

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	78K/0R
Core Size	16-Bit
Speed	20MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	60
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	•
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	•
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1504agc-ueu-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

19.4.4 Interrupt request hold	
	771
20.1 Functions of Key Interrupt	
20.2 Configuration of Key Interrupt	
20.3 Register Controlling Key Interrupt	
CHAPTER 21 STANDBY FUNCTION	
21.1 Standby Function and Configuration	
21.1.1 Standby function	
21.1.2 Registers controlling standby function	
21.2 Standby Function Operation	
21.2.1 HALT mode	
21.2.2 STOP mode	
CHAPTER 22 RESET FUNCTION	
22.1 Register for Confirming Reset Source	
CHAPTER 23 POWER-ON-CLEAR CIRCUIT	
23.1 Functions of Power-on-Clear Circuit	
23.2 Configuration of Power-on-Clear Circuit	
23.3 Operation of Power-on-Clear Circuit	
23.4 Cautions for Power-on-Clear Circuit	802
	804
24.1 Functions of Low-Voltage Detector	
24.2 Configuration of Low-Voltage Detector	
24.3 Registers Controlling Low-Voltage Detector	
24.4 Operation of Low-Voltage Detector	
24.4.1 When used as reset	
24.4.2 When used as interrupt	817
24.5 Cautions for Low-Voltage Detector	
CHAPTER 25 REGULATOR	
25.1 Regulator Overview	
25.2 Registers Controlling Regulator	
CHAPTER 26 OPTION BYTE	829
26.1 Functions of Option Bytes	
26.1.1 User option byte (000C0H to 000C2H/010C0H to 010C2H)	
26.1.2 On-chip debug option byte (000C3H/ 010C3H)	
26.2 Format of User Option Byte	
26.3 Format of On-chip Debug Option Byte	
26.4 Setting of Option Byte	
CHAPTER 27 FLASH MEMORY	
27.1 Writing with Flash Memory Programmer	834
27.2 Programming Environment	

2.2 Description of Pin Functions

Remark The pins mounted depend on the product. Refer to 1.3 Pin Configuration (Top View) and 2.1 Pin Function List.

2.2.1 P00 to P02

P00 to P02 function as an I/O port. This port can also be used for connecting a capacitor for LCD controller/driver, and power supply voltage pin for driving the LCD.

	78K0R/LF3 78K0R/LG3 78K0R/LH3				
	(80 pins: μ PD78F15x0A,	(100 pins: <i>μ</i> PD78F15x3A,	(128 pins: <i>μ</i> PD78F15x6A,		
	78F1501A, 78F15x2A) 78F1504A, 78F15x5A) 78F1507A, 78F15x8				
P00/CAPH	\checkmark				
P01/CAPL	\checkmark				
P02/VLC3	1				

The following operation modes can be specified in 1-bit units.

(1) Port mode

P00 to P02 function as an I/O port. P00 to P02 can be set to input or output port in 1-bit units using port mode register 0 (PM0). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 0 (PU0).

(2) Control mode

P00 to P02 function as connecting a capacitor for LCD controller/driver, and power supply voltage pin for driving the LCD.

(a) CAPH, CAPL

These are the pins for connecting a capacitor for LCD controller/driver.

(b) VLC3

This is the pin for inputting a power supply voltage pin for driving the LCD.

Caution To use P00/CAPH, P01/CAPL, and P02/V_{LC3} as a general-purpose port, set bit 5 (MDSET1) and bit 4 (MDSET0) of LCD mode register (LCDMD) to "0", which is the same as their default status setting.

(b) TOOL1

This is a clock output pin for a debugger.

When the on-chip debug function is used, P41/TOOL1 pin can be used as follows by the mode setting on the debugger.

1-line mode: can be used as a port (P41).

2-line mode: used as a TOOL1 pin and cannot be used as a port (P41).

Caution The function of the P40/TOOL0 pin varies as described in (a) to (c) below.

In the case of (b) or (c), make the specified connection.

- (a) In normal operation mode and when on-chip debugging is disabled (OCDENSET = 0) by an option byte (000C3H)
 - => Use this pin as a port pin (P40).
- (b) In normal operation mode and when on-chip debugging is enabled (OCDENSET = 1) by an option byte (000C3H)
 - => Connect this pin to VDD via an external resistor, and always input a high level to the pin before reset release.
- (c) When on-chip debug function is used, or in write mode of flash memory programmer
 - => Use this pin as TOOL0.
 Directly connect this pin to the on-chip debug emulator or a flash memory programmer,
 - or pull it up by connecting it to VDD via an external resistor.

2.2.6 P50 to P57

P50 to P57 function as an I/O port. This port can also be used for serial interface data I/O, timer input, and segment output of LCD controller/driver.

	78K0R/LF3	78K0R/LG3	78K0R/LH3
	(80 pins: μ PD78F15x0A,	(100 pins: <i>μ</i> PD78F15x3A,	(128 pins: <i>μ</i> PD78F15x6A,
	78F1501A, 78F15x2A)	78F1504A, 78F15x5A)	78F1507A, 78F15x8A)
P50/RxD3/SEGxx	$\sqrt{(xx = 30)}$	√ (xx = 39)	√ (xx = 53)
P51/TxD3/SEGxx	√ (xx = 29)	√ (xx = 38)	√ (xx = 52)
P52/TI02/SEGxx	√ (xx = 28)	√ (xx = 37)	√ (xx = 51)
P53/TI04/SEGxx	√ (xx = 27)	√ (xx = 36)	√ (xx = 50)
P54/SEGxx	√ (xx = 26)	√ (xx = 35)	√ (xx = 49)
P55/SEGxx	√ (xx = 25)	√ (xx = 34)	√ (xx = 48)
P56/SEGxx	√ (xx = 24)	√ (xx = 33)	√ (xx = 47)
P57/SEGxx	√ (xx = 23)	√ (xx = 32)	√ (xx = 46)

The following operation modes can be specified in 1-bit units.

(1) Port mode

P50 to P57 function as an I/O port. P50 to P57 can be set to input or output port in 1-bit units using port mode register 5 (PM5). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 5 (PU5).

<R>

2.3.3 78K0R/LH3

Table 2-4 to shows the types of pin I/O circuits and the recommended connections of unused pins.

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/CAPH	12-H	I/O	Input: Independently connect to EV _{DD} or EV _{SS} via a resistor.
P01/CAPL	-		Output: Leave open.
P02/VLC3	5-AT		
P10/SCK20/SCL20	5-AN		
P11/SI20/RxD2/SDA20/ INTP6			
P12/SO20/TxD2/TO02	5-AG		
P13/SO10/TxD1/TO04			
P14/SI10/RxD1/SDA10/ INTP4	5-AN		
P15/SCK10/SCL10/INTP7			
P16/TI05/TO05/INTP10	8-R		
P17	5-AG		
P20/ANI0/AMP0-Note 1, 2	11-P ^{Note 3}		Input: Independently connect to AV _{DD0} or AV _{SS} via a resistor.
P21/ANI1/AMP00 ^{Note 1, 2}	11-S ^{Note 3}		Output: Leave open.
P22/ANI2/AMP0+ Note 1, 2	11-N ^{Note 3}		
P23/ANI3/AMP1- ^{Note 1, 2}	11-P ^{Note 3}		
P24/ANI4/AMP10 ^{Note 1, 2}	11-S ^{Note 3}		
P25/ANI5/AMP1+ ^{Note 1, 2}	11-N ^{Note 3}		
P26/ANI6/AMP2-Note 1, 2	11-P ^{Note 3}		
P27/ANI7/AMP20 Note 1, 2	11-S ^{Note 3}		
P30/TI03/TO00/RTC1HZ/ INTP1	8-R		Input: Independently connect to EV _{DD} or EV _{SS} via a resistor. Output: Leave open.
P31/TI00/TO03/RTCDIV/ RTCCL/PCLBUZ1/INTP2			
P32/TI01/TO01/INTP5/ PCLBUZ0			
P33/TI07/TO07/INTP3	-		
P34/TI06/TO06/INTP8			
P40/TOOL0	8-R		<when debugging="" enabled="" is="" on-chip=""> Pull this pin up (pulling it down is prohibited). <when debugging="" disabled="" is="" on-chip=""> Input: Independently connect to EV_{DD} or EV_{SS} via a resistor. Output: Leave open.</when></when>
P41/TOOL1	5-AG	1	Input: Independently connect to EV _{DD} or EV _{SS} via a resistor. Output: Leave open.

Table 2-4. Connection of Unused Pins (78K0R/LH3) (1/3)

Notes 1. P20/ANI0/AMP0- to P27/ANI7/ANP2O are set in the digital input port mode after release of reset.

2. AMPxx applies to μ PD78F150xA only.

3. μ PD78F151xA corresponds to type 11-G.

<R>

Correspondence between the address values and block numbers in the flash memory are shown below.

Address Value	Block	Address Value	Block	Address Value	Block	Address Value	Block
00000H to 003EEH		08000H to 083EEH	2014	10000H to 103EEH		18000H to 183EEH	
00400H to 007EEH	011	08400H to 087EEH	2011	10400H to 107EEH	4011 /1H	18400H to 187EEH	61H
	00		2111	10400H to 1085EH	4111	18900H to 1885EH	6011
	021		22Π		42Π		02日
	031		230		430		031
01000H to 013FFH	04H	09000H to 093FFH	24H	11000H to 113FFH	44H	19000H to 193FFH	64H
01400H to 017FFH	05H	09400H to 097FFH	25H	11400H to 117FFH	45H	19400H to 197FFH	65H
01800H to 01BFFH	06H	09800H to 09BFFH	26H	11800H to 11BFFH	46H	19800H to 19BFFH	66H
01C00H to 01FFFH	07H	09C00H to 09FFFH	27H	11C00H to 11FFFH	47H	19C00H to 19FFFH	67H
02000H to 023FFH	08H	0A000H to 0A3FFH	28H	12000H to 123FFH	48H	1A000H to 1A3FFH	68H
02400H to 027FFH	09H	0A400H to 0A7FFH	29H	12400H to 127FFH	49H	1A400H to 1A7FFH	69H
02800H to 02BFFH	0AH	0A800H to 0ABFFH	2AH	12800H to 12BFFH	4AH	1A800H to 1ABFFH	6AH
02C00H to 02FFFH	0BH	0AC00H to 0AFFFH	2BH	12C00H to 12FFFH	4BH	1AC00H to 1AFFFH	6BH
03000H to 033FFH	0CH	0B000H to 0B3FFH	2CH	13000H to 133FFH	4CH	1B000H to 1B3FFH	6CH
03400H to 037FFH	0DH	0B400H to 0B7FFH	2DH	13400H to 137FFH	4DH	1B400H to 1B7FFH	6DH
03800H to 03BFFH	0EH	0B800H to 0BBFFH	2EH	13800H to 13BFFH	4EH	1B800H to 1BBFFH	6EH
03C00H to 03FFFH	0FH	0BC00H to 0BFFFH	2FH	13C00H to 13FFFH	4FH	1BC00H to 1BFFFH	6FH
04000H to 043FFH	10H	0C000H to 0C3FFH	30H	14000H to 143FFH	50H	1C000H to 1C3FFH	70H
04400H to 047FFH	11H	0C400H to 0C7FFH	31H	14400H to 147FFH	51H	1C400H to 1C7FFH	71H
04800H to 04BFFH	12H	0C800H to 0CBFFH	32H	14800H to 14BFFH	52H	1C800H to 1CBFFH	72H
04C00H to 04FFFH	13H	0CC00H to 0CFFFH	33H	14C00H to 14FFFH	53H	1CC00H to 1CFFFH	73H
05000H to 053FFH	14H	0D000H to 0D3FFH	34H	15000H to 153FFH	54H	1D000H to 1D3FFH	74H
05400H to 057FFH	15H	0D400H to 0D7FFH	35H	15400H to 157FFH	55H	1D400H to 1D7FFH	75H
05800H to 05BFFH	16H	0D800H to 0DBFFH	36H	15800H to 15BFFH	56H	1D800H to 1DBFFH	76H
05C00H to 05FFFH	17H	0DC00H to 0DFFFH	37H	15C00H to 15FFFH	57H	1DC00H to 1DFFFH	77H
06000H to 063FFH	18H	0E000H to 0E3FFH	38H	16000H to 163FFH	58H	1E000H to 1E3FFH	78H
06400H to 067FFH	19H	0E400H to 0E7FFH	39H	16400H to 167FFH	59H	1E400H to 1E7FFH	79H
06800H to 06BFFH	1AH	0E800H to 0EBFFH	ЗАН	16800H to 16BFFH	5AH	1E800H to 1EBFFH	7AH
06C00H to 06FFFH	1BH	0EC00H to 0EFFFH	3BH	16C00H to 16FFFH	5BH	1EC00H to 1EFFFH	7BH
07000H to 073FFH	1CH	0F000H to 0F3FFH	3CH	17000H to 173FFH	5CH	1F000H to 1F3FFH	7CH
07400H to 077FFH	1DH	0F400H to 0F7FFH	3DH	17400H to 177FFH	5DH	1F400H to 1F7FFH	7DH
07800H to 07BFFH	1EH	0F800H to 0FBFFH	3EH	17800H to 17BFFH	5EH	1F800H to 1FBFFH	7EH
07C00H to 07FFFH	1FH	0FC00H to 0FFFFH	3FH	17C00H to 17FFFH	5FH	1FC00H to 1FFFFH	7FH

	Table 3-1. C	orrespondence	Between Addres	s Values and I	Block Numbers	in Flash Memc	rv
--	--------------	---------------	----------------	----------------	---------------	---------------	----

<R>

<R>

 Remark
 μPD78F1500A, 78F1503A, 78F1506A, 78F1510A, 78F1513A, 78F1516A: Block numbers 00H to 3FH

 μPD78F1501A, 78F1504A, 78F1507A: Block numbers 00H to 5FH

 μPD78F1502A, 78F1505A, 78F1508A, 78F1512A, 78F1515A, 78F1518A: Block numbers 00H to 7FH

4.2.3 Port 2

<R>

	μ PD78F150xA				μ PD78F151xA		
	78K0R/LF3 78K0R/LG3 78K0R			78K0R/LF3	78K0R/LG3	78K0R/LH3	
	(80 pins)	(100 pins)	(128 pins)	(80 pins)	(100 pins)	(128 pins)	
P20/ANI0/AMP0-				20/ANI0/AMP0- √ P20/ANI0			
P21/ANI1/AMP0O	\checkmark			P20/ANI1			
P22/ANI2/AMP0+	\checkmark			P20/ANI2			
P23/ANI3/AMP1-	\checkmark				P20/ANI3		
P24/ANI4/AMP1O	\checkmark				P20/ANI4		
P25/ANI5/AMP1+	\checkmark			P20/ANI5			
P26/ANI6/AMP2-	P26/ANI6	√		P26/ANI6			
P27/ANI7/AMP2O	_	١	1	-	P27/	ANI7	

Port 2 is an I/O port with an output latch. Port 2 can be set to the input mode or output mode in 1-bit units using port mode register 2 (PM2).

This port can also be used for A/D converter analog input, and operational amplifier I/O.

To use P20/ANI0/AMP0- to P27/ANI7/AMP2O as digital input pins, set them in the digital I/O mode by using the A/D port configuration register (ADPC) and in the input mode by using PM2. Use these pins starting from the lower bit.

To use P20/ANI0/AMP0- to P27/ANI7/AMP2O as digital output pins, set them in the digital I/O mode by using ADPC and in the output mode by using PM2.

To use P20/ANI0/AMP0- to P27/ANI7/AMP2O as analog input pins, set them in the analog input mode by using the A/D port configuration register (ADPC) and in the input mode by using PM2. Use these pins starting from the upper bit.

All P20/ANI0/AMP0- to P27/ANI7/AMP2O are set in the digital input mode when the reset signal is generated. Figures 4-7 to 4-9 show block diagrams of port 2.

Caution Make the AVDD0 pin the same potential as the EVDD or VDD pin when port 2 is used as a digital port.

4.6 Cautions on 1-bit Manipulation Instruction for Port Register n (Pn)

When a 1-bit manipulation instruction is executed on a port that provides both input and output functions, the output latch value of an input port that is not subject to manipulation may be written in addition to the targeted bit.

Therefore, it is recommended to rewrite the output latch when switching a port from input mode to output mode.

- <Example> When P10 is an output port, P11 to P17 are input ports (all pin statuses are high level), and the port latch value of port 1 is 00H, if the output of output port P10 is changed from low level to high level via a 1-bit manipulation instruction, the output latch value of port 1 is FFH.
- Explanation: The targets of writing to and reading from the Pn register of a port whose PMnm bit is 1 are the output latch and pin status, respectively.

A 1-bit manipulation instruction is executed in the following order in the 78K0R/Lx3 Microcontrollers.

- <1> The Pn register is read in 8-bit units.
- <2> The targeted one bit is manipulated.
- <3> The Pn register is written in 8-bit units.

In step <1>, the output latch value (0) of P10, which is an output port, is read, while the pin statuses of P11 to P17, which are input ports, are read. If the pin statuses of P11 to P17 are high level at this time, the read value is FEH.

The value is changed to FFH by the manipulation in <2>.

FFH is written to the output latch by the manipulation in <3>.

<3> If some peripheral hardware macros are not used, supply of the input clock to each hardware macro can be stopped.

(PER0 register)

RTCEN DACEN ADCEN IICAEN SAU1EN SAU0EN TAU1EN TAU0EN

xxxEN	Input clock control
0	Stops input clock supply.
1	Supplies input clock.

Remark	RTCEN:	Control of the real-time counter input clock
	DACEN:	Control of the D/A converter input clock
	ADCEN:	Control of the A/D converter and operational amplifier input clock
	IICAEN:	Control of the serial interface IICA input clock
	SAU1EN:	Control of the serial array unit 1 unit input clock
	SAU0EN:	Control of the serial array unit 0 unit input clock
	TAU1EN:	Control of the timer array unit 1 input clock
	TAU0EN:	Control of the timer array unit 0 input clock

(4) Example of setting procedure when stopping the high-speed system clock

The high-speed system clock can be stopped (disabling clock input if the external clock is used) in the following two ways.

- Executing the STOP instruction
- Setting MSTOP to 1

(a) To execute a STOP instruction

<1> Setting to stop peripheral hardware

Stop peripheral hardware that cannot be used in the STOP mode (for peripheral hardware that cannot be used in STOP mode, see **CHAPTER 21 STANDBY FUNCTION**).

- <2> Setting the X1 clock oscillation stabilization time after STOP mode is released If the X1 clock oscillates before the STOP mode is entered, set the value of the OSTS register before executing the STOP instruction.
- <3> Executing the STOP instruction When the STOP instruction is executed, the system is placed in the STOP mode and X1 oscillation is stopped (the input of the external clock is disabled).

(b) To stop internal high-speed oscillation clock by setting HIOSTOP to 1

<1> Confirming the CPU clock status (CKC register)

Confirm with CLS and MCS that the CPU is operating on a clock other than the internal high-speed oscillation clock.

When CLS = 0 and MCS = 0, the internal high-speed oscillation clock is supplied to the CPU, so change the CPU clock to the high-speed system clock or subsystem clock.

CLS	MCS	CPU Clock Status
0	0	Internal high-speed oscillation clock or 20 MHz internal high-speed oscillation clock
0	1	High-speed system clock
1	×	Subsystem clock

<2> Stopping the internal high-speed oscillation clock (CSC register) When HIOSTOP is set to 1, internal high-speed oscillation clock is stopped.

Caution Be sure to confirm that MCS = 1 or CLS = 1 when setting HIOSTOP to 1. In addition, stop peripheral hardware that is operating on the internal high-speed oscillation clock.

5.6.3 Example of controlling subsystem clock

The subsystem clock can be oscillated by connecting a crystal resonator to the XT1 and XT2 pins. When the subsystem clock is not used, the XT1/P123 and XT2/P124 pins can be used as input port pins.

Caution The XT1/P123 and XT2/P124 pins are in the input port mode after a reset release.

The following describes examples of setting procedures for the following cases.

- (1) When oscillating subsystem clock
- (2) When using subsystem clock as CPU clock
- (3) When stopping subsystem clock
- Caution When the subsystem clock is used as the CPU clock, the subsystem clock is also supplied to the peripheral hardware (except the real-time counter, timer array unit (when fsue/2, fsue/4, the valid edge of TI0mn input, or the valid edge of INTRTCI is selected as the count clock), clock output/buzzer output, and watchdog timer). At this time, the operations of the A/D converter and IICA are not guaranteed. For the operating characteristics of the peripheral hardware, refer to the chapters describing the various peripheral hardware as well as CHAPTER 31 ELECTRICAL SPECIFICATIONS.

(1) Example of setting procedure when oscillating the subsystem clock

<1> Setting P123/XT1 and P124/XT2 pins (CMC register)

EXCLK	OSCSEL	0	OSCSELS	0	AMPHS1	AMPHS0	AMPH
0/1	0/1	0	1	0	0/1	0/1	0/1

Remark For setting of the P121/X1 and P122/X2 pins, see 5.6.1 Example of controlling high-speed system clock.

<2> Controlling oscillation of subsystem clock (CSC register) If XTSTOP is cleared to 0, the XT1 oscillator starts oscillating.

Figure 6-68. Example of Basic Timing of Operation as Multiple PWM Output Function (output two types of PWMs)

Remarks 1. 78K0R/LF3:

- m = 0, n = 0, 2, p = n+1, q = n+2, TO00 to TO04, and TO07 pins
- **2**. 78K0R/LG3:
- m = 0, n = 0, 2, 4, p = n+1, q = n+2, TO00 to TO07 pins **3.** 78K0R/LH3:
 - m = 0, n = 0, 2, 4, p = n+1, q = n+2, TO00 to TO07 pins
 - m = 1, n = 0, p = 1, q = 2, TO10 to TO13 pins

RENESAS

CHAPTER 7 REAL-TIME COUNTER

7.1 Functions of Real-Time Counter

The real-time counter is mounted onto all 78K0R/Lx3 microcontroller products. The real-time counter has the following features.

- Having counters of year, month, week, day, hour, minute, and second, and can count up to 99 years.
- Constant-period interrupt function (period: 1 month to 0.5 seconds)
- Alarm interrupt function (alarm: week, hour, minute)
- Interval interrupt function
- Pin output function of 1 Hz
- Pin output function of 512 Hz or 16.384 kHz or 32.768 kHz

7.2 Configuration of Real-Time Counter

The real-time counter includes the following hardware.

Item	Configuration							
Control registers	Peripheral enable register 0 (PER0)							
	Real-time counter control register 0 (RTCC0)							
	Real-time counter control register 1 (RTCC1)							
	Real-time counter control register 2 (RTCC2)							
	Sub-count register (RSUBC)							
	Second count register (SEC)							
	Minute count register (MIN)							
	Hour count register (HOUR)							
	Day count register (DAY)							
	Week count register (WEEK)							
	Month count register (MONTH)							
	Year count register (YEAR)							
	Watch error correction register (SUBCUD)							
	Alarm minute register (ALARMWM)							
	Alarm hour register (ALARMWH)							
	Alarm week register (ALARMWW)							
	Port mode register 3							
	Port register 3							

Table 7-1. Configuration of Real-Time Counter

(2) Port mode register 3 (PM3)

This register sets port 3 input/output in 1-bit units.

When using the P31/PCLBUZ1/TI00/TO03/RTCDIV/RTCCL/INTP2 and P32/PCLBUZ0/TI01/TO01/INTP5 pins for clock output/buzzer output, clear PM31 and PM32 and the output latches of P32 and P31 to 0. PM3 is set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets this register to FFH.

Figure 9-3. Format of Port Mode Register 3 (PM3)

Address: FFF23H		After reset: FFH		R/W					
Symbol	7	6	5	4	3	2	1	0	
PM3	1	1	1	PM34	PM33	PM32	PM31	PM30	

PM3n	P3n pin I/O mode selection (n = 0 to 4)
0	Output mode (output buffer on)
1	Input mode (output buffer off)

9.4 Operations of Clock Output/Buzzer Output Controller

One pin can be used to output a clock or buzzer sound.

Two output pins, PCLBUZ0 and PCLBUZ1, are available.

PCLBUZ0 outputs a clock/buzzer selected by clock output select register 0 (CKS0).

PCLBUZ1 outputs a clock/buzzer selected by clock output select register 1 (CKS1).

9.4.1 Operation as output pin

PCLBUZn is output as the following procedure.

- <1> Select the output frequency with bits 0 to 3 (CCSn0 to CCSn2, CSELn) of the clock output select register (CKSn) of the PCLBUZn pin (output in disabled status).
- <2> Set bit 7 (PCLOEn) of CKSn to 1 to enable clock/buzzer output.
- **Remark** The controller used for outputting the clock starts or stops outputting the clock one clock after enabling or disabling clock output (PCLOEn) is switched. At this time, pulses with a narrow width are not output. Figure 9-4 shows enabling or stopping output using PCLOEn and the timing of outputting the clock.

Figure 14-83. Flowchart for LIN Transmission

14.7.4 Stop condition generation

After all data are transmitted to or received from the target slave, a stop condition is generated and the bus is released.

(1) Processing flow

Note During the receive operation, the SOEmn bit is set to 0 before receiving the last data.

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), r: IIC number (r = 10, 20)

(g) When arbitration loss occurs due to a stop condition when attempting to generate a restart condition

(i) When WTIM = 0

(ii) When WTIM = 1

The meanings of <7> to <15> in (3) Data ~ data ~ stop condition in Figure 15-32 are explained below.

- <7> When data transfer is complete, the slave device sends an ACK by hardware to the master device. The ACK is detected by the master device (ACKD = 1) at the rising edge of the 9th clock.
- <8> The master device and slave device set a wait status (SCL0 = 0) at the falling edge of the 9th clock, and both the master device and slave device issue an interrupt (INTIICA: end of transfer).
- <9> The master device writes the data to transmit to the IICA shift register (IICA) and releases the wait status that it set by the master device.
- <10> The slave device reads the received data and releases the wait status (WREL = 1). The master device then starts transferring data to the slave device.
- <11> When data transfer is complete, the slave device sends an ACK by hardware to the master device. The ACK is detected by the master device (ACKD = 1) at the rising edge of the 9th clock.
- <12> The master device and slave device set a wait status (SCL0 = 0) at the falling edge of the 9th clock, and both the master device and slave device issue an interrupt (INTIICA: end of transfer).
- <13> The slave device reads the received data and releases the wait status (WREL = 1).
- <14> After a stop condition trigger is set, the bus data line is cleared (SDA0 = 0) and the bus clock line is set (SCL0 = 1). The stop condition is then generated by setting the bus data line (SDA0 = 1) after the stop condition setup time has elapsed.
- <15> When a stop condition is generated, the slave device detects the stop condition and issues an interrupt (INTIICA: stop condition).
- Remark <1> to <15> in Figure 15-32 represent the entire procedure for communicating data using the l²C bus.
 Figure 15-32 (1) Start condition ~ address ~ data shows the processing from <1> to <6>, Figure 15-32
 (2) Address ~ data ~ data shows the processing from <3> to <10>, and Figure 15-32 (3) Data ~ data ~ stop condition shows the processing from <7> to <15>.

Address: FFFE0H After reset: 00H R/W													
Symbol	<7>	<6>	<5>	<4>	<2>	<1>	<0>						
IFOL	PIF5	PIF4	PIF3	PIF2	PIF1	PIF0	LVIIF	WDTIIF					
		•	•	•									
Address: FFFE1H After reset: 00H R/W													
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>					
IF0H	SREIF0	CSIIF01 SRIF0	CSIIF00 STIF0	DMAIF1	DMAIF0	SREIF3	SRIF3	SRIF3 STIF3					
Address: FFFE2H After reset: 00H R/W													
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>					
IF1L	TMIF03	TMIF02	TMIF01	TMIF00	IICAIF	SREIF1	SRIF1	CSIIF10 IICIF10 STIF1					
Address: FFI Svmbol	FE3H After <7>	reset: 00H <6>	R/W <5>	<4>	<3>	<2>	<1>	<0>					
IF1H	TMIF04	SREIF2	SRIF2	CSIIE20	KRIF	BTCIIF	BTCIE	ADIF					
		0	0	IICIF20 STIF2									
Address: FFI	FD0H After	reset: 00H	R/W										
Symbol	<7>	<6>	<5>	<4>	<3>	<2>	<1>	<0>					
IF2L	PIF10	PIF9	PIF8	PIF7	PIF6	TMIF07	TMIF06	TMIF05					
Address: FFI	FD1H After	reset: 00H	R/W										
Symbol	7	6	<5>	<4>	<3>	<2>	<1>	<0>					
IF2H	0	0	MDIF	TMIF13	TMIF12	TMIF11	TMIF10	PIF11					
	XXIFX			Inte	rrupt request	flag							
	0	No interrupt	No interrupt request signal is generated										
				-									

Figure 19-4. Format of Interrupt Request Flag Registers (IF0L, IF0H, IF1L, IF1H, IF2L, IF2H) (78K0R/LH3)

 $\label{eq:caution} \begin{array}{c} \mbox{Be sure to clear bits 6, 7 of IF2H to 0.} \end{array}$

Figure 19-8. Format of Priority Specification Flag Registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H) (78K0R/LF3) (2/2)

Address: FFFEBH After reset: FFH R/W												
Symbol	<7>	<6>	<5>	<4>	3	<2>	<1>	<0>				
PR01H	TMPR004	SREPR02	SRPR02	CSIPR020 IICPR020 STPR02	1	RTCIPR0	RTCPR0	ADPR0				
Address: FFI	FEFH After	reset: FFH	R/W									
Symbol	<7>	<6>	<5>	<4>	3	<2>	<1>	<0>				
PR11H	1H TMPR104 SREPR12		SRPR12	CSIPR120 IICPR120 STPR12	1	RTCIPR1	RTCPR1	ADPR1				
Address: FFI	-D8H After	reset: FFH	R/W									
Symbol	7	6	5	<4>	<3>	<2>	<1>	<0>				
PR02L	1	1	1	PPR07	PPR06	TMPR007	TMPR006	TMPR005				
Address: FFI	-DCH After	reset: FFH	R/W									
Symbol	7 6		5	<4>	<3>	<2>	<1>	<0>				
PR12L	1	1	1	PPR17	PPR16	TMPR107	TMPR106	TMPR105				
Address: FFI	-D9H After	reset: FFH	R/W									
Symbol	7	6	<5>	<4>	<3>	<2>	<1>	0				
PR02H 1 1		MDPR0	TMPR013	TMPR012	TMPR011	TMPR010	1					
			544									
Address: FFI	-DDH Atter	reset: FFH	R/W									
Symbol	7	6	<5>	<4>	<3>	<2>	<1>	0				
PR12H 1 1 MDF		MDPR1	TMPR113	TMPR112	TMPR111	TMPR110	1					
			1									
	XXPR1X	XXPR0X	Priority level selection									
	0	0	Specify level 0 (high priority level)									
	0	1	Specify leve	1								
	1	0	Specify leve	2								
	1	1	Specify leve	3 (low priority	y level)							

Caution Be sure to set bit 3 of PR01H and PR11H, bits 5 to 7 of PR02L and PR12L, bits 0, 6, 7 of PR02H and PR12H to 1.

Instruction Mnemonic		Operands	Bytes	Clo	cks	Operation		Flag	
Group				Note 1	Note 2		Z	AC	CY
16-bit	MOVW	AX, ES:[HL + byte]	3	2	5	$AX \leftarrow ((ES, HL) + byte)$		-	
data		ES:[HL + byte], AX	3	2	-	$((ES, HL) + byte) \leftarrow AX$			
transfer		AX, ES:word[B]	4	2	5	$AX \leftarrow ((ES,B) + word)$			
		ES:word[B], AX	4	2	_	$((ES, B) + word) \leftarrow AX$			
		AX, ES:word[C]	4	2	5	$AX \leftarrow ((ES,C) + word)$			
		ES:word[C], AX	4	2	-	$((ES, C) + word) \leftarrow AX$			
		AX, ES:word[BC]	4	2	5	$AX \leftarrow ((ES, BC) + word)$			
		ES:word[BC], AX	4	2	-	$((ES, BC) + word) \leftarrow AX$			
		BC, ES:!addr16	4	2	5	$BC \leftarrow (ES, addr16)$			
		DE, ES:!addr16	4	2	5	$DE \leftarrow (ES, addr16)$			
		HL, ES:!addr16	4	2	5	$HL \leftarrow (ES, addr16)$			
	XCHW	AX, rp Note 3	1	1	-	$AX \leftrightarrow rp$			
	ONEW	AX	1	1	-	AX ← 0001H			
		BC	1	1	-	BC ← 0001H			
	CLRW	AX	1	1	-	AX ← 0000H			
		BC	1	1	-	BC ← 0000H			
8-bit	ADD	A, #byte	2	1	-	A, CY \leftarrow A + byte	×	×	×
operation		saddr, #byte	3	2	-	(saddr), CY \leftarrow (saddr) + byte	×	×	×
		A, r	2	1	-	A, CY \leftarrow A + r	×	×	×
		r, A	2	1	-	r, CY ← r + A	×	×	×
		A, saddr	2	1	-	A, CY \leftarrow A + (saddr)	×	×	×
		A, !addr16	3	1	4	A, CY \leftarrow A + (addr16)	×	×	×
		A, [HL]	1	1	4	A, CY \leftarrow A + (HL)	×	×	×
		A, [HL + byte]	2	1	4	A, CY \leftarrow A + (HL + byte)	×	×	×
		A, [HL + B]	2	1	4	A, CY \leftarrow A + (HL + B)	×	×	×
		A, [HL + C]	2	1	4	A, CY \leftarrow A + (HL + C)	×	×	×
		A, ES:!addr16	4	2	5	A, CY \leftarrow A + (ES, addr16)	×	×	×
		A, ES:[HL]	2	2	5	$A,CY \leftarrow A + (ES,HL)$	×	×	×
		A, ES:[HL + byte]	3	2	5	A,CY ← A + ((ES, HL) + byte)	×	×	×
		A, ES:[HL + B]	3	2	5	$A,CY \leftarrow A + ((ES,HL) + B)$	×	×	×
		A, ES:[HL + C]	3	2	5	$A,CY \leftarrow A + ((ES,HL) + C)$	×	×	×

Table 30-5. Operation List (6/17)

Notes 1. When the internal RAM area or SFR area is accessed, or for an instruction with no data access.

3. Except rp = AX

4. Except r = A

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the system clock control register (CKC).

2. This number of clocks is for when the program is in the internal ROM (flash memory) area.

^{2.} When the program memory area is accessed.

ZE

1.25

P80GK-50-GAK

<R> • μ PD78F1500AGK-GAK-AX, 78F1501AGK-GAK-AX, 78F1502AGK-GAK-AX, 78F1510AGK-GAK-AX, 78F1512AGK-GAK-AX

80-PIN PLASTIC LQFP (FINE PITCH) (12x12)

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

