E. Renesas Electronics America Inc - UPD78F1508AGF-GAT-AX Datasheet

Welcome to E-XFL.COM

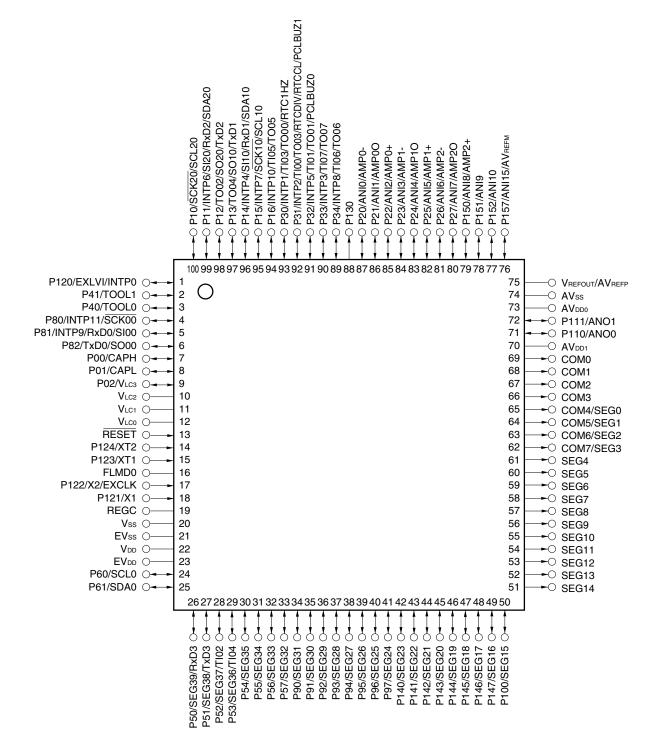
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	78K/0R
Core Size	16-Bit
Speed	20MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	76
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	7K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x12b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	128-LQFP
Supplier Device Package	•
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1508agf-gat-ax


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.2 78K0R/LG3

<R> (1) µ PD78F150xA

• 100-pin plastic LQFP (fine pitch) (14×14)

Cautions 1. Make AVss the same potential as Vss.

2. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μ F).

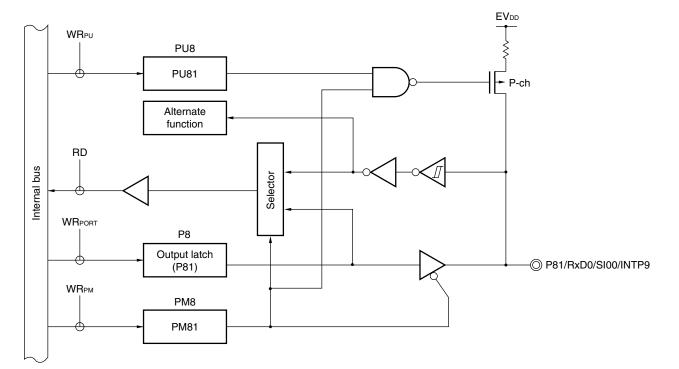


Figure 4-21. Block Diagram of P81

- P8: Port register 8
- PU8: Pull-up resistor option register 8
- PM8: Port mode register 8
- RD: Read signal
- WR××: Write signal

- Cautions 2. To start X1 oscillation as set by MSTOP, check the oscillation stabilization time of the X1 clock by using the oscillation stabilization time counter status register (OSTC).
 - 3. Do not stop the clock selected for the CPU peripheral hardware clock (fclk) with the OSC register.
 - 4. The setting of the flags of the register to stop clock oscillation (invalidate the external clock input) and the condition before clock oscillation is to be stopped are as follows.

Table 5-2	Condition Bet	fore Stonning	Clock Oscillation	and Flag Setting
Table J-Z.	Condition De	ore Stopping	CIUCK OSCIIIALIUI	and hay belling

Clock	Condition Before Stopping Clock (Invalidating External Clock Input)	Setting of CSC Register Flags
X1 clock External main system clock	CPU and peripheral hardware clocks operate with a clock other than the high-speed system clock. (• CLS = 0 and MCS = 0 • CLS = 1	MSTOP = 1
Subsystem clock	CPU and peripheral hardware clocks operate with a clock other than the subsystem clock. (CLS = 0)	XTSTOP = 1
Internal high-speed oscillation clock	CPU and peripheral hardware clocks operate with a clock other than the internal high-speed oscillator clock and 20 MHz internal high-speed oscillation clock. (• CLS = 0 and MCS = 1 • CLS = 1	HIOSTOP = 1

(3) Oscillation stabilization time counter status register (OSTC)

This is the register that indicates the count status of the X1 clock oscillation stabilization time counter. The X1 clock oscillation stabilization time can be checked in the following case,

- If the X1 clock starts oscillation while the internal high-speed oscillation clock or subsystem clock is being used as the CPU clock.
- If the STOP mode is entered and then released while the internal high-speed oscillation clock is being used as the CPU clock with the X1 clock oscillating.

OSTC can be read by a 1-bit or 8-bit memory manipulation instruction. When reset signal is generated, the STOP instruction and MSTOP (bit 7 of CSC register) = 1 clear OSTC to 00H.

Remark The oscillation stabilization time counter starts counting in the following cases.

- When oscillation of the X1 clock starts (EXCLK, OSCSEL = 0, 1 \rightarrow MSTOP = 0)
- When the STOP mode is released

Address: FFFA2H After reset: 00H R

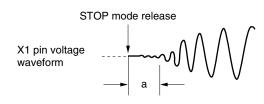

Symbol	7	6	5	4	3	2	1	0	_		
OSTC	MOST										
	8	9	10	11	13	15	17	18			
	MOST	Oscillati	on stabilization	time status							
	8	9	10	11	13	15	17	18		fx = 10 MHz	fx = 20 MHz
	0	0	0	0	0	0	0	0	2 ⁸ /fx max.	25.6 <i>μ</i> s max.	12.8 <i>µ</i> s max.
	1	0	0	0	0	0	0	0	2 ⁸ /fx min.	25.6 <i>μ</i> s min.	12.8 <i>µ</i> s min.
	1	1	0	0	0	0	0	0	2 ⁹ /fx min.	51.2 <i>μ</i> s min.	25.6 <i>μ</i> s min.
	1	1	1	0	0	0	0	0	2 ¹⁰ /fx min.	102.4 <i>μ</i> s min.	51.2 <i>μ</i> s min.
	1	1	1	1	0	0	0	0	2 ¹¹ /fx min.	204.8 <i>µ</i> s min.	102.4 <i>μ</i> s min.
	1	1	1	1	1	0	0	0	2 ¹³ /fx min.	819.2 <i>μ</i> s min.	409.6 <i>µ</i> s min.
	1	1	1	1	1	1	0	0	2 ¹⁵ /fx min.	3.27 ms min.	1.64 ms min.
	1	1	1	1	1	1	1	0	2 ¹⁷ /fx min.	13.11 ms min.	6.55 ms min.
	1	1	1	1	1	1	1	1	2 ¹⁸ /fx min.	26.21 ms min.	13.11 ms min.

Figure 5-4. Format of Oscillation Stabilization Time Counter Status Register (OSTC)

- Cautions 1. After the above time has elapsed, the bits are set to 1 in order from MOST8 and remain 1.
 - 2. The oscillation stabilization time counter counts up to the oscillation stabilization time set by OSTS.

In the following cases, set the oscillation stabilization time of OSTS to the value greater than the count value which is to be checked by the OSTC register after the oscillation starts.

- If the X1 clock starts oscillation while the internal high-speed oscillation clock or subsystem clock is being used as the CPU clock.
- If the STOP mode is entered and then released while the internal high-speed oscillation clock is being used as the CPU clock with the X1 clock oscillating. (Note, therefore, that only the status up to the oscillation stabilization time set by OSTS is set to OSTC after the STOP mode is released.)
- 3. The X1 clock oscillation stabilization wait time does not include the time until clock oscillation starts ("a" below).

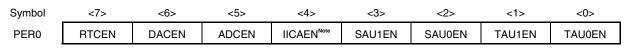
Remark fx: X1 clock oscillation frequency

(1) Peripheral enable register 0 (PER0)

PER0 is used to enable or disable use of each peripheral hardware macro. Clock supply to a hardware macro that is not used is stopped in order to reduce the power consumption and noise.

When the timer array unit 0 is used, be sure to set bit 0 (TAU0EN) of this register to 1.

When the timer array unit 1 is used, be sure to set bit 1 (TAU1EN) of this register to 1.


PER0 can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Caution When setting the timer array unit, be sure to set TAUmEN to 1 first. If TAUmEN = 0, writing to a control register of the timer array unit is ignored, and all read values are default values.

Figure 6-5. Format of Peripheral Enable Register 0 (PER0)

Address: F00F0H After reset: 00H R/W

TAUmEN	Control of timer array unit m input clock
0	Stops supply of input clock.SFR used by the timer array unit m cannot be written.The timer array unit m is in the reset status.
1	Supplies input clock. SFR used by the timer array unit m can be read/written.

Note 78K0R/LG3, 78K0R/LH3 only

(2) Timer clock select register m (TPSm)

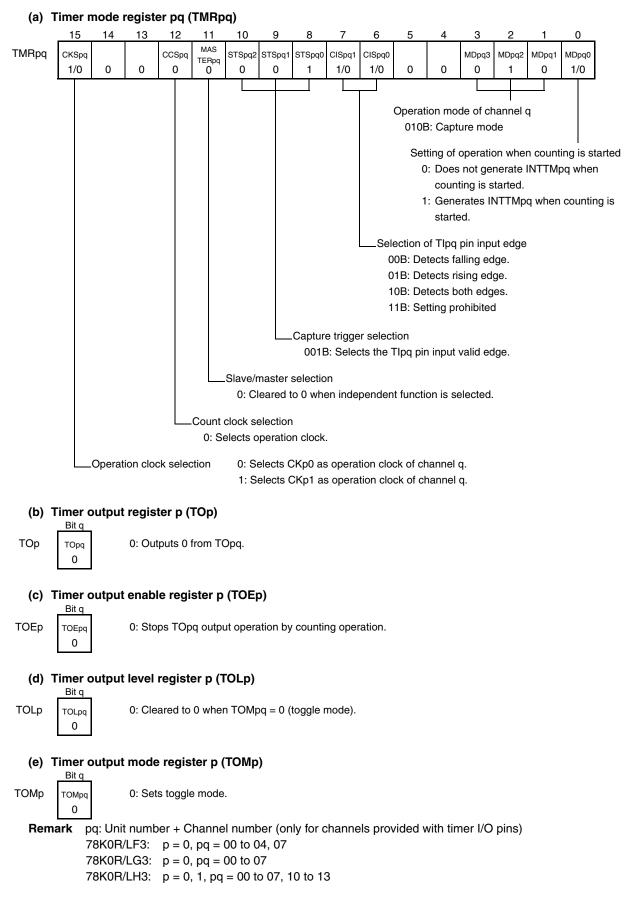
TPSm is a 16-bit register that is used to select two types of operation clocks (CKm0, CKm1) that are commonly supplied to each channel. CKm1 is selected by bits 7 to 4 of TPSm, and CKm0 is selected by bits 3 to 0. Rewriting of TPSm during timer operation is possible only in the following cases.

Rewriting of PRSm00 to PRSm03 bits: Possible only when all the channels set to CKSmn = 0 are in the operation stopped state (TEmn = 0)

Rewriting of PRSm10 to PRSm13 bits: Possible only when all the channels set to CKSmn = 1 are in the operation stopped state (TEmn = 0)

TPSm can be set by a 16-bit memory manipulation instruction. The lower 8 bits of TPSm can be set with an 8-bit memory manipulation instruction with TPSmL. Reset signal generation clears this register to 0000H.

Remark mn: Unit number + Channel number m = 0, 1, mn = 00 to 07, 10 to 13


Figure 6-40. Operation Procedure of Interval Timer/Square Wave Output Function (2/2)

	Software Operation	Hardware Status
TAU stop	When holding the TOpq pin output level is not necessary	The TOpq pin output level is held by port function. The TOpq pin output level goes into Hi-Z output state.
	The TAU0EN or TAU1EN bits of the PER0 register is cleared to 0.	Power-off status All circuits are initialized and SFR of each channel is also initialized. (The TOpq bit is cleared to 0 and the TOpq pin is set to port mode.)

Remark mn: Unit number + Channel number, pq: Unit number + Channel number (only for channels provided with timer I/O pins)

78K0R/LF3: mn = 00 to 07, 10 to 13, pq = 00 to 04, 07 78K0R/LG3: mn = 00 to 07, 10 to 13, pq = 00 to 07 78K0R/LH3: mn = 00 to 07, 10 to 13, pq = 00 to 07, 10 to 13

RENESAS

14.4.2 Stopping the operation by channels

The stopping of the operation by channels is set using each of the following registers.

Figure 14-23. Each Register Setting When Stopping the Operation by Channels (1/2)

• Serial Channel Enable Status Register m (SEm) ... This register indicates whether data transmission/reception operation of each channel is enabled or stopped.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Sem													Sem3	Sem2	Sem1	Sem0
	0	0	0	0	0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1
										0: Ope	eration	stops				

• The Sem register is a read-only status register, whose operation is stopped by using the STm register. With a channel whose operation is stopped, the value of CKOmn of the Som register can be set by software.

• Serial channel stop register m (STm) ... This register is a trigger register that is used to enable stopping communication/count by each channel.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
STm													STm3	STm2	STm1	STm0
	0	0	0	0	0	0	0	0	0	0	0	0	0/1	0/1	0/1	0/1
	1: Clears Semn to 0 and stops the communication operation															

* Because STmn is a trigger bit, it is cleared immediately when SEmn = 0.

(c) Serial output enable register m (SOEm) ... This register is a register that is used to enable or stop output of the serial communication operation of each channel.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOE0	_	_	_	_			_			_	_	_	_	SOE02	SOE01	SOE00
	0	0	0	0	0	0	0	0	0	0	0	0	0	0/1	0/1	0/1
						0.0	tono o	utout b			uniaati		ation			

0: Stops output by serial communication operation

* For channel n, whose serial output is stopped, the SO0n value of the SO0 register can be set by software.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SOE1	0	0	0	0	0	0	0	0	0	0	0	0	0	SOE12 0/1	0	SOE10 0/1
						0.0										

0: Stops output by serial communication operation

* For channel n, whose serial output is stopped, the SO1n value of the SO1 register can be set by software.

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3)

: Setting disabled (fixed by hardware), 0/1: Set to 0 or 1 depending on the usage of the user

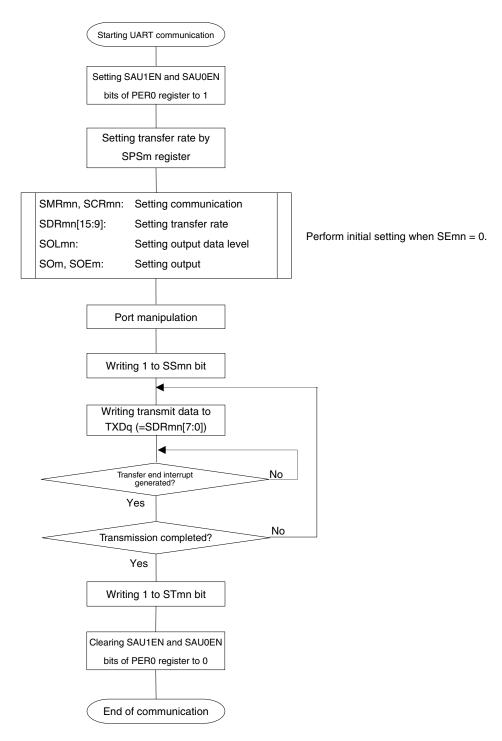


Figure 14-73. Flowchart of UART Transmission (in Single-Transmission Mode)

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

(2) Processing flow

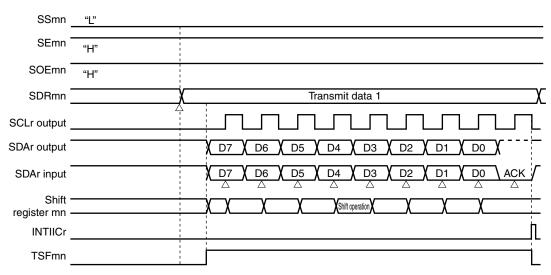


Figure 14-93. Timing Chart of Data Transmission

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), r: IIC number (r = 10, 20)

Figure 14-94. Flowchart of Data Transmission

SE	MD	MD	SOE	SO	СКО		RXE	PM	P10	PM	P11 Note2	PM	P12	Operation mode	Pin Function		
10 Note1	102	101	10	10	10	10	10	10		11 Note2	Notez	12			SCK20/ SCL20/P10	SI20/SDA20/ RxD2/INTP6/ P11 ^{Note2}	SO20/ TxD2/ TO02/P12
0	0	0	0	1	1	0	0	× Note3	× Note3	× Note3	× Note3	× Note3	× Note3	Operation stop	P10	INTP6/P11	TO02/P12
	0	1						Notes	Notes	Notes	Notes	Notes	mode			RxD2/INTP6/ P11	
	1	0														INTP6/P11	
1	0	0	0	1	1	0	1	1	×	1	×	× Note3	× Note3	Slave CSI20 reception	SCK20 (input)	SI20	TO02/P12
			1	0/1 Note4	1	1	0	1	×	× Note3	× Note3	0	1	Slave CSI20 transmission	SCK20 (input)	INTP6/P11	SO20
			1	0/1 Note4	1	1	1	1	×	1	×	0	1	Slave CSI20 transmission/reception	SCK20 (input)	SI20	SO20
			0	1	0/1 Note4	0	1	0	1	1	×	× Note3	× Note3	Master CSI20 reception	SCK20 (output)	SI20	TO02/P12
			1	0/1 Note4	0/1 Note4	1	0	0	1	× Note3	× Note3	0	1	Master CSI20 transmission	SCK20 (output)	INTP6/P11	SO20
			1	0/1 Note4	0/1 Note4	1	1	0	1	1	×	0	1	Master CSI20 transmission/reception	SCK20 (output)	SI20	SO20
	0	1	1	0/1 Note4	1	1	0	× Note3	× Note3	× Note3	× Note3	0	1	UART2 transmission ^{Note5}	P10	RxD2/INTP6/ P11	TxD2
0	1	0	0	0/1 Note6	0/1 Note6	0	0	0	1	0	1	× Note3	× Note3	IIC20	SCL20	SDA20	TO02/P12
						1	0							start condition			
_	-			0/4	0.14	0	1								001.00	05400	T000/D40
1			1	0/1 Note4	0/1 Note4	1	0	0	1	0	1	× Note3	× Note3	IIC20 address field transmission	SCL20	SDA20	TO02/P12
			1	0/1 Note4	0/1 Note4	1	0	0	1	0	1	× Note3	× Note3	IIC20 data transmission	SCL20	SDA20	TO02/P12
			1	0/1 Note4	0/1 Note4	0	1	0	1	0	1	× Note3	× Note3	IIC20 data reception	SCL20	SDA20	TO02/P12
0			0	0/1 Note7	0/1 Note7	0	0	0	1	0	1	× Note3	n2 Note2		SCL20	SDA20	TO02/P12
1						1	0							stop condition			
						0	1										

Table 14-9. Relationship between register settings and pins(Channel 0 of unit 1: CSI20, UART2 transmission, IIC20)

Notes 1. The SE1 register is a read-only status register which is set using the SS1 and ST1 registers.

2. When channel 1 of unit 1 is set to UART2 reception, this pin becomes an RxD2 function pin (refer to Table 14-10). In this case, operation stop mode or UART2 transmission must be selected for channel 0 of unit 1.

- **3.** This pin can be set as a port function pin.
- This is 0 or 1, depending on the communication operation. For details, refer to 14.3 (12) Serial output register m (SOm).
- 5. When using UART2 transmission and reception in a pair, set channel 1 of unit 1 to UART2 reception (refer to Table 14-10).
- **6.** Set the CKO10 bit to 1 before a start condition is generated. Clear the SO10 bit from 1 to 0 when the start condition is generated.
- **7.** Set the CKO10 bit to 1 before a stop condition is generated. Clear the SO10 bit from 0 to 1 when the stop condition is generated.

Remark X: Don't care

SE12 Note1	MD122	MD121	SOE12	SO12	TXE12	RXE12	PM51	P51	Operation mode	Pin Function
									mode	TxD3/SEG52/P51
0	0	1	0	1	0	0	× Note2	× Note2	Operation stop mode	SEG52/P51
1	0	1	1	0/1 ^{Note3}	1	0	0	1	UART3 transmission _{Note4}	TxD3

Table 14-11. Relationship between register settings and pins (Channel 2 of unit 1: UART3 transmission)

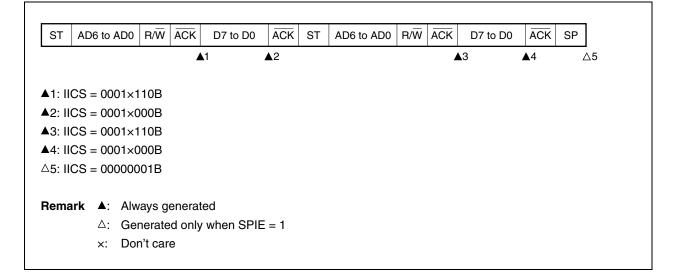
Notes 1. The SE1 register is a read-only status register which is set using the SS1 and ST1 registers.

- 2. This pin can be set as a port function pin.
- 3. This is 0 or 1, depending on the communication operation. For details, refer to 14.3 (12) Serial output register m (SOm).
- **4.** When using UART3 transmission and reception in a pair, set channel 3 of unit 1 to UART3 reception (refer to **Table 14-12**).

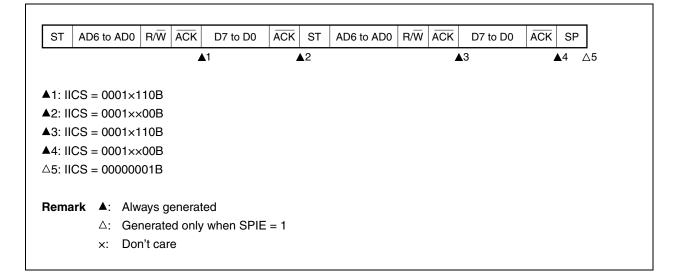
Remark X: Don't care

SE13 ^{Note1}	MD132	MD131	TXE13	RXE13	PM50	P50	Operation	Pin Function
							mode	RxD3/SEG53/P50
0	0	1	0	0	× ^{Note2}	× ^{Note2}	Operation stop mode	SEG53/P50
1	0	1	0	1	1	×	UART3 reception Note3, 4	RxD3

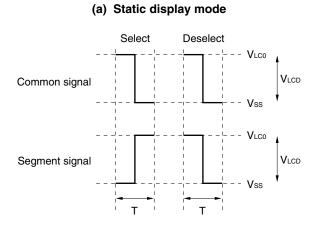
Notes 1. The SE1 register is a read-only status register which is set using the SS1 and ST1 registers.


- 2. This pin can be set as a port function pin.
- **3.** When using UART3 transmission and reception in a pair, set channel 2 of unit 1 to UART3 transmission (refer to **Table 14-11**).
- 4. The SMR12 register of channel 2 of unit 1 must also be set during UART3 reception. For details, refer to 14.5.2
 (1) Register setting.

Remark X: Don't care



(b) Start ~ Address ~ Data ~ Start ~ Address ~ Data ~ Stop


(i) When WTIM = 0 (after restart, matches with SVA)

(ii) When WTIM = 1 (after restart, matches with SVA)

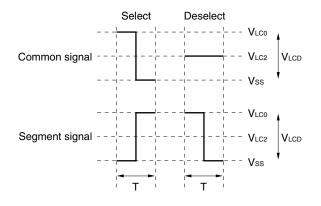


Figure 16-14. Voltages and Phases of Common and Segment Signals (1/2)

T: One LCD clock period

(b) 1/2 bias method

T: One LCD clock period

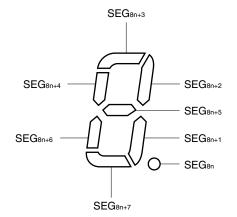
16.7 Display Modes

16.7.1 Static display example

Figure 16-16 shows how the three-digit LCD panel having the display pattern shown in Figure 16-15 is connected to the segment signals (SEG0 to SEG23) and the common signal (COM0). This example displays data "12.3" in the LCD panel. The contents of the display data memory (F0400H to F0417H) correspond to this display.

The following description focuses on numeral "2." (2.) displayed in the second digit. To display "2." in the LCD panel, it is necessary to apply the select or deselect voltage to the SEG8 to SEG15 pins according to Table 16-5 at the timing of the common signal COM0; see Figure 16-15 for the relationship between the segment signals and LCD segments.

Table 16-5	Select and Deselect Voltages (COM0)	
------------	-------------------------------------	--


Segment Common	SEG8	SEG9	SEG10	SEG11	SEG12	SEG13	SEG14	SEG15
COM0	Select	Deselect	Select	Select	Deselect	Select	Select	Select

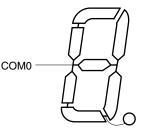

According to Table 16-5, it is determined that the bit-0 pattern of the display data memory locations (F0408H to F040FH) must be 10110111.

Figure 16-17 shows the LCD drive waveforms of SEG11 and SEG12, and COM0. When the select voltage is applied to SEG11 at the timing of COM0, an alternate rectangle waveform, +VLCD/-VLCD, is generated to turn on the corresponding LCD segment.

COM1 to COM3 are supplied with the same waveform as for COM0. So, COM0 to COM3 may be connected together to increase the driving capacity.

 Remark
 78K0R/LF3:
 n = 0 to 3
 78K0R/LG3:
 n = 0 to 4
 78K0R/LH3:
 n = 0 to 5
 78K0R/LH3:
 78K0R/LH3:<

18.5.4 Consecutive capturing of A/D conversion results

A flowchart of an example of setting for consecutively capturing A/D conversion results is shown below.

- Consecutive capturing of A/D conversion results.
- DMA channel 1 is used for DMA transfer.
- DMA start source: INTAD
- Interrupt of A/D is specified by IFC13 to IFC10 (bits 3 to 0 of the DMC1 register) = 1100B.
- Transfers FFF1EH and FFF1FH (2 bytes) of the 12-bit A/D conversion result register to 512 bytes of FFCE0H to FFEDFH of RAM.

LF3	LG3	LH3	Interrupt	Interrupt Req	uest Flag	Interrupt Ma	sk Flag	Priority Specification	n Flag	
			Source		Register		Register		Register	
\checkmark	\checkmark	\checkmark	INTST1 ^{Note 1}	STIF1 ^{Note 1}	IF1L	STMK1 ^{Note 1}	MK1L	STPR01, STPR11 ^{Note 1}	PR01L,	
\checkmark	\checkmark	\checkmark	INTCSI10 ^{Note 1}	CSIIF10 ^{Note 1}		CSIMK10 ^{Note 1}		CSIPR010, CSIPR110 ^{Note1}	PR11L	
\checkmark	\checkmark	\checkmark	INTIIC10 ^{Note 1}	IICIF10 ^{Note 1}		IICMK10 ^{Note 1}		IICPR010, IICPR110 ^{Note 1}		
\checkmark	\checkmark	\checkmark	INTSR1	SRIF1		SRMK1		SRPR01, SRPR11		
\checkmark	\checkmark	\checkmark	INTSRE1	SREIF1		SREMK1		SREPR01, SREPR11		
-	\checkmark	\checkmark	INTIICA	IICAIF		IICAMK		IICAPR0, IICAPR1		
\checkmark	\checkmark	\checkmark	INTTM00	TMIF00		TMMK00		TMPR000, TMPR100		
\checkmark	\checkmark	\checkmark	INTTM01	TMIF01		TMMK01		TMPR001, TMPR101		
\checkmark	\checkmark	\checkmark	INTTM02	TMIF02		TMMK02		TMPR002, TMPR102		
\checkmark	\checkmark	\checkmark	INTTM03	TMIF03		ТММК03		TMPR003, TMPR103		
\checkmark	\checkmark	\checkmark	INTAD	ADIF	IF1H	ADMK	MK1H	ADPR0, ADPR1	PR01H,	
\checkmark	\checkmark	\checkmark	INTRTC	RTCIF		RTCMK		RTCPR0, RTCPR1	PR11H	
\checkmark	\checkmark	\checkmark	INTRTCI	RTCIIF		RTCIMK		RTCIPR0, RTCIPR1		
-	-	\checkmark	INTKR	KRIF		KRMK		KRPR0, KRPR1		
\checkmark	\checkmark	\checkmark	INTST2 ^{Note 2}	STIF2 ^{Note 2}		STMK2 ^{Note 2}		STPR02, STPR12 ^{Note 2}		
\checkmark	\checkmark	\checkmark	INTCSI20 ^{Note 2}	CSIIF20 ^{Note 2}		CSIMK20 ^{Note 2}		CSIPR020, CSIPR120 ^{Note2}		
\checkmark	\checkmark	\checkmark	INTIIC20 ^{Note 2}	IICIF20 ^{Note 2}		IICMK20 ^{Note 2}		IICPR020, IICPR120 ^{Note 2}		
\checkmark	\checkmark	\checkmark	INTSR2	SRIF2		SRMK2		SRPR02, SRPR12		
\checkmark	\checkmark	\checkmark	INTSRE2	SREIF2		SREMK2		SREPR02, SREPR12		
\checkmark	\checkmark	\checkmark	INTTM04	TMIF04		TMMK04		TMPR004, TMPR104		
\checkmark	\checkmark	\checkmark	INTTM05	TMIF05	IF2L	TMMK05	MK2L	TMPR005, TMPR105	PR02L,	
\checkmark	\checkmark	\checkmark	INTTM06	TMIF06		TMMK06		TMPR006, TMPR106	PR12L	
\checkmark	\checkmark	\checkmark	INTTM07	TMIF07		TMMK07		TMPR007, TMPR107		
\checkmark	\checkmark	\checkmark	INTP6	PIF6		PMK6		PPR06, PPR16		
\checkmark	\checkmark	\checkmark	INTP7	PIF7		PMK7		PPR07, PPR17		
_	\checkmark	\checkmark	INTP8	PIF8		PMK8		PPR08, PPR18		
-	\checkmark	\checkmark	INTP9	PIF9		PMK9		PPR09, PPR19		
-	\checkmark	\checkmark	INTP10	PIF10		PMK10		PPR010, PPR110		
_	\checkmark	\checkmark	INTP11	PIF11	IF2H	PMK11	MK2H	PPR011, PPR111	PR02H,	
\checkmark	\checkmark	\checkmark	INTTM10	TMIF10		TMMK10		TMPR010, TMPR110	PR12H	
\checkmark	\checkmark	\checkmark	INTTM11	TMIF11		TMMK11		TMPR011, TMPR111		
\checkmark	\checkmark	\checkmark	INTTM12	TMIF12		TMMK12		TMPR012, TMPR112		
\checkmark	\checkmark	\checkmark	INTTM13	TMIF13		TMMK13		TMPR013, TMPR113		
\checkmark	\checkmark	\checkmark	INTMD	MDIF		MDMK		MDPR0, MDPR1		

Table 19-2. Flags Corresponding to Interrupt Request Sources (2/2)

- Notes 1. Do not use UART1, CSI10, and IIC10 at the same time because they share flags for the interrupt request sources. If one of the interrupt sources INTST1, INTCSI10, and INTIIC10 is generated, bit 0 of IF1L is set to 1. Bit 0 of MK1L, PR01L, and PR11L supports these three interrupt sources.
 - Do not use UART2, CSI20, and IIC20 at the same time because they share flags for the interrupt request sources. If one of the interrupt sources INTST2, INTCSI20, and INTIIC20 is generated, bit 4 of IF1H is set to
 Bit 4 of MK1H, PR01H, and PR11H supports these three interrupt sources.

27.4.7 Power supply

To use the supply voltage output of the flash memory programmer, connect the VDD pin to VDD of the flash memory programmer, and the VSS pin to GND of the flash memory programmer.

To use the on-board supply voltage, connect in compliance with the normal operation mode.

However, when using the on-board supply voltage, be sure to connect the V_{DD} and V_{SS} pins to V_{DD} and GND of the flash memory programmer to use the power monitor function with the flash memory programmer.

Supply the same other power supplies (EVDD, EVss, AVDD0, AVDD1, and AVss) as those in the normal operation mode.

27.5 Registers Controlling Flash Memory

(1) Background event control register (BECTL)

Even if the FLMD0 pin is not controlled externally, it can be controlled by software with the BECTL register to set the self-programming mode.

However, depending on the processing of the FLMD0 pin, it may not be possible to set the self-programming mode by software. When using BECTL, leaving the FLMD0 pin open is recommended. When pulling it down externally, use a resistor with a resistance of 100 k Ω or more. In addition, in the normal operation mode, use BECTL with the pull down selection. In the self-programming mode, the setting is switched to pull up in the self- programming library. The BECTL register is set by a 1-bit or 8-bit memory manipulation instruction.

Reset input sets this register to 00H.

Figure 27-6. Format of Background Event Control Register (BECTL)

Address: FFF	BEH After re	set: 00H	R/W					
Symbol	7	6	5	4	3	2	1	0
BECTL	FLMDPUP	0	0	0	0	0	0	0

FLMDPUP	Software control of FLMD0 pin
0	Selects pull-down
1	Selects pull-up

(2) Serial interface: Serial array unit (3/18)

(TA = -40 to +85°C, 1.8 V \leq VDD = EVDD \leq 5.5 V, Vss = EVss = AVss = 0 V)

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit
SCKp cycle time	tkCY2	$4.0~V \leq V_{\text{DD}} \leq$	5.5 V	6/fмск			ns
	2.7 V ≤ 4.0 V		16 MHz < fмск	8/fмск			ns
		4.0 V	fмск ≤ 16 MHz	6/fмск			ns
		$1.8 V \le V_{DD} <$	16 MHz < fмск	8/fмск			ns
		2.7 V	fмск ≤ 16 MHz	6/fмск			ns
SCKp high-/low-level width	tкн2, tкL2			t ксү2/2			ns
Slp setup time (to SCKp↑) ^{Note 1}	tsik2			80			ns
Slp hold time (from SCKp↑) ^{Note 2}	tksi2			1/fмск+50			ns
Delay time from $\overline{\text{SCKp}}\downarrow$ to	tĸso2		$V \le V_{\text{DD}} = EV_{\text{DD}} \le 5.5 \text{ V}$			2/fмск+45	ns
SOp output Note 3		pF ^{Note 4} 2.7	$V \le V_{DD} = EV_{DD} < 4.0 V$			2/fмск+57	ns
		1.8	$V \le V_{DD} = EV_{DD} < 2.7 V$			2/fмск+125	ns

(c) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input)

- **Notes 1.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to $\overline{SCKp}\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from $\overline{SCKp}\downarrow$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **3.** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from $\overline{SCKp}^{\uparrow}$ " when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
 - **4.** C is the load capacitance of the $\overline{\text{SCKp}}$ and SOp output lines.

Caution Select the normal input buffer for SIp and SCKp and the normal output mode for SOp by using the PIMg and POMx registers.

Remarks 1. p: CSI number (p = 00, 01, 10, 20), g: PIM number (g = 1, 7), x: POM number (x = 1, 7, 8)

 fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of the SMRmn register. m: Unit number (m = 0, 1), n: Channel number (n = 0 to 2))

(2) Serial interface: Serial array unit (8/18)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol		Conditions	MIN.	TYP.	MAX.	Unit	
Transfer		transmission	4.0 V \leq V_DD = EV_DD \leq 5.5 V,				Note 1	bps
rate			$2.7~V \leq V_b \leq 4.0~V$	fclк = 16.8 MHz, fмск = fclк,			2.8 Note 2	Mbps
				$C_b = 50 \text{ pF}, \text{R}_b = 1.4 \text{ k}\Omega, \text{V}_b = 2.7 \text{ V}$				
			$2.7 \text{ V} \leq V_{\text{DD}} = EV_{\text{DD}} < 4.0 \text{ V},$				Note 3	bps
			$2.3~V \leq V_{b} < 2.7~V$	fclк = 19.2 MHz, fмск = fclк,			1.2 Note 4	Mbps
				$C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega, V_b = 2.3 \text{ V}$				

(e) Communication at different potential (2.5 V, 3 V) (UART mode) (dedicated baud rate generator output) (2/2)

Notes 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq V_{DD} = EV_{DD} \leq 5.5 V and 2.7 V \leq V_b \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{V_b})\}}{(-\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 [\%]$$

* This value is the theoretical value of the relative difference between the transmission and reception sides.

- 2. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **3.** The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq V_DD = EV_DD < 4.0 V and 2.3 V \leq Vb < 2.7 V \leq

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
 [bps]

* This value is the theoretical value of the relative difference between the transmission and reception sides.

4. This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

Caution Select the TTL input buffer for RxDq and the N-ch open drain output (V_{DD} tolerance) mode for TxDq by using the PIMg and POMx registers.

(Remarks are given on the next page.)