum	Maximum	Minimum	Maximum	Unit
1	SDRAM clock high-level width	2.67	-	4	-	ns
2	SDRAM clock low-level width	6	-	4	_	ns
3	SDRAM clock cycle time	11.4	-	10	_	ns
3S	CS, RAS, CAS, WE, DQM setup time	3.42	-	3	-	ns
ЗH	CS, RAS, CAS, WE, DQM hold time	2.28	-	2	_	ns
4S	Address setup time	3.42	-	3	-	ns
4H	Address hold time	2.28	_	2	_	ns
5	SDRAM access time (CL = 3)	_	6.84	_	6	ns

Table 23. SDRAM Read Timing Parameter Table

Table 26. USB Device Timing Parameters for Data Transfer to USB Transceiver (TX) (Continued)

Figure 48. USB Device Timing Diagram for Data Transfer from USB Transceiver (RX)

Table 27. USB Device Timing Parameter Table for Data Transfer from USB Transceiver (RX)

Ref No.	Parameter	3.0 ±	Unit	
		Minimum	Maximum	onit
1	t _{FEOPR} ; Receiver SE0 interval of EOP	82	-	ns

4.10 I²C Module

The I²C communication protocol consists of seven elements: START, Data Source/Recipient, Data Direction, Slave Acknowledge, Data, Data Acknowledge, and STOP.

Functional Description and Application Information

Note: SRXD input in synchronous mode only.

Figure 51. SSI Receiver Internal Clock Timing Diagram