

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	78K/0R
Core Size	16-Bit
Speed	20MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	46
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1510agc-gad-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Identification

	AMP0- to AMP2- :	Amplifier Input Minus	P130 :	Port 13
	AMP0+ to AMP2+ :		P140 to P147 :	Port 14
	AMP0O to AMP2O :		P150 to P152, P157 :	Port 15
	ANIO to ANI10,		PCLBUZ0, PCLBUZ1 :	Programmable Clock Output
	ANI15 :	Analog Input (ADC)	1 020020, 1 020021 .	/Buzzer Output
	ANO0, ADO1 :	Analog Output (DAC)	REGC :	Regulator Capacitance
<r></r>	AVREF :	Analog Reference Voltage	RESET:	Reset
	AVREFM:	Analog Reference Voltage Minus	RTC1HZ :	Real-time Counter Correction Clock (1Hz) Output
	AVREFP :	Analog Reference Voltage Plus	RTCCL :	Real-time Counter Clock
	AVss :	Analog Ground		(32 kHz Original Oscillation) Output
<r></r>	AVDD:	Analog Power Supply	RTCDIV :	Real-time Counter Clock
	AVDD0:	Analog Power Supply		(32 kHz Divided Frequency) Output
		(ADC/VREF/OPAMP)	RxD0 to RxD3 :	Receive Data
	AVDD1:	Analog Power Supply (DAC)	SCK00, SCK01,	
	CAPH, CAPL :	Capacitor for LCD	SCK10, SCK20 :	Serial Clock Input/Output
	COM0 to COM7 :	LCD Common Output	SCL0, SCL10, SCL20 :	Serial Clock Input/Output
<r></r>	EVDD, EVDD1:	Power Supply for Port		Serial Data Input/Output
	EVss :	GND for Port	SEG0 to SEG53 :	LCD Segment Output
	EXCLK :	External Clock Input	SI00, SI01, SI10, SI20 :	Serial Data Input
		(Main system clock)	SO00, SO01, SO10,	
	EXLVI :	External Potential Input	SO20 :	Serial Data Output
		for Low Voltage Detector	TI00 to TI07,	
	FLMD0 :	Flash Programming Mode	TI10 to TI13 :	Timer Input
	INTP0 to INTP11 :	External Interrupt Input	TO00 to TO07,	
	KR0 to KR7 :	Key Return	TO10 to TO13 :	Timer Output
	P00 to P02 :	Port 0	TOOL0 :	Data Input/Output for Tool
	P10 to P17 :	Port 1	TOOL1 :	Clock Output for Tool
	P20 to P27 :	Port 2	TxD0 to TxD3 :	Transmit Data
	P30 to P34 :	Port 3	Vdd:	Power Supply
	P40, P41 :	Port 4	VLC0 to VLC3:	LCD Power Supply
	P50 to P57 :	Port 5	VREFOUT :	Voltage Reference Output
	P60, P61 :	Port 6	Vss:	Ground
	P70 to P77 :	Port 7	X1, X2 :	Crystal Oscillator
	P80 to P87 :	Port 8		(Main system clock)
	P90 to P97 :	Port 9	XT1, XT2 :	Crystal Oscillator (Subsystem Clock)
	P100 to P102 :	Port 10		
	P110, P111 :	Port 11		
	P120 to P124 :	Port 12		

2.2.11 P100 to P102

P100 to P102 function as an I/O port. This port can also be used for segment output of LCD controller/driver.

		78K0R/LF3	78K0R/LG3	78K0R/LH3
<r></r>		(80 pins: <i>μ</i> PD78F15x0A,	(100 pins: <i>μ</i> PD78F15x3A,	(128 pins: μ PD78F15x6A,
		78F1501A, 78F15x2A)	78F1504A, 78F15x5A)	78F1507A, 78F15x8A)
	P100/SEGxx	$\sqrt{(xx = 11)}$	√ (xx = 15)	√ (xx = 29)
	P101/SEGxx	-	-	$\sqrt{(xx = 28)}$
	P102/SEGxx	-	-	√ (xx = 27)

The following operation modes can be specified in 1-bit units.

(1) Port mode

P100 to P102 function as an I/O port. P100 to P102 can be set to input or output port in 1-bit units using port mode register 10 (PM10). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 10 (PU10).

(2) Control mode

P100 to P102 function as segment output of LCD controller/driver (SEGxx).

2.2.12 P110, P111

P110 and P111 function as an I/O port. This port can also be used for D/A converter analog output.

<R>

		μ PD78F150xA			μ PD78F151xA	
	78K0R/LF3	78K0R/LG3	78K0R/LH3	78K0R/LF3	78K0R/LG3	78K0R/LH3
	(80 pins)	(100 pins)	(128 pins)	(80 pins)	(100 pins)	(128 pins)
P110/ANO0					P110	
P111/ANO1	\checkmark				P111	

The following operation modes can be specified in 1-bit units.

(1) Port mode

P110 and P111 function as an I/O port. P110 and P111 can be set to input or output port in 1-bit units using port mode register 11 (PM11).

(2) Control mode

P110 and P111 function as D/A converter analog output (ANO0, ANO1).

Caution When using at least one port of P110/ANO0 and P111/ANO1 as a digital port, set AVDD1 to the same potential as EVDD or VDD.

LF3	LG3	LH3	Pin Name	Alternate Funct	ion	PFALL	ISC	PM××	P××																						
ω	చ	ß		Function Name	I/O	(PFxxx)	(ISCx)																								
\checkmark	-	-	P50 ^{Note}	SEG30	Output	PF5L=1	ISC2 = 0	×	×																						
			P51 ^{Note}	SEG29	Output	PF5L=1	-	×	×																						
			P52 ^{Note}	SEG28	Output	PF5L=1	ISC3 = 0	×	×																						
			P53 ^{Note}	SEG27	Output	PF5L=1	ISC4 = 0	×	×																						
			P54 to 57	SEG26 to SEG23	Output	PF5H=1	-	×	×																						
			P90 to 92	SEG22 to SEG20	Output	PF9L=1	-	×	×																						
			P140 to 143	SEG19 to SEG16	Output	PF14L=1	-	×	×																						
			P144 to 147	SEG15 to SEG12	Output	PF14H=1	-	×	×																						
			P100	SEG11	Output	PF10=1	-	×	×																						
-	\checkmark	-	P50 ^{Note}	SEG39	Output	PF5L=1	ISC2 = 0	×	×																						
																									P51 ^{Note}	SEG38	Output	PF5L=1	-	×	×
			P52 ^{Note}	SEG37	Output	PF5L=1	ISC3 = 0	×	×																						
			P53 ^{Note}	SEG36	Output	PF5L=1	ISC4 = 0	×	×																						
			P54 to 57	SEG35 to SEG32	Output	PF5H=1	-	×	×																						
			P90 to 93	SEG31 to SEG28	Output	PF9L=1	-	×	×																						
			P94 to 97	SEG27 to SEG24	Output	PF9H=1	-	×	×																						
			P140 to 143	SEG23 to SEG20	Output	PF14L=1	-	×	×																						
			P144 to 147	SEG19 to SEG16	Output	PF14H=1	-	×	×																						
			P100	SEG15	Output	PF10=1	-	×	×																						
-	-	\checkmark	P50 ^{Note}	SEG53	Output	PF5L=1	ISC2 = 0	×	×																						
			P51 ^{Note}	SEG52	Output	PF5L=1	-	×	×																						
			P52 ^{Note}	SEG51	Output	PF5L=1	ISC3 = 0	×	×																						
			P53 ^{Note}	SEG50	Output	PF5L=1	ISC4 = 0	×	×																						
			P54 to 57	SEG49 to SEG46	Output	PF5H=1	-	×	×																						
			P90 to 93	SEG45 to SEG42	Output	PF9L=1	-	×	×																						
			P94 to 97	SEG41 to SEG38	Output	PF9H=1	-	×	×																						
			P140 to 143	SEG37 to SEG34	Output	PF14L=1	-	×	×																						
			P144 to 147	SEG33 to SEG30	Output	PF14H=1	-	×	×																						
			P100 to 102	SEG29 to SEG27	Output	PF10=1	-	×	×																						

Table 4-11.	Settings of Port M	ode Register and	Output Latch Who	en Using Alternate	Function (5/5)
	oottingo or r ort m	oue negioter une	output Euton min	on comg Anomate	

Note For alternate function other than the segment output (SEGxx), refer to Table 4-11 Settings of Port Mode Register and Output Latch When Using Alternate Function (3/5).

- -: Not applicable
- PFALL: Port function register
- ISC: Input switch control register
- PM××: Port mode register
- P×x: Port output latch

Remark ×: don't care

Remarks 1. fin: Internal high-speed oscillation clock frequency

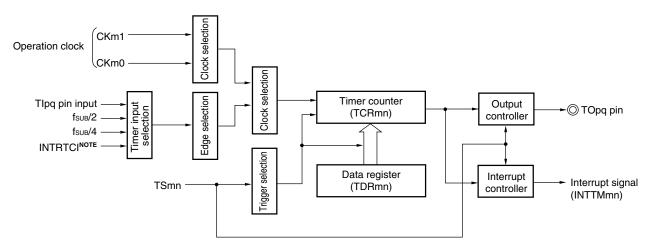
- fiH20: 20 MHz Internal high-speed oscillation clock frequency
- fmx: High-speed system clock frequency
- fsub Subsystem clock frequency
- 2. ×: don't care
- Cautions 1. The clock set by CSS, MCM0, SDIV, and MDIV2 to MDIV0 is supplied to the CPU and peripheral hardware. If the CPU clock is changed, therefore, the clock supplied to peripheral hardware (except the real-time counter, timer array unit (when fsub/2, fsub/4, the valid edge of TI0mn input, or the valid edge of INTRTCI is selected as the count clock), clock output/buzzer output, and watchdog timer) is also changed at the same time. Consequently, stop each peripheral function when changing the CPU/peripheral operating hardware clock.
 - 2. If the peripheral hardware clock is used as the subsystem clock, the operations of the A/D converter and IICA are not guaranteed. For the operating characteristics of the peripheral hardware, refer to the chapters describing the various peripheral hardware as well as CHAPTER 31 ELECTRICAL SPECIFICATIONS.

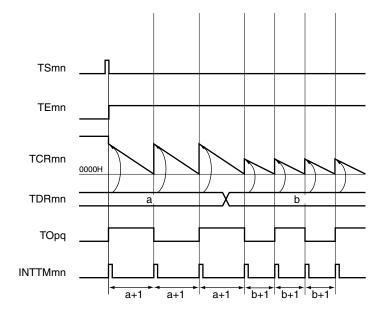
The fastest instruction can be executed in 1 clock of the CPU clock in the 78K0R/Lx3 microcontrollers. Therefore, the relationship between the CPU clock (fcLK) and the minimum instruction execution time is as shown in Table 5-3.

CPU Clock	Minimum Instruction Execution Time: 1/fcLK				
(Value set by the SDIV, and MDIV2 to MDIV0 bits)		Main System	Clock (CSS = 0)		Subsystem Clock
	High-Speed System Clock (MCM0 = 1)		Internal High-Speed Oscillation Clock (MCM0 = 0)		(CSS = 1)
	At 10 MHz Operation	At 20 MHz Operation	At 8 MHz (TYP.) Operation	At 20 MHz (TYP.) Operation	At 32.768 kHz Operation
fmain	0.1 <i>µ</i> s	0.05 <i>μ</i> s	0.125 μs (TYP.)	0.05 μs (TYP.)	-
fmain/2	0.2 µs	0.1 <i>µ</i> s	0.25 <i>μ</i> s (TYP.) (default)	0.1 <i>µ</i> s (TYP.)	-
fmain/2 ²	0.4 <i>µ</i> s	0.2 <i>µ</i> s	0.5 μs (TYP.)	0.2 μs (TYP.)	-
fmain/2 ³	0.8 <i>µ</i> s	0.4 <i>µ</i> s	1.0 <i>μ</i> s (TYP.)	0.4 <i>μ</i> s (TYP.)	—
fmain/2 ⁴	1.6 <i>μ</i> s	0.8 <i>µ</i> s	2.0 μs (TYP.)	0.8 <i>µ</i> s (TYP.)	—
fmain/2 ⁵	3.2 <i>µ</i> s	1.6 <i>µ</i> s	4.0 μs (TYP.)	1.6 <i>μ</i> s (TYP.)	—
fsuв	_			_	30.5 <i>μ</i> s
fsuв/2		_	_		61 <i>µ</i> s

Table 5-3. Relationship Between CPU Clock and Minimum Instruction Execution Time

 Remark
 fmain:
 Main system clock frequency (fill, filleo, or fmx)
 fsub:
 Subsystem clock frequency




Figure 6-37. Block Diagram of Operation as Interval Timer/Square Wave Output

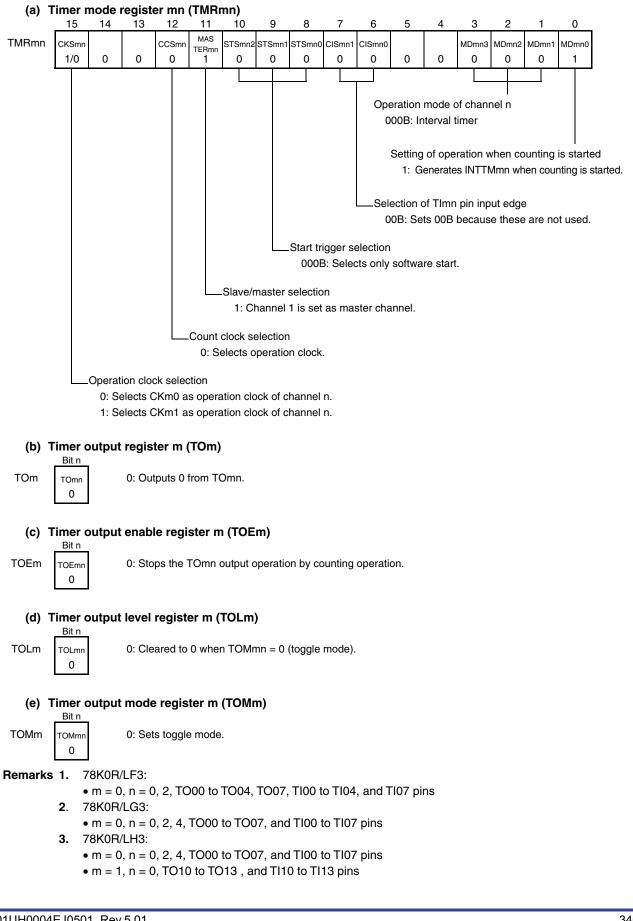
Note Channels 0 and 4 of timer array unit 0 only

Remark mn: Unit number + Channel number, pq: Unit number + Channel number (only for channels provided with timer I/O pins)

78K0R/LF3: m = 0, 1, mn = 00 to 07, 10 to 13, pq = 00 to 04, 07 78K0R/LG3: m = 0, 1, mn = 00 to 07, 10 to 13, pq = 00 to 07 78K0R/LH3: m = 0, 1, mn = 00 to 07, 10 to 13, pq = 00 to 07, 10 to 13

Figure 6-38. Example of Basic Timing of Operation as Interval Timer/Square Wave Output (MDmn0 = 1)

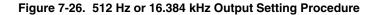
 Remark
 mn: Unit number + Channel number, pq: Unit number + Channel number (only for channels provided with timer I/O pins)


 78K0R/LF3:
 mn = 00 to 07, 10 to 13, pq = 00 to 04, 07

 78K0R/LG3:
 mn = 00 to 07, 10 to 13, pq = 00 to 07

 78K0R/LG3:
 mn = 00 to 07, 10 to 13, pq = 00 to 07

 78K0R/LH3:
 mn = 00 to 07, 10 to 13, pq = 00 to 07



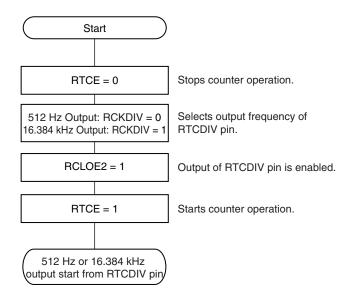


Figure 6-69. Example of Set Contents of Registers When Multiple PWM Output Function (Master Channel) Is Used

7.4.7 512 Hz or 16.384 kHz output of real-time counter

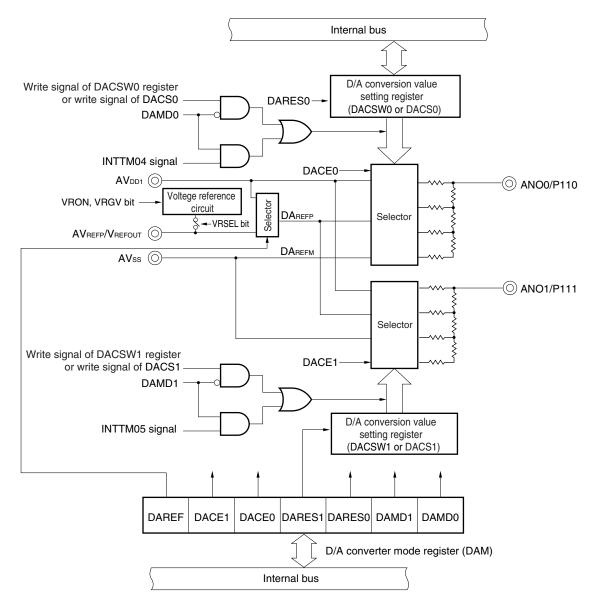
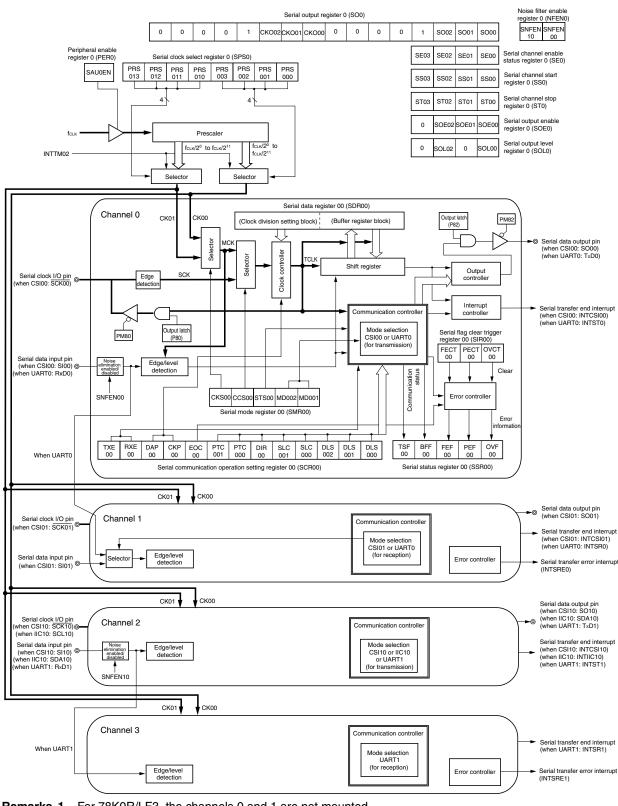



Figure 11-1. Block Diagram of D/A Converter

- **Remarks 1**. INTTM04 and INTTM05 are timer trigger signals (interrupt signals from timer channels 5 and 6) that are used in the real-time output mode.
 - 2. Channels 0 and 1 of the D/A converter share the AVREF1 pin and the AVREFP/VREFOUT pin.
 - **3.** Channels 0 and 1 of the D/A converter share the AVss pin. The AVss pin is also shared with an A/D converter, an operational amplifier, and a voltage reference.

Figure 14-1 shows the block diagram of serial array unit 0.

Figure 14-1. Block Diagram of Serial Array Unit 0

Remarks 1. For 78K0R/LF3, the channels 0 and 1 are not mounted.

2. For 78K0R/LG3, CSI01 is not mounted.

(2) Operation procedure

Starting initial setting	
Setting PER0 register	Release the serial array unit from the reset status and start clock supply.
Setting SPSm register	Set the prescaler.
Setting SMRmn register	Set an operation mode, etc.
Setting SCRmn register	Set a communication format.
Setting SDRmn register	Set bits 15 to 9 to 0000000B for baud rate setting.
Setting SOm register	Manipulate the SOmn bit and set an initial output level.
Changing setting of SOEm register	Set the SOEmn bit to 1 and enable data output of the target channel.
Setting port	Enable data output of the target channel by setting a port register and a port mode register.
Writing to SSm register	Set the SSmn bit of the target channel to 1 to set SEmn = 1. Set transmit data to the SIOp register
Starting communication	(bits 7 to 0 of the SDRmn register) and wait for a clock from the master.

Figure 14-47. Initial Setting Procedure for Slave Transmission

Caution After setting the SAUmEN to 1, be sure to set the SPSm register after 4 or more clocks have elapsed.

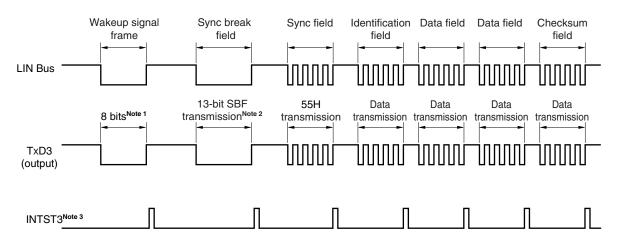


Figure 14-82. Transmission Operation of LIN

Notes 1. The baud rate is set so as to satisfy the standard of the wakeup signal and data of 00H is transmitted.

A sync break field is defined to have a width of 13 bits and output a low level. Where the baud rate for main transfer is N [bps], therefore, the baud rate of the sync break field is calculated as follows.
 (Baud rate of sync break field) = 9/13 × N
 By transmitting data of 00H at this baud rate, a sync break field is generated.

3. INTST3 is output upon completion of transmission. INTST3 is also output when SBF transmission is executed.

Remark The interval between fields is controlled by software.

STT ^{Note}	Sta	rt condition trigger			
0	Do not generate a start condition.				
1	condition after the bus is released.When communication reservation function	erated (startup as the master). on is enabled (IICRSV = 0) tion flag. When set to 1, automatically generates a start			
	Generates a restart condition after releasir	ig the wait.			
 For master For master Cannot be 	has been cleared to 0 and sla				
Condition for	or clearing (STT = 0)	Condition for setting (STT = 1)			
 Cleared by setting STT to 1 while communication reservation is prohibited. Cleared by loss in arbitration Cleared after start condition is generated by master device Cleared by LREL = 1 (exit from communications) When IICE = 0 (operation stop) Reset 		Set by instruction			

Figure 15-6. Format of IICA Control Register 0 (IICCTL0) (3/4)

Note The signal of this bit is invalid while IICE0 is 0.

Remarks 1. Bit 1 (STT) becomes 0 when it is read after data setting.

2. IICRSV: Bit 0 of IIC flag register (IICF) STCF: Bit 7 of IIC flag register (IICF)

15.4.2 Setting transfer clock by using IICWL and IICWH registers

(1) Setting transfer clock on master side

Transfer clock = $\frac{f_{CLK}}{IICWL + IICWH + f_{CLK}(t_R + t_F)}$

At this time, the optimal setting values of IICWL and IICWH are as follows. (The fractional parts of all setting values are rounded up.)

• When the fast mode

$$\begin{split} \text{IICWL} &= \frac{0.52}{\text{Transfer clock}} \times \text{fclk} \\ \text{IICWH} &= (\frac{0.48}{\text{Transfer clock}} - \text{tr} - \text{tr}) \times \text{fclk} \end{split}$$

• When the standard mode

$$IICWL = \frac{0.47}{\text{Transfer clock}} \times f_{\text{CLK}}$$
$$IICWH = (\frac{0.53}{\text{Transfer clock}} - t_{\text{R}} - t_{\text{F}}) \times f_{\text{CLK}}$$

(2) Setting IICWL and IICWH on slave side

(The fractional parts of all setting values are truncated.)

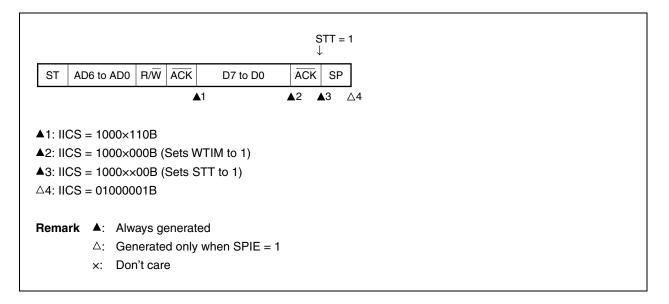
When the fast mode

$$\begin{split} \text{IICWL} &= 1.3 \; \mu \text{s} \times \text{fclk} \\ \text{IICWH} &= (1.2 \; \mu \text{s} - \text{tr} - \text{tr}) \times \text{fclk} \end{split}$$

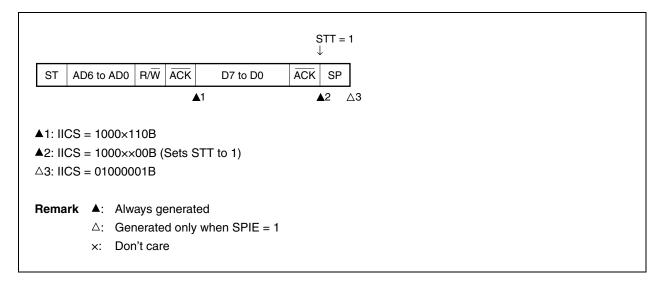
• When the standard mode

$$\begin{split} \text{IICWL} = 4.7 \; \mu \text{s} \times \text{fclk} \\ \text{IICWH} = (5.3 \; \mu \text{s} - \text{tr} - \text{tr}) \times \text{fclk} \end{split}$$

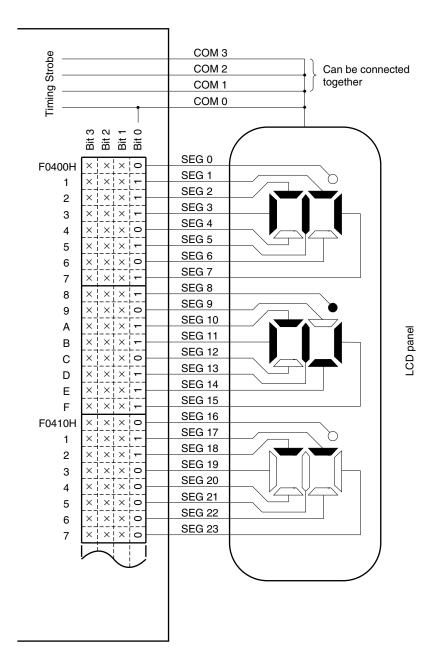
Caution Note the minimum fclk operation frequency when setting the transfer clock. The minimum fclk operation frequency for serial interface IICA is determined according to the mode.


Fast mode:fcLk = 3.5 MHz (MIN.)Standard mode:fcLk = 1 MHz (MIN.)

- **Remarks 1.** Calculate the rise time (t_R) and fall time (t_F) of the SDA0 and SCL0 signals separately, because they differ depending on the pull-up resistance and wire load.
 - 2. IICWL: IICA low-level width setting register
 - IICWH: IICA high-level width setting register
 - tF: SDA0 and SCL0 signal falling times
 - tR: SDA0 and SCL0 signal rising times
 - fcLK: CPU/peripheral hardware clock frequency



(g) When arbitration loss occurs due to a stop condition when attempting to generate a restart condition


(i) When WTIM = 0

(ii) When WTIM = 1

Figure 16-16. Example of Connecting Static LCD Panel

Data memory address

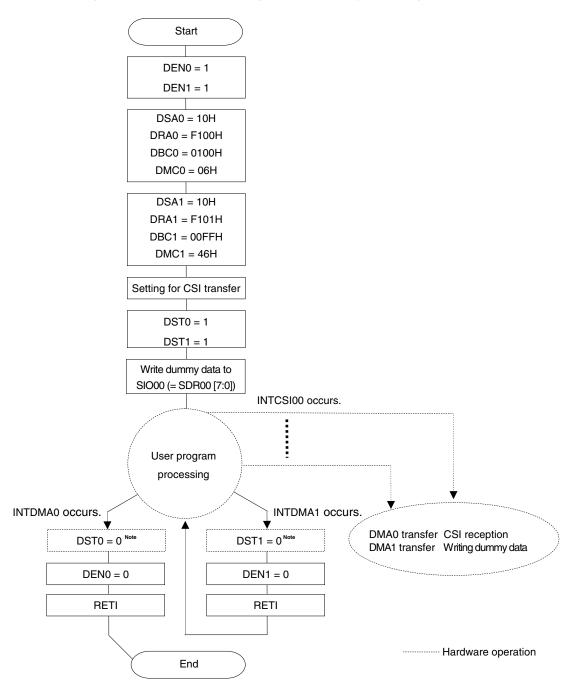


Figure 18-8. Example of Setting of Consecutively Capturing A/D Conversion Results

Note The DSTn flag is automatically cleared to 0 when a DMA transfer is completed.
 Writing the DENn flag is enabled only when DSTn = 0. To terminate a DMA transfer without waiting for occurrence of the interrupt of DMAn (INTDMAn), set DSTn to 0 and then DENn to 0 (for details, refer to 18.5.7 Forcible termination by software).

Because no CSI interrupt is generated when reception starts during CSI master reception, dummy data is written using software in this example.

The received data is automatically transferred from the first byte (In successive reception mode, the data that is to be received when the first buffer empty interrupt occurs is invalid because the valid data has not been received.).

A DMA interrupt (INTDMA1) occurs when the last dummy data has been writing to the data register. A DMA interrupt (INTDMA0) occurs when the last received data has been read from the data register. To restart the DMA transfer, the CSI transfer must be completed.

(2) When detecting level of input voltage from external input pin (EXLVI)

- When starting operation
 - <1> Mask the LVI interrupt (LVIMK = 1).
 - <2> Set bit 2 (LVISEL) of the low-voltage detection register (LVIM) to 1 (detects level of input voltage from external input pin (EXLVI)).
 - Clear bit 1 (LVIMD) of LVIM to 0 (generates interrupt signal when the level is detected) (default value).
 - <3> Set bit 7 (LVION) of LVIM to 1 (enables LVI operation).
 - <4> Use software to wait for the following periods of time (Total 210 μ s).
 - Operation stabilization time (10 μs (MAX.))
 - Minimum pulse width (200 µs (MIN.))
 - <5> Confirm that "input voltage from external input pin (EXLVI) ≥ detection voltage (VEXLVI = 1.21 V (TYP.))" when detecting the falling edge of EXLVI, or "input voltage from external input pin (EXLVI) < detection voltage (VEXLVI = 1.21 V (TYP.))" when detecting the rising edge of EXLVI, at bit 0 (LVIF) of LVIM.</p>
 - <6> Clear the interrupt request flag of LVI (LVIIF) to 0.
 - <7> Release the interrupt mask flag of LVI (LVIMK).
 - <8> Execute the El instruction (when vector interrupts are used).

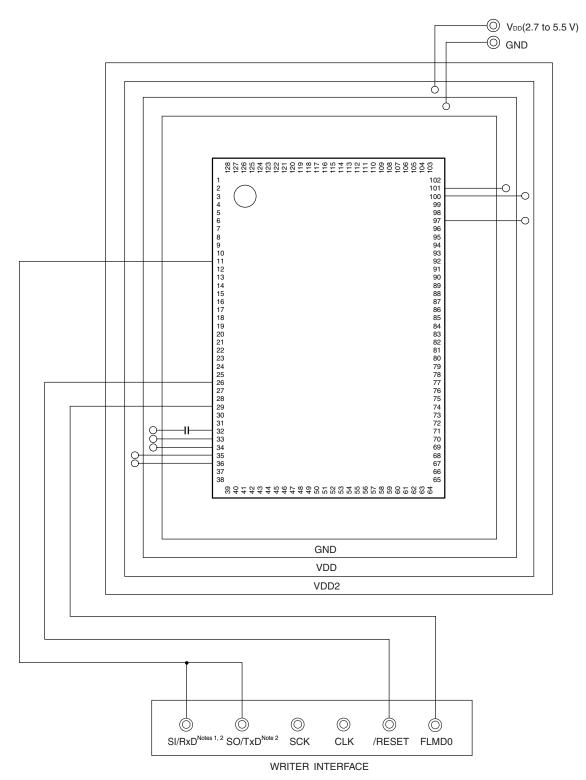
Figure 24-10 shows the timing of the interrupt signal generated by the low-voltage detector. The numbers in this timing chart correspond to <1> to <7> above.

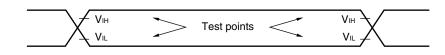
Caution Input voltage from external input pin (EXLVI) must be EXLVI < VDD.

• When stopping operation

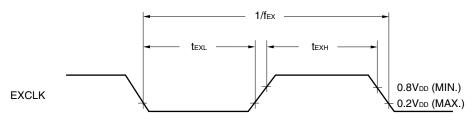
Be sure to clear (0) LVION by using a 1-bit memory manipulation instruction.

Examples of the recommended connection (μ PD78F1508A) when using the adapter for flash memory writing are shown below.

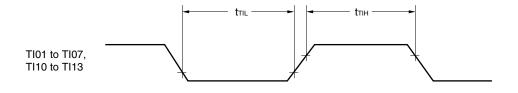


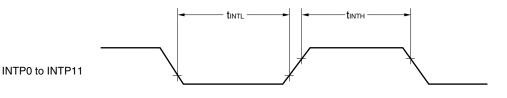

Figure 27-3. Example of Wiring Adapter for Flash Memory Writing (µPD78F1508A)

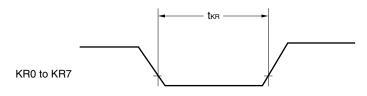
Notes 1. This pin is not required to be connected when using PG-FP5 or FL-PR5.

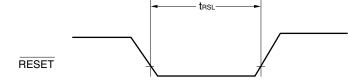

2. Connect SI/RxD or SO/TxD when using QB-MINI2.

(1) Basic operation (6/6)


AC Timing Test Points


External Main System Clock Timing


TI Timing


Interrupt Request Input Timing

Key Interrupt Input Timing

RESET Input Timing

		(3/3)
Page	Description	Classification
CHAPTER 11	D/A CONVERTER (µPD78F150xA only)	
p.418	Addition of (μ PD78F150xA only) to chapter title	(d)
CHAPTER 12	OPERATIONAL AMPLIFIER (μ PD78F150xA only)	
p.425	Addition of (μ PD78F150xA only) to chapter title	(d)
CHAPTER 13	VOLTAGE REFERENCE (μ PD78F150xA only)	
p.434	Addition of (μ PD78F150xA only) to chapter title	(d)
CHAPTER 31	ELECTRICAL SPECIFICATIONS	
Throughout	Addition of specifications of AVDD, EVDD1, and AVREF	(d)
pp.892, 893	Addition of AMPHS1 = 1 to Conditions of Supply current when $f_{SUB} = 32.768$ kHz	(b)
p.894	Separation of μ PD78F150xA and μ PD78F151xA in P110, P111 of I _{ADC} Conditions	(d)
p.922	Addition of (μ PD78F150xA only) to (1) 12-bit A/D Converter	(d)
p.923	Addition of (µ PD78F150xA only) to (2) 10-bit A/D Converter	(d)
	Addition of (μ PD78F150xA only) to (3) Operational amplifier	
	Addition of (μ PD78F150xA only) to (4) Voltage Reference	
p.924	Addition of (μ PD78F150xA only) to (5) D/A Converter	(d)
CHAPTER 32	PACKAGE DRAWINGS	
pp.934, 935	Addition of 78F1510AGC-GAD-AX and 78F1512AGC-GAD-AX to 78K0R/LF3 product series	(d)
p.936	Addition of 78F1513AGC-UEU-AX and 78F1515AGC-UEU-AX to 78K0R/LF3 product series	(d)
p.937	Addition of 78F1516AGF-GAT-AX and 78F1518AGF-GAT-AX to 78K0R/LH3 product series	(d)
CHAPTER 33	RECOMMENDED SOLDERING CONDITIONS	•
p.938	Addition of 78F1510AGC-GAD-AX and 78F1512AGC-GAD-AX to 80 pins	(d)
	Addition of 78F1513AGC-UEU-AX and 78F1515AGC-UEU-AX to 100 pins	
	Addition of 78F1516AGF-GAT-AX and 78F1518AGF-GAT-AX to 128 pins	
	Change of Caution: from " μ PD78F1503A to 78F1508A" to 78K0R/Lx3	
p.939	Addition of 78F1510AGC-GAD-AX and 78F1512AGC-GAD-AX to 80 pins (14 x14)	(d)
	Change of Caution: from " μ PD78F1503A to 78F1508A" to 78K0R/Lx3	
	Change of Caution: from " μ PD78F1503A to 78F1508A" to 78K0R/Lx3	

Remark "Classification" in the above table classifies revisions as follows.

(a): Error correction, (b): Addition/change of specifications, (c): Addition/change of description or note,
(d): Addition/change of package, part number, or management division, (e): Addition/change of related documents

