

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Details                    |                                                                                       |
|----------------------------|---------------------------------------------------------------------------------------|
| Product Status             | Active                                                                                |
| Core Processor             | 78K/0R                                                                                |
| Core Size                  | 16-Bit                                                                                |
| Speed                      | 20MHz                                                                                 |
| Connectivity               | CSI, I <sup>2</sup> C, LINbus, UART/USART                                             |
| Peripherals                | DMA, LCD, LVD, POR, PWM, WDT                                                          |
| Number of I/O              | 46                                                                                    |
| Program Memory Size        | 96KB (96K x 8)                                                                        |
| Program Memory Type        | FLASH                                                                                 |
| EEPROM Size                | -                                                                                     |
| RAM Size                   | 6K x 8                                                                                |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                                           |
| Data Converters            | A/D 8x12b; D/A 2x12b                                                                  |
| Oscillator Type            | Internal                                                                              |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                     |
| Mounting Type              | Surface Mount                                                                         |
| Package / Case             | 80-LQFP                                                                               |
| Supplier Device Package    | ·                                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1501agc-gad-ax |
|                            |                                                                                       |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# 4.2 Port Configuration

Ports include the following hardware.

| Item              |                                                                                                                                                                                                                                                                                                           | Configuration                                                                                                                                   |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Control registers | • 78K0R/LF3                                                                                                                                                                                                                                                                                               |                                                                                                                                                 |
|                   | Port mode registers (PMxx)<br>Port registers (Pxx)<br>Pull-up resistor option registers (PUxx)<br>Port input mode registers (PIM1)<br>Port output mode registers (POM1)<br>A/D port configuration register (ADPC)<br>Port function register (PFALL)<br>Input switch control register (ISC)<br>• 78K0R/LG3 | : PM0 to PM5, PM9 to PM12, PM14, PM15<br>: P0 to P5, P9 to P15<br>: PU0, PU1, PU3 to PU5, PU9, PU10, PU12, PU14                                 |
|                   | Port mode registers (PMxx)<br>Port registers (Pxx)<br>Pull-up resistor option registers (PUxx)<br>Port input mode registers (PIM1)<br>Port output mode registers (POM1, POM<br>A/D port configuration register (ADPC)<br>Port function register (PFALL)<br>Input switch control register (ISC)            | : PM0 to PM6, PM8 to PM12, PM14, PM15<br>: P0 to P6, P8 to P15<br>: PU0, PU1, PU3 to PU5, PU8 to PU10, PU12, PU14<br>/8)                        |
|                   | Port registers (Pxx)                                                                                                                                                                                                                                                                                      | : PM0 to PM12, PM14, PM15<br>: P0 to P15<br>: PU0, PU1, PU3 to PU5, PU7 to PU10, PU12, PU14<br>//7, POM8)                                       |
| Port              |                                                                                                                                                                                                                                                                                                           | MOS output: 1, CMOS input: 4)<br>MOS output: 1, CMOS input: 4, N-ch open drain I/O: 2)<br>MOS output: 1, CMOS input: 4, N-ch open drain I/O: 2) |
| Pull-up resistor  | • 78K0R/LF3: Total: 36<br>• 78K0R/LG3: Total: 46<br>• 78K0R/LH3: Total: 62                                                                                                                                                                                                                                |                                                                                                                                                 |

# Table 4-5. Port Configuration

# 4.5 Settings of Port Mode Register and Output Latch When Using Alternate Function

To use the alternate function of a port pin, set the port mode register and output latch as shown in Table 4-11.

| LF3          | LG3 | LH3          | Pin Name | Alterna       | ate Function | PFALL   | ISC    | PM×× | P×× |
|--------------|-----|--------------|----------|---------------|--------------|---------|--------|------|-----|
| ώ            | ü   | ω            |          | Function Name | I/O          | (PFxxx) | (ISCx) |      |     |
|              |     |              | P00      | САРН          | Output       | -       | -      | ×    | ×   |
|              |     |              | P01      | CAPL          | Output       | -       | _      | ×    | ×   |
|              |     | $\checkmark$ | P02      | VLC3          | I/O          | _       | _      | ×    | ×   |
|              |     | $\checkmark$ | P10      | SCK20         | Input        | -       | _      | 1    | ×   |
|              |     |              |          |               | Output       | _       | _      | 0    | 1   |
|              |     |              |          | SCL20         | I/O          | -       | _      | 0    | 1   |
| $\checkmark$ |     | $\checkmark$ | P11      | SI20          | Input        | -       | _      | 1    | ×   |
|              |     |              |          | RxD2          | Input        | -       | _      | 1    | ×   |
|              |     |              |          | SDA20         | I/O          | -       | _      | 0    | 1   |
|              |     |              |          | INTP6         | Input        | -       | _      | 1    | ×   |
|              |     | $\checkmark$ | P12      | SO20          | Output       | _       | -      | 0    | 1   |
|              |     |              |          | TxD2          | Output       | -       | _      | 0    | 1   |
|              |     |              |          | TO02          | Output       | -       | -      | 0    | 0   |
| $\checkmark$ |     | $\checkmark$ | P13      | SO10          | Output       | -       | -      | 0    | 1   |
|              |     |              |          | TxD1          | Output       | -       | -      | 0    | 1   |
|              |     |              |          | TO04          | Output       | -       | -      | 0    | 0   |
| $\checkmark$ |     | $\checkmark$ | P14      | SI10          | Input        | -       | -      | 1    | ×   |
|              |     |              |          | RxD1          | Input        | -       | -      | 1    | ×   |
|              |     |              |          | SDA10         | I/O          | -       | -      | 0    | 1   |
|              |     |              |          | INTP4         | Input        | -       | -      | 1    | ×   |
| $\checkmark$ |     | $\checkmark$ | P15      | SCK10         | Input        | -       | -      | 1    | ×   |
|              |     |              |          |               | Output       | -       | -      | 0    | 1   |
|              |     |              |          | SCL10         | I/O          | -       | -      | 0    | 1   |
|              |     |              |          | INTP7         | Input        | -       | _      | 1    | ×   |
| -            |     | $\checkmark$ | P16      | TI05          | Input        | -       | -      | 1    | ×   |
|              |     |              |          | TO05          | Output       | -       | -      | 0    | 0   |
|              |     |              |          | INTP10        | Input        | -       | -      | 1    | ×   |

| Table 4 11 | Sottings of Port Mo  | de Register and Output | Latah Whan Using | Alternate Eurotian (1/5) |
|------------|----------------------|------------------------|------------------|--------------------------|
|            | Settings of Fort Mot | ue register and Output | Laton when using | Alternate Function (1/5) |

Remark  $\times$ :

don't care

-: Not applicable

PFALL: Port function register

ISC: Input switch control register

PM××: Port mode register

Pxx: Port output latch





### Figure 6-50. Example of Basic Timing of Operation as Input Pulse Interval Measurement (MDpq0 = 0)

Remarkpq: Unit number + Channel number (only for channels provided with timer I/O pins)78K0R/LF3:pq = 00 to 04, 0778K0R/LG3:pq = 00 to 0778K0R/LH3:pq = 00 to 07, 10 to 13



Operation is resumed.

|                     | Software Operation                                                                                                                                                                                                                                                                                                                                                                                       | Hardware Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operation<br>start  | Sets TOEmp (slave) to 1 (only when operation is resumed).<br>The TSmn (master) and TSmp (slave) bits of the TSm register are set to 1 at the same time.<br>The TSmn and TSmp bits automatically return to 0 because they are trigger bits.                                                                                                                                                               | TEmn = 1, TEmp = 1<br>When the master channel starts counting, INTTMmn is<br>generated. Triggered by this interrupt, the slave<br>channel also starts counting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| During<br>operation | Set values of the TMRmn and TMRmp registers and<br>TOMmn, TOMmp, TOLmn, and TOLmp bits cannot be<br>changed.<br>Set values of the TDRmn and TDRmp registers can be<br>changed after INTTMmn of the master channel is<br>generated.<br>The TCRmn and TCRmp registers can always be read.<br>The TSRmn and TSRmp registers are not used.<br>Set values of the TOm and TOEm registers cannot be<br>changed. | The counter of the master channel loads the TDRmn<br>value to TCRmn, and counts down. When the count<br>value reaches TCRmn = 0000H, INTTMmn output is<br>generated. At the same time, the value of the TDRmn<br>register is loaded to TCRmn, and the counter starts<br>counting down again.<br>At the slave channel, the value of TDRmp is loaded to<br>TCRmp, triggered by INTTMmn of the master channel,<br>and the counter starts counting down. The output level o<br>TOmp becomes active one count clock after generation of<br>the INTTMmn output from the master channel. It<br>becomes inactive when TCRmp = 0000H, and the<br>counting operation is stopped.<br>After that, the above operation is repeated. |
| Operation<br>stop   | The TTmn (master) and TTmp (slave) bits are set to 1 at<br>the same time.<br>The TTmn and TTmp bits automatically return to 0<br>because they are trigger bits.<br>TOEmp of slave channel is cleared to 0 and value is set                                                                                                                                                                               | TEmn, TEmp = 0, and count operation stops.<br>TCRmn and TCRmp hold count value and stops.<br>The TOmp output is not initialized but holds current<br>status.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                     | -                                                                                                                                                                                                                                                                                                                                                                                                        | The TOmp pin outputs the TOmp set level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TAU stop            | To hold the TOmp pin output levels                                                                                                                                                                                                                                                                                                                                                                       | The TOmp pin output levels is held by port function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                     | -                                                                                                                                                                                                                                                                                                                                                                                                        | The TOmp pin output levels go are into Hi-Z output state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                     | The TAU0EN or TAU1EN bits of the PER0 register is cleared to 0.                                                                                                                                                                                                                                                                                                                                          | Power-off status<br>All circuits are initialized and SFR of each channel is<br>also initialized.<br>(The TOmp bit is cleared to 0 and the TOmp pin is set<br>to port mode.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Figure 6-61. | <b>Operation Procedure Wh</b> | nen PWM Function Is Used (2/2)         |
|--------------|-------------------------------|----------------------------------------|
|              |                               | ······································ |

### Remarks 1. 78K0R/LF3:

- m = 0, n = 0, 2, 6, p = n+1, TO00 to TO04, and TO07 pins
- 2. 78K0R/LG3:
  - m = 0, n = 0, 2, 4, 6, p = n+1, TO00 to TO07 pins
- 3. 78K0R/LH3:
  - m = 0, n = 0, 2, 4, 6, p = n+1, TO00 to TO07 pins
  - m = 1, n = 0, 2, p = n+1, TO10 to TO13 pins



Operation is resumed.

|                     | Software Operation                                                                                                                                                                                                                                                                                                                                                                | Hardware Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operation<br>start  | The TSmn and TSmp bits automatically return to 0 because they are trigger bits.                                                                                                                                                                                                                                                                                                   | TEmn and TEmp are set to 1 and the master channel<br>enters the TImn input edge detection wait status.<br>Counter stops operating.<br>Master channel starts counting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| During<br>operation | Set values of only the CISmn1 and CISmn0 bits of the<br>TMRmn register can be changed.<br>Set values of the TMRmp, TDRmn, and TDRmp registers<br>and TOMmn, TOMmp, TOLmn, and TOLmp bits cannot<br>be changed.<br>The TCRmn and TCRmp registers can always be read.<br>The TSRmn and TSRmp registers are not used.<br>Set values of the TOm and TOEm registers can be<br>changed. | Master channel loads the value of TDRmn to TCRmn<br>when the start trigger is detected, and the counter starts<br>counting down. When the count value reaches TCRmn =<br>0000H, the INTTMmn output is generated, and the counte<br>stops until the next valid edge is input to the TImn pin.<br>The slave channel, triggered by INTTMmn of the master<br>channel, loads the value of TDRmp to TCRmp, and the<br>counter starts counting down. The output level of TOmp<br>becomes active one count clock after generation of<br>INTTMmn from the master channel. It becomes inactive whe<br>TCRmp = 0000H, and the counting operation is stopped.<br>After that, the above operation is repeated. |
| Operation<br>stop   | The TTmn (master) and TTmp (slave) bits are set to 1 at<br>the same time.<br>The TTmn and TTmp bits automatically return to 0<br>because they are trigger bits.<br>TOEmp of slave channel is cleared to 0 and value is set                                                                                                                                                        | TEmn, TEmp = 0, and count operation stops.<br>TCRmn and TCRmp hold count value and stops.<br>The TOmp output is not initialized but holds current<br>status.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     |                                                                                                                                                                                                                                                                                                                                                                                   | The TOmp pin outputs the TOmn set level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TAU stop            | To hold the TOmp pin output levels<br>Clears TOmp bit to 0 after the value to<br>be held is set to the port register.<br>When holding the TOmp pin output levels is not<br>necessary                                                                                                                                                                                              | The TOmp pin output levels is held by port function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     |                                                                                                                                                                                                                                                                                                                                                                                   | The TOmp pin output levels go are into Hi-Z output state.<br>Power-off status<br>All circuits are initialized and SFR of each channel is<br>also initialized.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                   | (The TOmp bit is cleared to 0 and the TOmp pin is set port mode.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

# Figure 6-66. Operation Procedure of One-Shot Pulse Output Function (2/2)

Remarks 1. 78K0R/LF3:

- $\bullet$  m = 0, n = 0, 2, 6, p = n+1, TO00 to TO04, and TO07 pins
- Channel 6 of timer array unit 0 can output a one-shot pulse only when software trigger start is selected and it is used as the master channel (because the TI06 pin is not provided).
- 2. 78K0R/LG3:
  - m = 0, n = 0, 2, 4, 6, p = n+1, TO00 to TO07 pins
- 3. 78K0R/LH3:
  - $\bullet$  m = 0, n = 0, 2, 4, 6, p = n+1, TO00 to TO07 pins
  - m = 1, n = 0, 2, p = n+1, TO10 to TO13 pins





Figure 10-1. Block Diagram of 12-Bit A/D Converter (µ PD78F150xA)

 Remark
 78K0R/LF3:
 ANI0-ANI6, ANI15

 78K0R/LG3, 78K0R/LH3:
 ANI0-ANI10, ANI15

- ENESAS

### Figure 14-7. Format of Serial Communication Operation Setting Register mn (SCRmn) (3/3)

Address: F0118H, F0119H (SCR00) to F011EH, F011FH (SCR03), After reset: 0087H R/W F0158H, F0159H (SCR10), F015AH, F015BH (SCR11), F015CH, F015DH (SCR12), F015EH, F015FH (SCR13)

| Symbol | 15     | 14       | 13   | 12        | 11       | 10        | 9                     | 8         | 7        | 6       | 5       | 4      | 3    | 2   | 1   | 0   |
|--------|--------|----------|------|-----------|----------|-----------|-----------------------|-----------|----------|---------|---------|--------|------|-----|-----|-----|
| SCRmn  | TXE    | RXE      | DAP  | CKP       | 0        | EOC       | PTC                   | PTC       | DIR      | 0       | SLC     | SLC    | 0    | DLS | DLS | DLS |
|        | mn     | mn       | mn   | mn        |          | mn        | mn1                   | mn0       | mn       |         | mn1     | mn0    |      | mn2 | mn1 | mn0 |
|        |        |          |      |           |          |           |                       |           |          |         |         |        |      |     |     |     |
|        | DLS    | DLS      | DLS  |           |          |           | Settir                | ng of da  | ta lengt | h in CS | I and U | ART mo | odes |     |     |     |
|        | mn2    | mn1      | mn0  |           |          |           |                       |           |          |         |         |        |      |     |     |     |
|        | 1      | 0        | 0    | 5-bit da  | ata lenç | gth (stor | ed in bi              | ts 0 to 4 | of SDF   | Rmn re  | gister) |        |      |     |     |     |
|        |        |          |      | (settab   | le in U  | ART mo    | ode only              | ')        |          |         |         |        |      |     |     |     |
|        | 1      | 1        | 0    | 7-bit da  | ata lenç | gth (stor | ed in bi              | ts 0 to 6 | 6 of SDF | Rmn re  | gister) |        |      |     |     |     |
|        | 1      | 1        | 1    | 8-bit da  | ata lenç | gth (stor | ed in bi              | ts 0 to 7 | of SDF   | Rmn re  | gister) |        |      |     |     |     |
|        | Othe   | r than a | bove | Setting   | , prohib | ited      |                       |           |          |         |         |        |      |     |     |     |
|        | Be sur | re to se | DLSm | n0 = 1 iı | n the si | mplified  | I I <sup>2</sup> C mo | de.       |          |         |         |        |      |     |     |     |

#### Caution Be sure to clear bits 3, 6, and 11 to "0". Be sure to set bit 2 to "1".

**Remark** m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3)



### 14.4 Operation stop mode

Each serial interface of serial array unit has the operation stop mode.

In this mode, serial communication cannot be executed, thus reducing the power consumption.

In addition, the P10/SCK20/SCL20, P11/SI20/SDA20/RxD2/INTP6, P12/SO20/TxD2/TO02, P13/SO10/TxD1/TO04, P14/SI10/SDA10/RxD1/INTP4, P15/SCK10/SCL10/INTP7, P50/RxD3/SEGx (78K0R/LF3: x = 30, 78K0R/LG3: x = 39, 78K0R/LH3: x = 53), P51/TxD3/SEGx (78K0R/LF3: x = 29, 78K0R/LG3: x = 38, 78K0R/LH3: x = 52), P75/SCK01/KR5, P76/SI01/KR6, P77/SO01/KR7, P80/SCK00/INTP11, P81/SI00/RxD0/INTP9, and P82/SO00/TxD0 pins can be used as ordinary port pins in this mode.

### 14.4.1 Stopping the operation by units

The stopping of the operation by units is set by using peripheral enable register 0 (PER0).

PER0 is used to enable or disable use of each peripheral hardware macro. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise.

To stop the operation of serial array unit 0, set bit 2 (SAU0EN) to 0.

To stop the operation of serial array unit 1, set bit 3 (SAU1EN) to 0.

### Figure 14-22. Peripheral Enable Register 0 (PER0) Setting When Stopping the Operation by Units

#### (a) Peripheral enable register 0 (PER0) ... Set only the bit of SAUm to be stopped to 0.

|      | 7     | 6     | 5              | 4             | 3      | 2      | 1      | 0      |
|------|-------|-------|----------------|---------------|--------|--------|--------|--------|
| PER0 | RTCEN | DACEN | ADCEN          | <b>IIC0EN</b> | SAU1EN | SAU0EN | TAU1EN | TAU0EN |
|      | ×     | ×     | ×              | ×             | 0/1    | 0/1    | ×      | ×      |
| I    |       |       | Control of SAL | m input clock |        |        |        |        |

Control of SAUm input clock 0: Stops supply of input clock

1: Supplies input clock

- Caution If SAUmEN = 0, writing to a control register of serial array unit m is ignored, and, even if the register is read, only the default value is read (except for input switch control register (ISC), noise filter enable register (NFEN0), port input mode registers (PIM1, PIM7), port output mode registers (POM1, POM7, POM8), port mode registers (PM1, PM5, PM7, PM8), and port registers (P1, P5, P7, P8)).
- **Remark** m: Unit number (m = 0, 1) x: Bits not used with serial array units (depending on the settings of other peripheral functions) 0/1: Set to 0 or 1 depending on the usage of the user



## (3) Processing flow (in single-transmission mode)





**Remark** m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), q: UART number (q = 0 to 3)





Figure 14-81. Flowchart of UART Reception

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

ENESAS



Figure 14-82. Transmission Operation of LIN

Notes 1. The baud rate is set so as to satisfy the standard of the wakeup signal and data of 00H is transmitted.

A sync break field is defined to have a width of 13 bits and output a low level. Where the baud rate for main transfer is N [bps], therefore, the baud rate of the sync break field is calculated as follows.
 (Baud rate of sync break field) = 9/13 × N

By transmitting data of 00H at this baud rate, a sync break field is generated.

- INTST3 is output upon completion of transmission. INTST3 is also output when SBF transmission is executed.
- **Remark** The interval between fields is controlled by software.



### (5) IICA control register 1 (IICCTL1)

This register is used to set the operation mode of I<sup>2</sup>C and detect the statuses of the SCL0 and SDA0 pins.

IICCTL1 can be set by a 1-bit or 8-bit memory manipulation instruction. However, the CLD and DAD bits are readonly.

Set the IICCTL1 register, except the WUP bit, while operation of  $I^2C$  is disabled (bit 7 (IICE) of IICA control register 0 (IICCTL0) is 0).

Reset signal generation clears this register to 00H.

### Figure 15-9. Format of IICA Control Register 1 (IICCTL1) (1/2)

| Address: F023 | fter reset: 00 | 0H R/W |     |     |     |     |   |   |
|---------------|----------------|--------|-----|-----|-----|-----|---|---|
| Symbol        | 7              | 6      | <5> | <4> | <3> | <2> | 1 | 0 |
| IICCTL1       | WUP            | 0      | CLD | DAD | SMC | DFC | 0 | 0 |

| WUP                                                                                                                               | Control of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | address match wakeup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                                                                                                                 | Stops operation of address match wakeup f                                                                                                                                                                                                                                                                                                                                                                                                                                                               | unction in STOP mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1                                                                                                                                 | Enables operation of address match wakeu                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p function in STOP mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| WUP bit (se<br>Clear (0) th<br>communica<br>be written a<br>The interrup<br>= 1, is iden<br>occur.) Fut<br>When WUF<br>device can | the <b>Figure 15-22 Flow When Setting WUP</b> =<br>the WUP bit after the address has matched or a<br>tation can be entered by the clearing (0) WUP<br>after the WUP bit has been cleared (0).)<br>pt timing when the address has matched or w<br>tical to the interrupt timing when WUP = 0. (A<br>rthermore, when WUP = 1, a stop condition in<br>P = 0 is set by a source other than an interrup<br>not be performed until the subsequent start co<br>ion by setting (1) the STT bit, without waiting | DP instruction at least three clocks after setting (1) the<br><b>1</b> ).<br>an extension code has been received. The subsequent<br>bit. (The wait must be released and transmit data must<br>when an extension code has been received, while WUP<br>A delay of the difference of sampling by the clock will<br>interrupt is not generated even if the SPIE bit is set to 1.<br>t from serial interface IICA, operation as the master<br>condition or stop condition is detected. Do not output a<br>for the detection of the subsequent start condition or |
| Condition for                                                                                                                     | or clearing (WUP = 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Condition for setting (WUP = 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                   | y instruction (after address match or code reception)                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • Set by instruction (when the MSTS, EXC, and COI bits are "0", and the STD bit also "0" (communication not entered)) <sup>Note 2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                     |

#### Notes 1. Bits 4 and 5 are read-only.

**2.** The status of the IICA status register (IICS) must be checked and the WUP bit must be set during the period shown below.





### (c) Start ~ Address ~ Data ~ Start ~ Code ~ Data ~ Stop

### (i) When WTIM = 0 (after restart, does not match address (= extension code))

| ST AE               | 06 to AD     | 0 R/W    | ACK     | D7 to D0  | ACK | ST | AD6 to AD0 | R/W | ACK | D7 to D0 | ACK | SP |
|---------------------|--------------|----------|---------|-----------|-----|----|------------|-----|-----|----------|-----|----|
| · · · · ·           |              |          |         | .1        | ▲2  |    |            |     | 3   |          | ▲4  | ∆5 |
|                     |              |          |         |           |     |    |            |     |     |          |     |    |
| ▲1: IICS            | = 0001       | ×110B    |         |           |     |    |            |     |     |          |     |    |
| ▲2: IICS            | = 0001       | ×000B    |         |           |     |    |            |     |     |          |     |    |
| ▲3: IICS            | = 0010       | ×010B    |         |           |     |    |            |     |     |          |     |    |
| ▲4: IICS            | = 0010       | ×000B    |         |           |     |    |            |     |     |          |     |    |
| $\triangle$ 5: IICS | = 0000       | 0001B    |         |           |     |    |            |     |     |          |     |    |
|                     |              |          |         |           |     |    |            |     |     |          |     |    |
| Remark              | <b>▲</b> : A | lways g  | enerate | əd        |     |    |            |     |     |          |     |    |
|                     | ∆: G         | enerate  | d only  | when SPIE | = 1 |    |            |     |     |          |     |    |
|                     | x: D         | on't car | е       |           |     |    |            |     |     |          |     |    |

#### (ii) When WTIM = 1 (after restart, does not match address (= extension code))





### (3) Slave device operation (when receiving extension code)

The device is always participating in communication when it receives an extension code.

#### (a) Start ~ Code ~ Data ~ Data ~ Stop

#### (i) When WTIM = 0



### (ii) When WTIM = 1







#### Figure 15-33. Example of Slave to Master Communication (When 8-Clock Wait Is Selected for Master, 9-Clock Wait Is Selected for Slave) (1/3)

#### (1) Start condition ~ address ~ data

**Notes 1.** To cancel master wait, write "FFH" to IICA or set the WREL bit.

- 2. Make sure that the time between the fall of the SDA0 pin signal and the fall of the SCL0 pin signal is at least 4.0  $\mu$ s when specifying standard mode and at least 0.6  $\mu$ s when specifying fast mode.
- 3. Write data to IICA, not setting the WREL bit, in order to cancel a wait state during slave transmission.

| Address: FFFE4H After reset: FFH R/W |                   |                             |                  |                             |                 |        |        |                             |  |
|--------------------------------------|-------------------|-----------------------------|------------------|-----------------------------|-----------------|--------|--------|-----------------------------|--|
| Symbol                               | <7>               | <6>                         | <5>              | <4>                         | <3>             | <2>    | <1>    | <0>                         |  |
| MK0L                                 | PMK5              | PMK4                        | PMK3             | PMK2                        | PMK1            | PMK0   | LVIMK  | WDTIMK                      |  |
|                                      |                   |                             |                  |                             |                 |        |        |                             |  |
| Address: FFFE5H After reset: FFH R/W |                   |                             |                  |                             |                 |        |        |                             |  |
| Symbol                               | <7>               | <6>                         | <5>              | <4>                         | <3>             | <2>    | <1>    | <0>                         |  |
| MK0H                                 | SREMK0            | SRMK0                       | CSIMK00<br>STMK0 | DMAMK1                      | DMAMK0          | SREMK3 | SRMK3  | STMK3                       |  |
| Address: FFFE6H After reset: FFH R/W |                   |                             |                  |                             |                 |        |        |                             |  |
| Symbol                               | <7>               | <6>                         | <5>              | <4>                         | <3>             | <2>    | <1>    | <0>                         |  |
| MK1L                                 | TMMK03            | TMMK02                      | TMMK01           | ТММК00                      | IICAMK          | SREMK1 | SRMK1  | CSIMK10<br>IICMK10<br>STMK1 |  |
| Address: FFI<br>Symbol               | FE7H After<br><7> | reset: FFH<br><6>           | R/W<br><5>       | <4>                         | 3               | <2>    | <1>    | <0>                         |  |
| MK1H                                 | TMMK04            | SREMK2                      | SRMK2            | CSIMK20<br>IICMK20<br>STMK2 | 1               | RTCIMK | RTCMK  | ADMK                        |  |
| Address: FFFD4H After reset: FFH R/W |                   |                             |                  |                             |                 |        |        |                             |  |
| Symbol                               | <7>               | <6>                         | <5>              | <4>                         | <3>             | <2>    | <1>    | <0>                         |  |
| MK2L                                 | PMK10             | PMK9                        | PMK8             | PMK7                        | PMK6            | TMMK07 | TMMK06 | TMMK05                      |  |
| Address: FFFD5H After reset: FFH R/W |                   |                             |                  |                             |                 |        |        |                             |  |
| Symbol                               | 7                 | 6                           | <5>              | <4>                         | <3>             | <2>    | <1>    | <0>                         |  |
| MK2H                                 | 1                 | 1                           | MDMK             | TMMK13                      | TMMK12          | TMMK11 | TMMK10 | PMK11                       |  |
|                                      |                   |                             |                  |                             |                 |        |        |                             |  |
|                                      |                   | Interrupt servicing control |                  |                             |                 |        |        |                             |  |
|                                      | XXMKX             |                             |                  | interre                     | upt servicing c | ontroi |        |                             |  |
|                                      | 0<br>0            | Interrupt ser               | vicing enable    |                             | apt servicing c |        |        |                             |  |

### Figure 19-6. Format of Interrupt Mask Flag Registers (MK0L, MK0H, MK1L, MK1H, MK2L, MK2H) (78K0R/LG3)

Caution Be sure to set bit 3 of MK1H, bits 6, 7 of MK2H to 1.



|                                        | After Reset<br>Acknowledgment <sup>Note 1</sup>                                                                                                                           |                             |  |  |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|
| Program counter (PC                    | The contents of the<br>reset vector table<br>(0000H, 0001H) are set.                                                                                                      |                             |  |  |
| Stack pointer (SP)                     |                                                                                                                                                                           | Undefined                   |  |  |
| Program status word                    | I (PSW)                                                                                                                                                                   | 06H                         |  |  |
| RAM                                    | Data memory                                                                                                                                                               | Undefined <sup>Note 2</sup> |  |  |
|                                        | General-purpose registers                                                                                                                                                 | Undefined <sup>Note 2</sup> |  |  |
| Port registers (P0 to                  | P15) (output latches)                                                                                                                                                     | 00H                         |  |  |
| Port mode registers                    | (PM0 to PM12, PM14, PM15)                                                                                                                                                 | FFH                         |  |  |
| Port input mode regi                   | sters 1, 7 (PIM1, PIM7)                                                                                                                                                   | 00H                         |  |  |
| Port output mode reg                   | gisters 1, 7, 8 (POM1, POM7, POM8)                                                                                                                                        | 00H                         |  |  |
| Pull-up resistor option                | n registers (PU0, PU1, PU3 to PU5, PU7 to PU10, PU12, PU14)                                                                                                               | 00H                         |  |  |
| Clock operation mod                    | le control register (CMC)                                                                                                                                                 | 00H                         |  |  |
| Clock operation state                  | us control register (CSC)                                                                                                                                                 | СОН                         |  |  |
| Processor mode cor                     | trol register (PMC)                                                                                                                                                       | 00H                         |  |  |
| System clock contro                    | 09H                                                                                                                                                                       |                             |  |  |
| 20 MHz internal high                   | n-speed oscillation control register (DSCCTL)                                                                                                                             | 00H                         |  |  |
| Oscillation stabilizati                | 00H                                                                                                                                                                       |                             |  |  |
| Oscillation stabilizati                | 07H                                                                                                                                                                       |                             |  |  |
| Noise filter enable re                 | egisters 0, 1 (NFEN0, NFEN1)                                                                                                                                              | 00H                         |  |  |
| Peripheral enable re                   | gisters 0 (PER0)                                                                                                                                                          | 00H                         |  |  |
| Operation speed mo                     | de control register (OSMC)                                                                                                                                                | 00H                         |  |  |
| Input switch control                   | register (ISC)                                                                                                                                                            | 00H                         |  |  |
| Timer array units<br>0, 1 (TAU0, TAU1) | Timer data registers 00, 01, 02, 03, 04, 05, 06, 07, 10, 11, 12, 13 (TDR00, TDR01, TDR02, TDR03, TDR04, TDR05, TDR06, TDR07, TDR10, TDR11, TDR12, TDR13)                  | 0000H                       |  |  |
|                                        | Timer mode registers 00, 01, 02, 03, 04, 05, 06, 07, 10, 11, 12, 13 (TMR00, TMR01, TMR02, TMR03, TMR04, TMR05, TMR06, TMR07, TMR10, TMR11, TMR12, TMR13)                  | 0000H                       |  |  |
|                                        | Timer status registers 00, 01, 02, 03, 04, 05, 06, 07, 10, 11, 12, 13 (TSR00, TSR01, TSR02, TSR03, TSR04, TSR05, TSR06, TSR07, TSR10, TSR11, TSR12, TSR13)                | 0000H                       |  |  |
|                                        | Timer input select register 0, 1 (TIS0, TIS1)                                                                                                                             | 00H                         |  |  |
|                                        | Timer channel counter registers 00, 01, 02, 03, 04, 05, 06, 07, 10, 11, 12, 13<br>(TCR00, TCR01, TCR02, TCR03, TCR04, TCR05, TCR06, TCR07, TCR10,<br>TCR11, TCR12, TCR13) | FFFFH                       |  |  |
|                                        | Timer channel enable status registers 0, 1 (TE0, TE1)                                                                                                                     | 0000H                       |  |  |
|                                        | Timer channel start trigger registers 0, 1 (TS0, TS1)                                                                                                                     | 0000H                       |  |  |

Table 22-2. Hardware Statuses After Reset Acknowledgment (1/4)

- **Notes 1.** During reset signal generation or oscillation stabilization time wait, only the PC contents among the hardware statuses become undefined. All other hardware statuses remain unchanged after reset.
  - 2. When a reset is executed in the standby mode, the pre-reset status is held even after reset.
- Remark The SFR and 2nd SFR provided differ depending on the product. Refer to 3.2.4 Special function registers (SFRs) and 3.2.5 Extended special function registers (2nd SFRs: 2nd Special Function Registers).

# CHAPTER 29 BCD CORRECTION CIRCUIT

### 29.1 BCD Correction Circuit Function

The BCD correction circuit is mounted onto all 78K0R/Lx3 microcontroller products.

The result of addition/subtraction of the BCD (binary-coded decimal) code and BCD code can be obtained as BCD code with this circuit.

The decimal correction operation result is obtained by performing addition/subtraction having the A register as the operand and then adding/ subtracting the BCDADJ register.

### 29.2 Registers Used by BCD Correction Circuit

The BCD correction circuit uses the following registers.

• BCD correction result register (BCDADJ)

### (1) BCD correction result register (BCDADJ)

The BCDADJ register stores correction values for obtaining the add/subtract result as BCD code through add/subtract instructions using the A register as the operand.

The value read from the BCDADJ register varies depending on the value of the A register when it is read and those of the CY and AC flags.

BCDADJ is read by an 8-bit memory manipulation instruction.

Reset input sets this register to undefined.

### Figure 29-1. Format of BCD Correction Result Register (BCDADJ)

Address: F00FEH After reset: undefined R

| Symbol | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|--------|---|---|---|---|---|---|---|---|
| BCDADJ |   |   |   |   |   |   |   |   |



|           |                |                    |                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (7             | /39) |
|-----------|----------------|--------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------|
| Chapter   | Classification | Function           | Details of<br>Function                                                   | Cautions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pag            | je   |
| Chapter 5 | Hard           | Clock<br>generator | OSTC:<br>Oscillation<br>stabilization time<br>counter status<br>register | The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p.213          |      |
|           | Soft           |                    | OSTS:<br>Oscillation                                                     | To set the STOP mode when the X1 clock is used as the CPU clock, set the OSTS register before executing the STOP instruction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | p.214          |      |
|           |                |                    | stabilization time                                                       | Setting the oscillation stabilization time to 20 $\mu$ s or less is prohibited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | p.214          |      |
|           |                |                    | select register                                                          | To change the setting of the OSTS register, be sure to confirm that the counting operation of the OSTC register has been completed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | p.214          |      |
|           |                |                    |                                                                          | Do not change the value of the OSTS register during the X1 clock oscillation stabilization time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | p.214          |      |
|           |                |                    |                                                                          | <ul> <li>The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS.</li> <li>In the following cases, set the oscillation stabilization time of OSTS to the value greater than the count value which is to be checked by the OSTC register after the oscillation starts.</li> <li>If the X1 clock starts oscillation while the internal high-speed oscillation clock or subsystem clock is being used as the CPU clock.</li> <li>If the STOP mode is entered and then released while the internal high-speed oscillation, time set by (Note, therefore, that only the status up to the oscillation stabilization time set by</li> </ul> |                |      |
|           | Hard           |                    |                                                                          | OSTS is set to OSTC after the STOP mode is released.)<br>The X1 clock oscillation stabilization wait time does not include the time until clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | p.214          |      |
|           | Soft Ha        |                    | CKC: System<br>clock control<br>register                                 | oscillation starts ("a" below).<br>The clock set by CSS, MCM0, SDIV, and MDIV2 to MDIV0 is supplied to the CPU<br>and peripheral hardware. If the CPU clock is changed, therefore, the clock supplied<br>to peripheral hardware (except the real-time counter, timer array unit (when fsue/2,<br>fsue/4, the valid edge of TI0mn input, or the valid edge of INTRTCI is selected as the<br>count clock), clock output/buzzer output, and watchdog timer) is also changed at the<br>same time. Consequently, stop each peripheral function when changing the<br>CPU/peripheral operating hardware clock.                                                                             | p.216          |      |
|           | Hard           |                    |                                                                          | If the peripheral hardware clock is used as the subsystem clock, the operations of the A/D converter and IICA are not guaranteed. For the operating characteristics of the peripheral hardware, refer to the chapters describing the various peripheral hardware as well as CHAPTER 31 ELECTRICAL SPECIFICATIONS.                                                                                                                                                                                                                                                                                                                                                                   | p.216          |      |
|           |                |                    | DSCCTL: 20                                                               | 20 MHz internal oscillation can only be used if $V_{DD} \ge 2.7 \text{ V}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | p.218          |      |
|           | Soft           |                    | MHz internal<br>high-speed<br>oscillation<br>control register            | Set SELDSC when 100 $\mu$ s have elapsed after having set DSCON with V <sub>DD</sub> $\ge$ 2.7 V.<br>The internal high-speed oscillator must be operated (HIOSTOP = 0) when DSCON = 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | p.218<br>p.218 |      |
|           |                |                    | OSMC:<br>Operation speed<br>mode control                                 | <ul> <li>Changing the clock prior to dividing fclk to a clock other than fl.</li> <li>Operating the DMA controller.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | p.221          |      |
|           |                |                    | register                                                                 | The CPU waits (140.5 clock (fcLK)) when "1" is written to the FSEL bit.<br>Interrupt requests issued during a wait will be suspended.<br>However, counting the oscillation stabilization time of fx can continue even while the<br>CPU is waiting.                                                                                                                                                                                                                                                                                                                                                                                                                                  | p.221          |      |
|           |                |                    |                                                                          | To increase fclk to 10 MHz or higher, set FSEL to "1", then change fclk after two or more clocks have elapsed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | p.221          |      |
|           |                |                    |                                                                          | Confirm that the clock is operating at 10 MHz or less before setting FSEL = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | p.221          |      |

