E·XFL

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	ARM920T
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	100MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	LCD
Ethernet	-
SATA	-
USB	USB 1.x (1)
Voltage - I/O	1.8V, 3.0V
Operating Temperature	0°C ~ 70°C (TA)
Security Features	-
Package / Case	225-LFBGA
Supplier Device Package	225-MAPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mc9328mxsvp10r2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Signals and Connections

Table 2. i.MXS Signal Descriptions (Continued)

Signal Name	Signal Name Function/Notes						
	ETM						
ETMTRACESYNC	ETM sync signal which is multiplexed with A24. ETMTRACESYNC is selected in ETM mode.						
ETMTRACECLK	ETM clock signal which is multiplexed with A23. ETMTRACECLK is selected in ETM mode.						
ETMPIPESTAT [2:0]	ETM status signals which are multiplexed with A [22:20]. ETMPIPESTAT [2:0] are selected in ETM mode.						
ETMTRACEPKT [7:0]	ETM packet signals which are multiplexed with ECB, LBA, BCLK (burst clock), PA17, A [19:16]. ETMTRACEPKT [7:0] are selected in ETM mode.						
	LCD Controller						
LD [15:0]	LCD Data Bus—All LCD signals are driven low after reset and when LCD is off.						
FLM/VSYNC	Frame Sync or Vsync—This signal also serves as the clock signal output for the gate driver (dedicated signal SPS for Sharp panel HR-TFT).						
LP/HSYNC	Line pulse or H sync						
LSCLK	Shift clock						
ACD/OE	Alternate crystal direction/output enable.						
CONTRAST	This signal is used to control the LCD bias voltage as contrast control.						
SPL_SPR	Program horizontal scan direction (Sharp panel dedicated signal).						
PS	Control signal output for source driver (Sharp panel dedicated signal).						
CLS	Start signal output for gate driver. This signal is an inverted version of PS (Sharp panel dedicated signal).						
REV	Signal for common electrode driving signal preparation (Sharp panel dedicated signal).						
	SPI 1						
SPI1_MOSI	Master Out/Slave In						
SPI1_MISO	Slave In/Master Out						
SPI1_SS	Slave Select (Selectable polarity)						
SPI1_SCLK	Serial Clock						
SPI1_SPI_RDY	Serial Data Ready						
	General Purpose Timers						
TIN	Timer Input Capture or Timer Input Clock—The signal on this input is applied to both timers simultaneously.						
TMR2OUT	Timer 2 Output						
	USB Device						
USBD_VMO	USB Minus Output						
USBD_VPO	USB Plus Output						
USBD_VM	USB Minus Input						
USBD_VP	USB Plus Input						

	225	Primary		Alternate		GPIO						
Voltage	BGA Ball	Signal	Dir	Pull- Up	Signal	Dir	Mux	Pull -Up	AIN	BIN	AOUT	Default
NVDD2	H10	NVDD2	Static									
	G9	NVSS	Static									
QVDD3	F11	QVDD3	Static									
	G10	QVSS	Static									
NVDD2	C15	NVDD2	Static									
	H9	NVSS	Static									
QVDD4	D7	QVDD4	Static									
	L13	QVSS	Static									
NVDD3	D9	NVDD3	Static									
	J9	NVSS	Static									
	K9	NVSS	Static									
NVDD4	G7	NVDD4	Static									
NVDD1	F6	NVDD1	Static									
NVDD1	L6	NVDD1	Static									
NVDD1	M6	NVDD1	Static									
NVDD1	K8	NVDD1	Static									
	L10	NVSS	Static									
	L11	NVSS	Static									
	M11	NVSS	Static									

Table 3. MC9328MXS	Signal Multiplexing	Scheme (Continued)
--------------------	---------------------	--------------------

¹ Pull down this input with $1K\Omega$ resistor to GND.

² External circuit required to drive this input.

 $^3\,$ Tie this input high (to AVDD) or pull down with 1K Ω resistor to GND.

⁴ Pull up this output with a resistor to NVDD2.

Electrical Characteristics

3 Electrical Characteristics

This section contains the electrical specifications and timing diagrams for the i.MXS processor.

3.1 Maximum Ratings

Table 4 provides information on maximum ratings which are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits listed in Recommended Operating Range Table 5 on page 17 or the DC Characteristics table.

Symbol	Rating	Minimum	Maximum	Unit
NV _{DD}	DC I/O Supply Voltage	-0.3	3.3	V
QV _{DD}	DC Internal (core = 100 MHz) Supply Voltage	-0.3	1.9	V
AV _{DD}	DC Analog Supply Voltage	-0.3	3.3	V
BTRFV _{DD}	DC Bluetooth Supply Voltage	-0.3	3.3	V
VESD_HBM	ESD immunity with HBM (human body model)	-	2000	V
VESD_MM	ESD immunity with MM (machine model)	-	100	V
ILatchup	Latch-up immunity	_	200	mA
Test	Storage temperature	-55	150	°C
Pmax	Power Consumption	800 ¹	1300 ²	mW

Table 4.	Maximum	Ratings
----------	---------	---------

A typical application with 30 pads simultaneously switching assumes the GPIO toggling and instruction fetches from the ARM[®] core-that is, 7x GPIO, 15x Data bus, and 8x Address bus.

² A worst-case application with 70 pads simultaneously switching assumes the GPIO toggling and instruction fetches from the ARM core-that is, 32x GPIO, 30x Data bus, 8x Address bus. These calculations are based on the core running its heaviest OS application at 100MHz, and where the whole image is running out of SDRAM. QVDD at 1.9V, NVDD and AVDD at 3.3V, therefore, 180mA is the worst measurement recorded in the factory environment, max 5mA is consumed for OSC pads, with each toggle GPIO consuming 4mA.

3.2 Recommended Operating Range

Table 5 provides the recommended operating ranges for the supply voltages and temperatures. The i.MXS processor has multiple pairs of VDD and VSS power supply and return pins. QVDD and QVSS pins are used for internal logic. All other VDD and VSS pins are for the I/O pads voltage supply, and each pair of VDD and VSS provides power to the enclosed I/O pads. This design allows different peripheral supply voltage levels in a system.

Because AVDD pins are supply voltages to the analog pads, it is recommended to isolate and noise-filter the AVDD pins from other VDD pins.

For more information about I/O pads grouping per VDD, please refer to Table 2 on page 4.

4.1 Embedded Trace Macrocell

All registers in the ETM9 are programmed through a JTAG interface. The interface is an extension of the ARM920T processor's TAP controller, and is assigned scan chain 6. The scan chain consists of a 40-bit shift register comprised of the following:

- 32-bit data field
- 7-bit address field
- A read/write bit

The data to be written is scanned into the 32-bit data field, the address of the register into the 7-bit address field, and a 1 into the read/write bit.

A register is read by scanning its address into the address field and a 0 into the read/write bit. The 32-bit data field is ignored. A read or a write takes place when the TAP controller enters the UPDATE-DR state. The timing diagram for the ETM9 is shown in Figure 2. See Table 9 for the ETM9 timing parameters used in Figure 2.

Figure 2. Trace Port Timing Diagram

Table 9. Trace Port Timi	ng Diagram	Parameter	Table
--------------------------	------------	-----------	-------

Bof No.	Deremeter	1.8 ±	0.1 V	3.0 ±	Unit	
nei No.	Falameter	Minimum	Maximum	Minimum	Maximum	Unit
1	CLK frequency	0	85	0	100	MHz
2a	Clock high time	1.3	-	2	_	ns
2b	Clock low time	3	-	2	-	ns
3a	Clock rise time	_	4	_	3	ns
3b	Clock fall time	_	3	-	3	ns
4a	Output hold time	2.28	-	2	-	ns
4b	Output setup time	3.42	-	3	-	ns

4.2 **DPLL Timing Specifications**

Parameters of the DPLL are given in Table 10. In this table, T_{ref} is a reference clock period after the pre-divider and T_{dck} is the output double clock period.

Parameter	Test Conditions	Minimum Typica		Maximum	Unit
DPLL input clock freq range	Vcc = 1.8V	5	_	100	MHz
Pre-divider output clock freq range	Vcc = 1.8V	5	_	30	MHz
DPLL output clock freq range	Vcc = 1.8V	80	_	220	MHz
Pre-divider factor (PD)	-	1	-	16	-
Total multiplication factor (MF)	Includes both integer and fractional parts	5	-	15	-
MF integer part	-	5	-	15	-
MF numerator	Should be less than the denominator	0	-	1022	-
MF denominator	-	1	-	1023	-
Pre-multiplier lock-in time	-	-	-	312.5	μsec
Freq lock-in time after full reset	FOL mode for non-integer MF (does not include pre-multi lock-in time)	250	280 (56 μs)	300	T _{ref}
Freq lock-in time after partial reset	FOL mode for non-integer MF (does not include pre-multi lock-in time)	220	250 (50 μs)	270	T _{ref}
Phase lock-in time after full reset	FPL mode and integer MF (does not include pre-multi lock-in time)	300	350 (70 μs)	400	T _{ref}
Phase lock-in time after partial reset	FPL mode and integer MF (does not include pre-multi lock-in time)	270	320 (64 μs)	370	T _{ref}
Freq jitter (p-p)	-	-	0.005 (0.01%)	0.01	2•T _{dck}
Phase jitter (p-p)	Integer MF, FPL mode, Vcc=1.8V	-	1.0 (10%)	1.5	ns
Power supply voltage	-	1.7	-	2.5	V
Power dissipation	FOL mode, integer MF, f _{dck} = 100 MHz, Vcc = 1.8V	-	_	4	mW

Table 10. DPLL Specifications

4.3 Reset Module

The timing relationships of the Reset module with the POR and RESET_IN are shown in Figure 3 and Figure 4.

NOTE

Be aware that NVDD must ramp up to at least 1.8V before QVDD is powered up to prevent forward biasing.

4.4.2.1 WAIT Read Cycle without DMA

Table 13. WAIT Read Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz

Number	Chavastavistis	3.0 ± 0	11	
Number	Characteristic	Minimum	Maximum	Onit
1	OE and EB assertion time	See note 2	-	ns
2	CS5 pulse width	3Т	-	ns
3	OE negated to address inactive	56.81	57.28	ns
4	Wait asserted after \overline{OE} asserted	-	1020T	ns
5	Wait asserted to OE negated	2T+1.57	3T+7.33	ns
6	Data hold timing after OE negated	T-1.49	-	ns
7	Data ready after wait asserted	0	Т	ns
8	OE negated to CS negated	1.5T-0.68	1.5T-0.06	ns
9	OE negated after EB negated	0.06	0.18	ns
10	Become low after CS5 asserted	0	1019T	ns
11	Wait pulse width	1T	1020T	ns

Note:

1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)

2. OE and EB assertion time is programmable by OEA bit in CS5L register. EB assertion in read cycle will occur only when EBC bit in CS5L register is clear.

3. Address becomes valid and \overline{CS} asserts at the start of read access cycle.

4. The external wait input requirement is eliminated when $\overline{CS5}$ is programmed to use internal wait state.

Table 15. WAIT Write Cycle without DMA: WSC = 111111, DTACK_SEL=1, HCLK=96MHz (Continued)

Number	Characteristic	3.0 ± 0.3 V				
Number	Characteristic	Minimum	Maximum	Unit		
7	Wait asserted to RW negated	T+2.66	2T+7.96	ns		
8	Data hold timing after RW negated	2T+0.03	-	ns		
9	Data ready after $\overline{CS5}$ is asserted	-	Т	ns		
10	EB negated after CS5 is negated	0.5T	0.5T+0.5	ns		
11	Wait becomes low after CS5 asserted	0	1019T	ns		
12	Wait pulse width	1T	1020T	ns		

Note:

1. T is the system clock period. (For 96 MHz system clock, T=10.42 ns)

2. CS5 assertion can be controlled by CSA bits. EB assertion can also be programmable by WEA bits in CS5L register.

3. Address becomes valid and \overline{RW} asserts at the start of write access cycle.

4. The external wait input requirement is eliminated when $\overline{CS5}$ is programmed to use internal wait state.

4.4.2.4 WAIT Write Cycle DMA Enabled

Figure 9. WAIT Write Cycle DMA Enabled

Functional Description and Application Information

Functional Description and Application Information

Figure 28. WSC = 3, SYNC = 1, A.HALF/E.HALF

Functional Description and Application Information

Note 1: x = 0, 1, 2 or 3 Note 2: EBC = Enable Byte Control bit (bit 11) on the Chip Select Control Register

Functional Description and Application Information

Table 20. LCDC SCLK Timing Parameter Table

Table 21.	4/8/16	Bit/Pixel	TFT	Color M	ode	Panel	Timing
-----------	--------	------------------	-----	---------	-----	-------	--------

Symbol	Description	Minimum	Corresponding Register Value	Unit
T1	End of OE to beginning of VSYN	T5+T6 +T7+T9	(VWAIT1·T2)+T5+T6+T7+T9	Ts
T2	HSYN period	XMAX+5	XMAX+T5+T6+T7+T9+T10	Ts
Т3	VSYN pulse width	T2	VWIDTH·(T2)	Ts
T4	End of VSYN to beginning of OE	2	VWAIT2·(T2)	Ts
T5	HSYN pulse width	1	HWIDTH+1	Ts
T6	End of HSYN to beginning to T9	1	HWAIT2+1	Ts
T7	End of OE to beginning of HSYN	1	HWAIT1+1	Ts

Def No	Poromotor	1.8 ±	0.1 V	3.0 ±	Unit	
nei No.	Farameter	Minimum	Maximum	Minimum	Maximum	Unit
1	System CLK frequency ¹	0	87	0	100	MHz
2a	Clock high time ¹	3.3	-	5/10	-	ns
2b	Clock low time ¹	7.5	-	5/10	-	ns
3a	Clock fall time ¹	-	5	_	5/10	ns
3b	Clock rise time ¹	-	6.67	-	5/10	ns
4a	Output delay time ¹	5.7	-	5	-	ns
4b	Output setup time ¹	5.7	_	5	_	ns

Table 22. PWM Output Timing Parameter Table

¹ C_L of PWMO = 30 pF

4.8 SDRAM Controller

This section shows timing diagrams and parameters associated with the SDRAM (synchronous dynamic random access memory) Controller.

Ref No.	Parameter	1.8 ±	0.1 V	3.0 ±	Unit	
	Falameter	Minimum	Maximum	Minimum	Maximum	
5	SDRAM access time (CL = 2)	_	6.84	-	6	ns
5	SDRAM access time (CL = 1)	_	22	_	22	ns
6	Data out hold time	2.85	_	2.5	-	ns
7	Data out high-impedance time (CL = 3)	_	6.84	-	6	ns
7	Data out high-impedance time $(CL = 2)$	_	6.84	-	6	ns
7	Data out high-impedance time (CL = 1)	_	22	-	22	ns
8	Active to read/write command period (RC = 1)	t _{RCD} 1	_	t _{RCD1}	_	ns

Table 23. SDRAM Read Timing Parameter Table (Continued)

¹ t_{RCD} = SDRAM clock cycle time. This settings can be found in the *MC9328MXS reference manual*.

Figure 44. SDRAM Write Cycle Timing Diagram

Ref No.	Parameter	1.8 ±	0.1 V	3.0 ±	Unit	
	Falameter	Minimum	Maximum	Minimum	Maximum	Unit
1	SDRAM clock high-level width	2.67	_	4	_	ns
2	SDRAM clock low-level width	6	_	4	_	ns
3	SDRAM clock cycle time	11.4	-	10	_	ns
4	Address setup time	3.42	-	3	_	ns
5	Address hold time	2.28	-	2	_	ns
6	Precharge cycle period	t _{RP} 1	-	t _{RP1}	-	ns
7	Auto precharge command period	t _{RC1}	_	t _{RC1}	_	ns

Table 25. SDRAM Refresh Timing Parameter Table

 $\frac{1}{t_{RP}}$ and t_{RC} = SDRAM clock cycle time. These settings can be found in the *MC9328MXS reference manual*.

4.9 USB Device Port

Four types of data transfer modes exist for the USB module: control transfers, bulk transfers, isochronous transfers, and interrupt transfers. From the perspective of the USB module, the interrupt transfer type is identical to the bulk data transfer mode, and no additional hardware is supplied to support it. This section covers the transfer modes and how they work from the ground up.

Data moves across the USB in packets. Groups of packets are combined to form data transfers. The same packet transfer mechanism applies to bulk, interrupt, and control transfers. Isochronous data is also moved in the form of packets, however, because isochronous pipes are given a fixed portion of the USB bandwidth at all times, there is no end-of-transfer.

Figure 47. USB Device Timing Diagram for Data Transfer to USB Transceiver (TX)

Ref No.	Parameter	3.0 ±	Unit	
	i diameter	Minimum Maximum		Onit
1	t _{ROE_VPO} ; USBD_ROE active to USBD_VPO low	83.14	83.47	ns
2	t _{ROE_VMO} ; USBD_ROE active to USBD_VMO high	81.55	81.98	ns
3	t _{VPO_ROE} ; USBD_VPO high to USBD_ROE deactivated	83.54	83.80	ns
4	t _{VMO_ROE} ; USBD_VMO low to USBD_ROE deactivated (includes SE0)	248.90	249.13	ns

Table 26. USB Device Timing Parameters	s for Data Transfer to USB Transceiver (TX)
--	---

5 Pin-Out and Package Information

Table 31 illustrates the package pin assignments for the 225-contact MAPBGA package. For a complete listing of signals, see the Signal Multiplexing Table 3 on page 8.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
	Α	PB13	PB15	PB19	USBD_ ROE	USBD_ SUSPND	USBD_VM	SSI_ RXFS	SSI_ TXCLK	SPI1_SPI_ RDY	SPI1_ SCLK	REV	PS	LD2	LD4	LD5	A
	в	PB11	PB12	PB16	USBD_ AFE	USBD_ RCV	USBD_ VMO	SSI_ RXDAT	UART1_ TXD	SPI1_SS	LSCLK	SPL_ SPR	LD0	LD3	LD6	LD7	в
	с	D31	PB8	PB14	PB18	PB10	USBD_ VPO	UART2_ RXD	SSI_ TXFS	UART1_ RTS	CONTRAST	FLM/VSYNC	LD8	LD9	LD12	NVDD2	с
M	D	A23	A24	PB9	PB17	NVDD1	USBD_ VP	QVDD4	UART2_ TXD	NVDD3	SPI1_ MOSI	LP/HSYNC	LD1	LD11	TMR2OUT	LD13	D
39328	Е	A21	A22	D30	D29	NVDD1	QVSS	UART2_ RTS	UART1_ RXD	UART1_ CTS	SPI1_ MISO	ACD/OE	LD10	TIN	PA4	PA3	Е
l SXM	F	A20	A19	D28	D27	NVDD1	NVDD1	UART2_ CTS	SSI_ RXCLK	SSI_ TXDAT	CLS	QVDD3	LD14	LD15	PA6	PA8	F
- Fech	G	A17	A18	D26	D25	NVDD1	NVSS	NVDD4	NVSS	NVSS	QVSS	PWMO	PA7	PA11	PA13	PA9	G
nica	н	A15	A16	D23	D24	D22	NVSS	NVSS	NVSS	NVSS	NVDD2	PA5	PA12	PA14	I2C_SDA	TMS	н
Dat	J	A14	A12	D21	D20	NVDD1	NVSS	NVSS	QVDD1	NVSS	PA10	I2C_SCL	TCK	TDO	BOOT1	BOOT0	J
a, Rev	к	A13	A11	CS2	D19	NVDD1	NVSS	QVSS	NVDD1	NVSS	D1	BOOT2	TDI	BIG_ ENDIAN	RESET_ OUT	XTAL32K	к
·. 3	L	A10	A9	D17	D18	NVDD1	NVDD1	CS5	D2	ECB	NVSS	NVSS	POR	QVSS	XTAL16M	EXTAL32K	L
	М	D16	D15	D13	D10	EB3	NVDD1	CS4	CS1	BCLK ¹	RW	NVSS	BOOT3	QVDD2	RESET_IN	EXTAL16M	М
-	Ν	A8	A7	D12	EB0	D9	D8	CS3	CS0	PA17	D0	DQM2	DQM0	SDCKE0	TRISTATE	TRST	Ν
	Р	D14	A5	A4	A3	A2	A1	D6	D5	MA10	MA11	DQM1	RAS	SDCKE1	CLKO	RESET_SF ²	Ρ
	R	A6	D11	EB1	EB2	ŌĒ	D7	A0	SDCLK	D4	LBA	D3	DQM3	CAS	SDWE	AVDD1	R
Ī		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	

Table 31. i.MXS 225 MAPBGA Pin Assignments

¹ Burst Clock

² This signal is not used and should be floated in an actual application.

Pin-Out and Package Information

5.1 MAPBGA 225 Package Dimensions

Figure 54 illustrates the 225 MAPBGA 13 mm × 13 mm package.

Case Outline 1304B