

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

## Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Not For New Designs                                                                   |
|----------------------------|---------------------------------------------------------------------------------------|
| Core Processor             | 78K/0R                                                                                |
| Core Size                  | 16-Bit                                                                                |
| Speed                      | 20MHz                                                                                 |
| Connectivity               | CSI, I <sup>2</sup> C, LINbus, UART/USART                                             |
| Peripherals                | DMA, LCD, LVD, POR, PWM, WDT                                                          |
| Number of I/O              | 46                                                                                    |
| Program Memory Size        | 128KB (128K x 8)                                                                      |
| Program Memory Type        | FLASH                                                                                 |
| EEPROM Size                | -                                                                                     |
| RAM Size                   | 7K x 8                                                                                |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 5.5V                                                                           |
| Data Converters            | A/D 8x12b                                                                             |
| Oscillator Type            | Internal                                                                              |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                     |
| Mounting Type              | Surface Mount                                                                         |
| Package / Case             | 80-LQFP                                                                               |
| Supplier Device Package    | -                                                                                     |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1512agc-gad-ax |
|                            |                                                                                       |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

## 1.5 Outline of Functions

<R>

|                                   | Item             |                                                                                                                               |                                                                                                                        | 78K0R/LF                              | 3                | 78K0R/LG3               |                                   |                  | 78K0R/LH3        |                             |                  |  |
|-----------------------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|-------------------------|-----------------------------------|------------------|------------------|-----------------------------|------------------|--|
|                                   |                  |                                                                                                                               | μ PD78<br>F1500A                                                                                                       | μ PD78<br>F1501A                      | μ PD78<br>F1502A | μ PD78<br>F1503A        | μ PD78<br>F1504A                  | μ PD78<br>F1505A | μ PD78<br>F1506A | μ PD78<br>F1507A            | μ PD78<br>F1508A |  |
| Internal<br>memory                |                  | nemory<br>ogramming<br>ted)                                                                                                   | 64 KB                                                                                                                  | 64 KB 96 KB 128 KB 64 KB 96 KB 128 KB |                  |                         |                                   | 64 KB            | 96 KB            | 128 KB                      |                  |  |
|                                   | RAM              |                                                                                                                               | 4 KB                                                                                                                   | 6KB                                   | 7KB              | 4 KB                    | 6KB                               | 7KB              | 4 KB             | 6KB                         | 7KB              |  |
| Memory space                      | е                |                                                                                                                               | 1 MB                                                                                                                   |                                       |                  |                         |                                   |                  |                  |                             |                  |  |
| Main system<br>clock              | High-sp<br>clock | beed system                                                                                                                   | · · ·                                                                                                                  |                                       |                  |                         | main syste<br>IHz: Vdd =          |                  | • •              | K)                          |                  |  |
| (Oscillation frequency)           |                  | l high-speed<br>ion clock                                                                                                     | Internal c<br>1 MHz (T                                                                                                 |                                       | MHz (TYP.        | ) selected              | by an optic                       | on byte          |                  |                             |                  |  |
|                                   |                  | z Internal high-<br>oscillation clock                                                                                         | Internal c<br>20 MHz (                                                                                                 |                                       | D = 2.7 to 5     | 5.5 V                   |                                   |                  |                  |                             |                  |  |
| Subsystem clo<br>(Oscillation fre |                  |                                                                                                                               |                                                                                                                        | stal) oscilla<br>Hz (TYP.)            | ition            |                         |                                   |                  |                  |                             |                  |  |
| Internal low-sp<br>(For WDT)      | beed osc         | illation clock                                                                                                                | Internal o<br>30 kHz (1                                                                                                |                                       |                  |                         |                                   |                  |                  |                             |                  |  |
| General-purpo                     | ose regis        | ter                                                                                                                           | 8 bits $\times$ 32 registers (8 bits $\times$ 8 registers $\times$ 4 banks)                                            |                                       |                  |                         |                                   |                  |                  |                             |                  |  |
| Minimum instr                     | uction ex        | xecution time                                                                                                                 | 0.05 µs (High-speed system clock: f <sub>MX</sub> = 20 MHz operation)                                                  |                                       |                  |                         |                                   |                  |                  |                             |                  |  |
|                                   |                  |                                                                                                                               | 0.125 $\mu$ s (Internal high-speed oscillation clock: fi $\mu$ = 8 MHz (TYP.) operation)                               |                                       |                  |                         |                                   |                  |                  |                             |                  |  |
|                                   |                  |                                                                                                                               | 30.5 µs (Subsystem clock: fsub = 32.768 kHz operation)                                                                 |                                       |                  |                         |                                   |                  |                  |                             |                  |  |
| Instruction set                   |                  |                                                                                                                               | Multiply                                                                                                               | y (16 bits >                          |                  |                         | Pooloon or                        | voration) o      |                  |                             |                  |  |
| I/O port                          | Total            |                                                                                                                               | Bit manipulation (Set, reset, test, and Boolean operation), etc.                                                       |                                       |                  |                         |                                   |                  |                  |                             |                  |  |
| "O port                           | 1/0              | CMOS                                                                                                                          | 46                                                                                                                     |                                       |                  | 60                      |                                   |                  | 76               |                             |                  |  |
|                                   | ".               | N-ch                                                                                                                          | 40                                                                                                                     |                                       |                  | 2                       |                                   |                  | 2                |                             |                  |  |
|                                   | Output           |                                                                                                                               | 1                                                                                                                      |                                       |                  | 1                       |                                   |                  | 1                |                             |                  |  |
|                                   | Input            | CMOS                                                                                                                          | 4                                                                                                                      |                                       |                  | 4                       |                                   |                  | 4                |                             |                  |  |
| Timer                             | Timor            |                                                                                                                               | <ul> <li>16-bit timer: 12 channels</li> <li>Watchdog timer: 1 channel</li> <li>Real-time counter: 1 channel</li> </ul> |                                       |                  |                         |                                   |                  |                  |                             |                  |  |
|                                   | Timer            | outputs                                                                                                                       | array unit                                                                                                             | output: 5 ( <sup>-</sup><br>t 0))     | Imer             | array uni               | output: 7 ( <sup>-</sup><br>t 0)) | Imer             | `                | 1 output: 7<br>t 0), 3 (Tim | •                |  |
|                                   | utputs           | 2<br>• 1 Hz (Subsystem clock: fsuB = 32.768 kHz)<br>• 512 Hz or 16.384 kHz or 32.768 kHz (Subsystem clock: fsuB = 32.768 kHz) |                                                                                                                        |                                       |                  |                         |                                   |                  |                  |                             |                  |  |
| Clock output/buzzer output        |                  |                                                                                                                               | (Peripł<br>• 256 Hz                                                                                                    | neral hardv<br>z, 512 Hz,             | vare clock:      | fмаіn = 20<br>2.048 kHz |                                   | ation)           |                  | l kHz, 32.7                 | 68 kHz           |  |
| A/D converter                     |                  |                                                                                                                               | 12-bit resolution × 8 channels 12-bit resolution × 12 channels                                                         |                                       |                  |                         |                                   |                  |                  |                             |                  |  |
| D/A converter                     |                  |                                                                                                                               | 12-bit resolution × 2 channels                                                                                         |                                       |                  |                         |                                   |                  |                  |                             |                  |  |



| Address | Special Function Register (SFR) Name       | Syı            | mbol  | R/W | Mar          | nipulable    | e Bit        | After Reset | 78K0R/LF3    | 78K0R/LG3    | 78K0R/LH3    |
|---------|--------------------------------------------|----------------|-------|-----|--------------|--------------|--------------|-------------|--------------|--------------|--------------|
|         |                                            |                |       |     |              | Range        |              |             | 0R/I         | 0R/          | 0R/I         |
|         |                                            |                |       |     | 1-bit        | 8-bit        | 16-bit       |             | LF3          | LG3          | LH3          |
| FFF00H  | Port register 0                            | P0             |       | R/W | $\checkmark$ | $\checkmark$ | _            | 00H         | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF01H  | Port register 1                            | P1             |       | R/W | $\checkmark$ | $\checkmark$ | -            | 00H         | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF02H  | Port register 2                            | P2             |       | R/W | $\checkmark$ | $\checkmark$ | -            | 00H         | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF03H  | Port register 3                            | P3             |       | R/W | $\checkmark$ | $\checkmark$ | -            | 00H         | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF04H  | Port register 4                            | P4             |       | R/W | $\checkmark$ | $\checkmark$ | -            | 00H         | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF05H  | Port register 5                            | P5             |       | R/W | $\checkmark$ | $\checkmark$ | -            | 00H         | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF06H  | Port register 6                            | P6             |       | R/W | $\checkmark$ | $\checkmark$ | _            | 00H         | _            | $\checkmark$ | $\checkmark$ |
| FFF07H  | Port register 7                            | P7             |       | R/W | $\checkmark$ | $\checkmark$ | -            | 00H         | -            | -            | $\checkmark$ |
| FFF08H  | Port register 8                            | P8             |       | R/W | $\checkmark$ | $\checkmark$ | -            | 00H         | -            | $\checkmark$ | $\checkmark$ |
| FFF09H  | Port register 9                            | P9             |       | R/W | $\checkmark$ | $\checkmark$ | _            | 00H         | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF0AH  | Port register 10                           | P10            |       | R/W | $\checkmark$ | $\checkmark$ | _            | 00H         | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF0BH  | Port register 11                           | P11            |       | R/W |              | $\checkmark$ | -            | 00H         | $\checkmark$ |              | $\checkmark$ |
| FFF0CH  | Port register 12                           | P12            |       | R/W |              |              | -            | Undefined   | $\checkmark$ |              | $\checkmark$ |
| FFF0DH  | Port register 13                           | P13            |       | R/W |              |              | -            | 00H         | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF0EH  | Port register 14                           | P14            |       | R/W | $\checkmark$ | $\checkmark$ | -            | 00H         | $\checkmark$ |              | $\checkmark$ |
| FFF0FH  | Port register 15                           | P15            |       | R/W |              |              | _            | 00H         | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF10H  | Serial data register 00                    | TXD0/<br>SIO00 | SDR00 | R/W | -            | V            | $\checkmark$ | 0000H       | _            | $\checkmark$ | V            |
| FFF11H  |                                            | _              |       |     | _            | _            |              |             | _            |              |              |
| FFF12H  | Serial data register 01                    | RXD0/          | SDR01 | R/W | _            | $\checkmark$ |              | 0000H       | _            |              |              |
|         |                                            | SIO01          |       |     |              |              |              |             |              |              |              |
| FFF13H  |                                            | _              |       |     | _            | _            |              |             | _            |              | $\checkmark$ |
| FFF14H  | Serial data register 12                    | TXD3           | SDR12 | R/W | -            |              |              | 0000H       | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF15H  |                                            | _              |       |     | -            | -            |              |             | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF16H  | Serial data register 13                    | RXD3           | SDR13 | R/W | _            |              |              | 0000H       | $\checkmark$ |              |              |
| FFF17H  | -                                          | _              |       |     | _            | _            |              |             | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF18H  | Timer data register 00                     | TDR00          |       | R/W | _            | _            |              | 0000H       | $\checkmark$ |              |              |
| FFF19H  |                                            |                |       |     |              |              |              |             |              |              |              |
| FFF1AH  | Timer data register 01                     | TDR01          |       | R/W | _            | _            |              | 0000H       | $\checkmark$ |              |              |
| FFF1BH  | C C                                        |                |       |     |              |              |              |             |              |              |              |
| FFF1EH  | 12-bit A/D conversion result register Note | ADCR           |       | R   | _            | _            |              | 0000H       | $\checkmark$ |              |              |
| FFF1FH  | 8-bit A/D conversion result register       | ADCRH          | 1     | R   | _            | $\checkmark$ | _            | 00H         |              |              |              |
| FFF20H  | Port mode register 0                       | PM0            |       | R/W |              |              | _            | FFH         | $\checkmark$ |              |              |
| FFF21H  | Port mode register 1                       |                |       | R/W |              | $\checkmark$ | _            | FFH         |              |              |              |
| FFF22H  | Port mode register 2                       |                |       | R/W | √            | 1            | _            | FFH         | √            |              | $\checkmark$ |
| FFF23H  | Port mode register 3                       | PM2<br>PM3     |       | R/W | √            | √            | _            | FFH         | √            | √            | √            |
| FFF24H  | Port mode register 4                       | PM4            |       | R/W | √            | 1            | _            | FFH         |              | V            |              |
| FFF25H  | Port mode register 5                       | PM5            |       | R/W | √            | √            |              | FFH         | ,<br>√       | √            | √            |
| FFF26H  | Port mode register 6                       | PM6            |       | R/W | √            | √            | _            | FFH         | -            | √            | √            |
| 0.1     |                                            |                |       |     |              |              |              |             |              | <u> </u>     | Ļ            |

Table 3-5. SFR List (1/5)

<R>

Note For  $\mu$  PD78F151xA, 10-bit A/D conversion result register is applied.



| Address | Special Function Register (SFR) Name              | Symbol         |       | R/W | Ma           | nipulabl<br>Range |              | After<br>Reset | 78KOR/LF3    | 78K0R/LG3    | 78KOR/LH3    |
|---------|---------------------------------------------------|----------------|-------|-----|--------------|-------------------|--------------|----------------|--------------|--------------|--------------|
|         |                                                   |                |       |     | 1-bit        | 8-bit             | 16-bit       |                | /LF3         | /LG3         | /LH3         |
| FFF28H  | Port mode register 8                              | PM8            |       | R/W |              |                   | _            | FFH            | -            | $\checkmark$ | $\checkmark$ |
| FFF29H  | Port mode register 9                              | PM9            |       | R/W | $\checkmark$ | $\checkmark$      | -            | FFH            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF2AH  | Port mode register 10                             | PM10           |       | R/W | $\checkmark$ | $\checkmark$      | -            | FFH            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF2BH  | Port mode register 11                             | PM11           |       | R/W | $\checkmark$ | $\checkmark$      | -            | FFH            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF2CH  | Port mode register 12                             | PM12           |       | R/W | $\checkmark$ | $\checkmark$      | -            | FFH            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF2EH  | Port mode register 14                             | PM14           |       | R/W | $\checkmark$ | $\checkmark$      | -            | FEH            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF2FH  | Port mode register 15                             | PM15           |       | R/W | $\checkmark$ | $\checkmark$      | -            | FFH            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF30H  | A/D converter mode register                       | ADM            |       | R/W | $\checkmark$ | $\checkmark$      |              | 00H            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF31H  | Analog input channel specification register       | ADS            |       | R/W | $\checkmark$ | $\checkmark$      | -            | 00H            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF32H  | A/D converter mode register 1                     | ADM1           |       | R/W | $\checkmark$ | $\checkmark$      | -            | 00H            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF33H  | Operational amplifier control register Note       | OAC            |       | R/W | $\checkmark$ | $\checkmark$      | -            | 00H            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF36H  | Analog reference voltage control register         | ADVRC          |       | R/W | $\checkmark$ | $\checkmark$      | -            | 00H            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF37H  | Key return mode register                          | KRM            |       | R/W | $\checkmark$ | $\checkmark$      | -            | 00H            | -            | -            | $\checkmark$ |
| FFF38H  | External interrupt rising edge enable register 0  | EGP0           |       | R/W | $\checkmark$ | $\checkmark$      | -            | 00H            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF39H  | External interrupt falling edge enable register 0 | EGN0           |       | R/W |              | $\checkmark$      | -            | 00H            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF3AH  | External interrupt rising edge enable register 1  | EGP1           |       | R/W |              | $\checkmark$      | -            | 00H            | -            |              | $\checkmark$ |
| FFF3BH  | External interrupt falling edge enable register 1 | EGN1           |       | R/W |              | $\checkmark$      | -            | 00H            | -            |              | $\checkmark$ |
| FFF3CH  | Input switch control register                     | ISC            |       | R/W | $\checkmark$ | $\checkmark$      | -            | 00H            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF3EH  | Timer input select register 0                     | TIS0           |       | R/W | $\checkmark$ | $\checkmark$      | _            | 00H            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF3FH  | Timer input select register 1                     | TIS1           |       | R/W | $\checkmark$ | $\checkmark$      | -            | 00H            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF40H  | LCD mode register                                 | LCDMD          |       | R/W | $\checkmark$ | $\checkmark$      | -            | 00H            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF41H  | LCD display mode register                         | LCDM           |       | R/W | $\checkmark$ | $\checkmark$      | _            | 00H            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF42H  | LCD clock control register 0                      | LCDC0          |       | R/W | $\checkmark$ | $\checkmark$      | _            | 00H            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF43H  | LCD boost level control register                  | VLCD           |       | R/W |              | $\checkmark$      | -            | 0FH            | $\checkmark$ | $\checkmark$ |              |
| FFF44H  | Serial data register 02                           | TXD1/<br>SIO10 | SDR02 | R/W | -            | $\checkmark$      | $\checkmark$ | 0000H          | V            | $\checkmark$ | V            |
| FFF45H  |                                                   | -              |       |     | -            | _                 |              |                | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF46H  | Serial data register 03                           | RXD1           | SDR03 | R/W | -            | $\checkmark$      | $\checkmark$ | 0000H          | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF47H  |                                                   | -              |       |     | -            | -                 |              |                | $\checkmark$ |              | $\checkmark$ |
| FFF48H  | Serial data register 10                           | TXD2/<br>SIO20 | SDR10 | R/W | -            | $\checkmark$      | $\checkmark$ | 0000H          | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF49H  |                                                   | -              |       |     | -            | -                 |              |                | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF4AH  | Serial data register 11                           | RXD2           | SDR11 | R/W | -            | $\checkmark$      | $\checkmark$ | 0000H          | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF4BH  |                                                   | -              |       |     | -            | -                 |              |                | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF50H  | IICA shift register                               | IICA           |       | R/W | -            | $\checkmark$      | _            | 00H            | -            | $\checkmark$ | $\checkmark$ |
| FFF51H  | IICA status register                              |                |       | R   |              | $\checkmark$      | _            | 00H            | -            | $\checkmark$ | $\checkmark$ |
| FFF52H  | IICA flag register                                | IICF           |       | R/W |              | $\checkmark$      | -            | 00H            | -            | $\checkmark$ | $\checkmark$ |
| FFF58H  | D/A D/A conversion value setting register 0 Note  | DACS0          | DACS  | R/W | _            | $\checkmark$      | _            | 00H            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF59H  | conversion value setting register W0 Note         | -              | WO    | R/W | -            | -                 |              | 0000H          | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF5AH  | D/A D/A conversion value setting register 1 Note  | DACS1          | DACS  | R/W | _            | $\checkmark$      | _            | 00H            | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| FFF5BH  | conversion value setting register W1 Note         | _              | W1    | R/W |              | _                 | $\checkmark$ | 0000H          | $\checkmark$ | $\checkmark$ | $\checkmark$ |

## Table 3-5. SFR List (2/5)

<R>

<R>

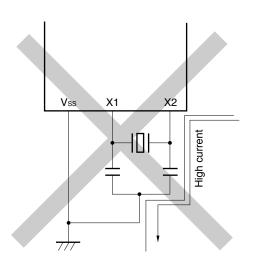
<R> <R>

**Note** Dedicated to  $\mu$  PD78F150xA.

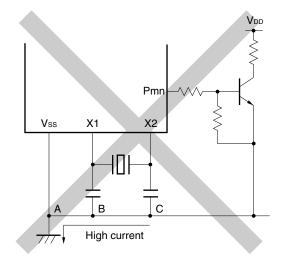


## Figure 4-51. Format of Input Switch Control Register (ISC)

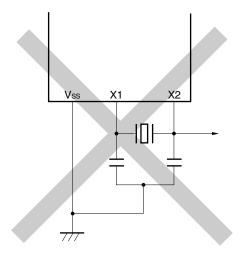
| 7<br>0 | 6                                     | -                                                                                                                                                                                                            |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|--------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0      |                                       | 5                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|        | 0                                     | 0                                                                                                                                                                                                            | ISC4                                                                                                                                                                                                                                                  | ISC3                                                                                                                                                                                                                                                                                                                                                                                                         | ISC2                                                                                                                                                                                                                                                                                          | ISC1                                                                                                                                                                                                                                                                                                                                                                                                                                 | ISC0                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| ISC4   |                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                       | 53 schmitt trigge                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|        | Disables innet                        |                                                                                                                                                                                                              | 1104/3EGXX/F                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 0      | Disables input                        |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 1      | Enables input                         |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|        |                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| ISC3   |                                       |                                                                                                                                                                                                              | TI02/SEGxx/P                                                                                                                                                                                                                                          | 52 schmitt trigge                                                                                                                                                                                                                                                                                                                                                                                            | er buffer control                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 0      | Disables input                        |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 1      | Enables input                         |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|        |                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| ISC2   |                                       |                                                                                                                                                                                                              | RxD3/SEGxx/F                                                                                                                                                                                                                                          | 250 schmitt trigg                                                                                                                                                                                                                                                                                                                                                                                            | er buffer control                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 0      | Disables input                        |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 1      | Enables input                         |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|        |                                       |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| ISC1   |                                       |                                                                                                                                                                                                              | Switching cha                                                                                                                                                                                                                                         | nnel 7 input of t                                                                                                                                                                                                                                                                                                                                                                                            | imer array unit                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 0      | Uses the input                        | signal of the T                                                                                                                                                                                              | 107 pin as a time                                                                                                                                                                                                                                     | er input (normal                                                                                                                                                                                                                                                                                                                                                                                             | operation).                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 1      | Input signal of                       | nput signal of RxD3 pin is used as timer input (wakeup signal detection).                                                                                                                                    |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
| 1000   |                                       |                                                                                                                                                                                                              | Quitabia                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|        | 0<br>1<br>ISC2<br>0<br>1<br>ISC1<br>0 | 0     Disables input       1     Enables input       ISC2        0     Disables input       1     Enables input       1     Enables input       ISC1        0     Uses the input       1     Input signal of | 0     Disables input       1     Enables input       1     Enables input       ISC2     0       0     Disables input       1     Enables input       ISC1     0       0     Uses the input signal of the T       1     Input signal of RxD3 pin is us | 0       Disables input         1       Enables input         1       Enables input         ISC2       RxD3/SEGxx/F         0       Disables input         1       Enables input         1       Enables input         1       Enables input         ISC1       Switching cha         0       Uses the input signal of the TI07 pin as a time         1       Input signal of RxD3 pin is used as timer input | 0     Disables input       1     Enables input       1     Enables input   ISC2       0     Disables input   ISC2 ISC1 ISC1 Switching channel 7 input of to 0 Uses the input signal of the TI07 pin as a timer input (normal 1 Input signal of RxD3 pin is used as timer input (wakeup signal | 0       Disables input         1       Enables input         ISC2       RxD3/SEGxx/P50 schmitt trigger buffer control         0       Disables input         1       Enables input         1       Enables input         1       Enables input         1       Uses the input signal of the TI07 pin as a timer input (normal operation).         1       Input signal of RxD3 pin is used as timer input (wakeup signal detection). | 0     Disables input       1     Enables input   ISC2       ISC2     RxD3/SEGxx/P50 schmitt trigger buffer control         0     Disables input   ISC1 ISC1 Switching channel 7 input of timer array unit Uses the input signal of the TI07 pin as a timer input (normal operation). Input signal of RxD3 pin is used as timer input (wakeup signal detection). |  |  |  |


| ISC0                                                                                  | Switching external interrupt (INTP0) input                            |  |  |  |  |  |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|--|--|--|--|
| 0 Uses the input signal of the INTP0 pin as an external interrupt (normal operation). |                                                                       |  |  |  |  |  |
| 1                                                                                     | Uses the input signal of the RxD3 pin as an external interrupt        |  |  |  |  |  |
|                                                                                       | (to measure the pulse widths of the sync break field and sync field). |  |  |  |  |  |

## Caution Be sure to clear bits 5 to 7 to "0".


To use the TI04/SEGxx/P53, TI02/SEGxx/P52, and RxD3/SEGxx/P50 pins, set the PF5L and ISCn (n = 2 to 4) bits as follows, according to the function to be used.

| PF5L | ISCn | Pin function                                  |  |  |  |
|------|------|-----------------------------------------------|--|--|--|
| 0    | 0    | t output (default)                            |  |  |  |
| 0    | 1    | Port input, timer input, or serial data input |  |  |  |
| 1    | 0    | Segment output                                |  |  |  |
| 1    | 1    | Setting prohibited                            |  |  |  |






- Figure 5-12. Examples of Incorrect Resonator Connection (2/2)
- (e) Wiring near high alternating current
- (f) Current flowing through ground line of oscillator (potential at points A, B, and C fluctuates)



#### (g) Signals are fetched



- **Remark** When using the subsystem clock, replace X1 and X2 with XT1 and XT2, respectively. Also, insert resistors in series on the XT2 side.
- Caution 2. When X2 and XT1 are wired in parallel, the crosstalk noise of X2 may increase with XT1, resulting in malfunctioning.



| CPU                                                | Clock                                                                                                                                                                                                                              | Condition Before Change                                                                                                                                                | Processing After Change                                                 |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| Before Change                                      | After Change                                                                                                                                                                                                                       |                                                                                                                                                                        |                                                                         |
| Subsystem<br>clock                                 | Internal high-<br>speed<br>oscillation clock                                                                                                                                                                                       | Oscillation of internal high-speed oscillator<br>and selection of internal high-speed<br>oscillation clock as main system clock<br>• HIOSTOP = 0, MCS = 0              | XT1 oscillation can be stopped (XTSTOP<br>= 1)                          |
|                                                    | X1 clock       Stabilization of X1 oscillation and selection of high-speed system clock as main system clock         • OSCSEL = 1, EXCLK = 0, MSTOP = 0         • After elapse of oscillation stabilization time         • MCS = 1 |                                                                                                                                                                        |                                                                         |
| system clock EX<br>system clock C                  |                                                                                                                                                                                                                                    | Enabling input of external clock from<br>EXCLK pin and selection of high-speed<br>system clock as main system clock<br>• OSCSEL = 1, EXCLK = 1, MSTOP = 0<br>• MCS = 1 |                                                                         |
|                                                    | 20 MHz internal<br>high-speed<br>oscillation clock                                                                                                                                                                                 | Transition cannot be performed unless the<br>clock is changed to the internal high-speed<br>oscillation clock once.                                                    | _                                                                       |
| 20 MHz internal<br>high-speed<br>oscillation clock | Internal high-<br>speed<br>oscillation clock                                                                                                                                                                                       | • SELDSC = 0<br>(Set when changing the clock.)                                                                                                                         | 20 MHz internal high-speed oscillation clock can be stopped (DSCON = 0) |
| USCHIMION CLOCK                                    | X1 clock                                                                                                                                                                                                                           | Transition cannot be performed unless the<br>clock is changed to the internal high-speed<br>oscillation clock once.                                                    | _                                                                       |
|                                                    | External main<br>system clock                                                                                                                                                                                                      | Transition cannot be performed unless the<br>clock is changed to the internal high-speed<br>oscillation clock once.                                                    | _                                                                       |
|                                                    | Subsystem<br>clock                                                                                                                                                                                                                 | Transition cannot be performed unless the<br>clock is changed to the internal high-speed<br>oscillation clock once.                                                    | _                                                                       |

| Table 5-5. | Changing | CPU Clock (2/2) |
|------------|----------|-----------------|
|------------|----------|-----------------|



## 6.6 Basic Function of Timer Array Unit

#### 6.6.1 Overview of single-operation function and combination operation function

The timer array unit consists of several channels and has a single-operation function that allows each channel to operate independently, and a combination operation function that uses two or more channels in combination.

The single-operation function can be used for any channel, regardless of the operation mode of the other channels.

The combination operation function is realized by combining a master channel (reference timer that mainly counts periods) and a slave channel (timer that operates in accordance with the master channel), and several rules must be observed when using this function.

#### 6.6.2 Basic rules of combination operation function

The basic rules of using the combination operation function are as follows.

- (1) Only an even channel (channel 0, 2, 4, etc.) can be set as a master channel.
- (2) Any channel, except channel 0, can be set as a slave channel.
- (3) The slave channel must be lower than the master channel.
  - Example: If channel 2 of TAU0 is set as a master channel, channel 3 or those that follow (channels 3, 4, etc. 5) can be set as a slave channel.
    - If channel 2 of TAU1 is set as a master channel, channel 3 (because TAU1 is provided only with channels up to channel 3) can be set as a slave channel.
- (4) Two or more slave channels can be set for one master channel.
- (5) When two or more master channels are to be used, slave channels with a master channel between them may not be set.
  - Example: If channels 0 and 4 of TAU0 are set as master channels, channels 1 to 3 can be set as the slave channels of master channel 0. Channels 5 to 7 cannot be set as the slave channels of master channel 0.
- (6) The operating clock for a slave channel in combination with a master channel must be the same as that of the master channel. The CKS bit (bit 15 of the TMRmn register) of the slave channel that operates in combination with the master channel must be the same value as that of the master channel.
- (7) A master channel can transmit INTTMmn (interrupt), start software trigger, and count clock to the lower channels.
- (8) A slave channel can use the INTTMmn (interrupt), start software trigger, and count clock of the master channel, but it cannot transmit its own INTTMmn (interrupt), start software trigger, and count clock to the lower channel.
- (9) A master channel cannot use the INTTMmn (interrupt), start software trigger, and count clock from the higher master channel.
- (10) To simultaneously start channels that operate in combination, the TSmn bit of the channels in combination must be set at the same time.
- (11) During a counting operation, the TSmn bit of all channels that operate in combination or only the master channel can be set. TSmn of only a slave channel cannot be set.
- (12) To stop the channels in combination simultaneously, the TTmn bit of the channels in combination must be set at the same time.
- **Remark** mn: Unit number + Channel number mn = 00 to 07, 10 to 13



| ADPC<br>register | PM15 register | ADS register         | ANI9/P151 and ANI10/AM152 Pins         |  |
|------------------|---------------|----------------------|----------------------------------------|--|
| Digital I/O      | Input mode    | -                    | Digital input                          |  |
| selection        | Output mode   | -                    | Digital output                         |  |
| Analog input     | Input mode    | Selects ANI.         | Analog input (to be A/D converted)     |  |
| selection        |               | Does not select ANI. | Analog input (not to be A/D converted) |  |
|                  | Output mode   | -                    | Setting prohibited                     |  |

Table 10-6. Setting Functions of ANI9/P151 and ANI10/AM152 Pins

Remark 78K0R/LF3: 78K0R/LG3, 78K0R/LH3:

ANI9/P151 and ANI10/AM152 are not mounted. ANI9/P151, ANI10/AM152

| Table 10-7. | Setting | <b>Functions</b> | of ANI15/AV | REFM/P157 Pin |
|-------------|---------|------------------|-------------|---------------|
|-------------|---------|------------------|-------------|---------------|

| ADPC<br>register | PM15 register | ADREF bit | ADS register         | ANI15/AVREFM/P157 Pin                                |
|------------------|---------------|-----------|----------------------|------------------------------------------------------|
| Digital I/O      | Input mode    | 0         | _                    | Digital input                                        |
| selection        |               | 1         | _                    | Setting prohibited                                   |
|                  | Output mode   | 0         | _                    | Digital output                                       |
|                  |               | 1         | -                    | Setting prohibited                                   |
| Analog input     | Input mode    | 0         | Selects ANI.         | Analog input (to be converted)                       |
| selection        |               |           | Does not select ANI. | Analog input (not to be converted)                   |
|                  |               | 1         | _                    | Negative reference voltage input<br>of A/D converter |
|                  | Output mode   | _         | =                    | Setting prohibited                                   |



## (4) Serial communication operation setting register mn (SCRmn)

SCRmn is a communication operation setting register of channel n. It is used to set a data transmission/reception mode, phase of data and clock, whether an error signal is to be masked or not, parity bit, start bit, stop bit, and data length.

Rewriting SCRmn is prohibited when the register is in operation (when SEmn = 1).

SCRmn can be set by a 16-bit memory manipulation instruction.

Reset signal generation sets this register to 0087H.

## Figure 14-7. Format of Serial Communication Operation Setting Register mn (SCRmn) (1/3)

Address: F0118H, F0119H (SCR00) to F011EH, F011FH (SCR03), After reset: 0087H R/W F0158H, F0159H (SCR10), F015AH, F015BH (SCR11), F015CH, F015DH (SCR12), F015EH, F015FH (SCR13)

| Symbol | 15  | 14  | 13  | 12  | 11 | 10  | 9   | 8   | 7   | 6 | 5   | 4   | 3 | 2   | 1   | 0   |
|--------|-----|-----|-----|-----|----|-----|-----|-----|-----|---|-----|-----|---|-----|-----|-----|
| SCRmn  | TXE | RXE | DAP | CKP | 0  | EOC | PTC | PTC | DIR | 0 | SLC | SLC | 0 | DLS | DLS | DLS |
|        | mn  | mn  | mn  | mn  |    | mn  | mn1 | mn0 | mn  |   | mn1 | mn0 |   | mn2 | mn1 | mn0 |

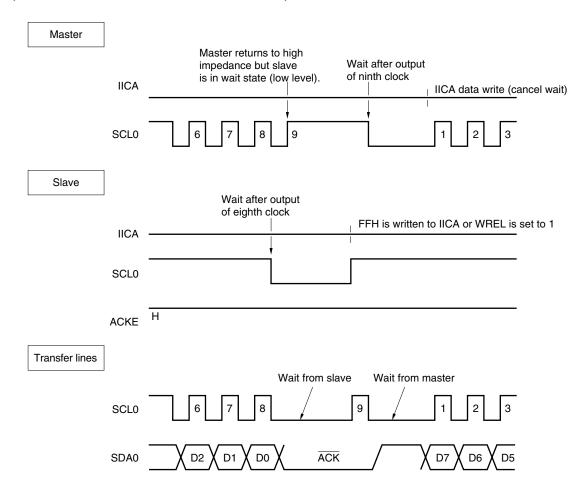
| TXE | RXE | Setting of operation mode of channel n |
|-----|-----|----------------------------------------|
| mn  | mn  |                                        |
| 0   | 0   | Does not start communication.          |
| 0   | 1   | Reception only                         |
| 1   | 0   | Transmission only                      |
| 1   | 1   | Transmission/reception                 |

| DAP   | CKP      | Selection of data and clock phase in CSI mode                       | Туре |
|-------|----------|---------------------------------------------------------------------|------|
| mn    | mn       |                                                                     |      |
| 0     | 0        |                                                                     | 1    |
|       |          | SOp XD7 XD6 XD5 XD4 XD3 XD2 XD1 XD0                                 |      |
|       |          | SIp input timing                                                    |      |
| 0     | 1        |                                                                     | 2    |
|       |          | SOp XD7 XD6 XD5 XD4 XD3 XD2 XD1 XD0                                 |      |
|       |          | SIp input timing                                                    |      |
| 1     | 0        |                                                                     | 3    |
|       |          | SOp XD7XD6XD5XD4XD3XD2XD1XD0                                        |      |
|       |          | SIp input timing                                                    |      |
| 1     | 1        |                                                                     | 4    |
|       |          | SOp <u>XD7 XD6 XD5 XD4 XD3 XD2 XD1 XD0</u>                          |      |
|       |          | SIp input timing                                                    |      |
| Be su | re to se | t DAPmn, CKPmn = 0, 0 in the UART mode and simplified $I^2$ C mode. | 1    |

Be sure to set DAPmn, CKPmn = 0, 0 in the UART mode and simplified I<sup>c</sup>C mode.

## Caution Be sure to clear bits 3, 6, and 11 to "0". Be sure to set bit 2 to "1".

**Remark** m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), p: CSI number (p = 00, 01, 10, 20)


## 15.5.6 Wait

The wait is used to notify the communication partner that a device (master or slave) is preparing to transmit or receive data (i.e., is in a wait state).

Setting the SCL0 pin to low level notifies the communication partner of the wait state. When wait state has been canceled for both the master and slave devices, the next data transfer can begin.

#### Figure 15-20. Wait (1/2)

## (1) When master device has a nine-clock wait and slave device has an eight-clock wait (master transmits, slave receives, and ACKE = 1)





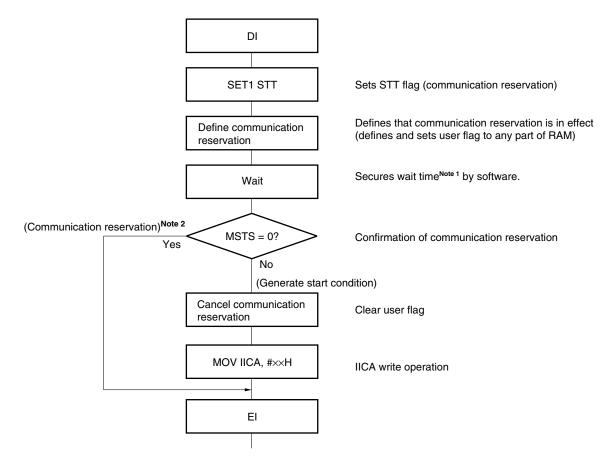
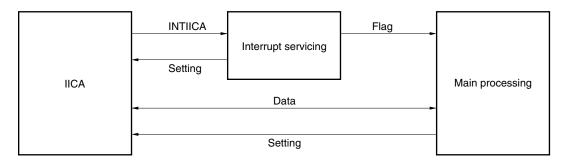



Figure 15-27. Communication Reservation Protocol


- **Notes 1.** The wait time is calculated as follows.
  - (IICWL setting value + IICWH setting value + 4 clocks) / fcLK + tF  $\times\,2$
  - 2. The communication reservation operation executes a write to the IICA shift register (IICA) when a stop condition interrupt request occurs.
- Remark STT: Bit 1 of IICA control register 0 (IICCTL0)
  - MSTS: Bit 7 of IICA status register (IICS)
  - IICA: IICA shift register
  - IICWL: IICA low-level width setting register
  - IICWH: IICA high-level width setting register
  - tF: SDA0 and SCL0 signal falling times
  - fcLK: CPU/peripheral hardware clock frequency

## (3) Slave operation

The processing procedure of the slave operation is as follows.

Basically, the slave operation is event-driven. Therefore, processing by the INTIICA interrupt (processing that must substantially change the operation status such as detection of a stop condition during communication) is necessary.

In the following explanation, it is assumed that the extension code is not supported for data communication. It is also assumed that the INTIICA interrupt servicing only performs status transition processing, and that actual data communication is performed by the main processing.



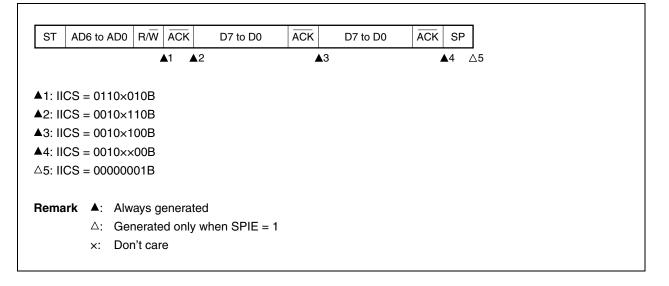
Therefore, data communication processing is performed by preparing the following three flags and passing them to the main processing instead of INTIICA.

## <1> Communication mode flag

This flag indicates the following two communication statuses.

- Clear mode: Status in which data communication is not performed
- Communication mode: Status in which data communication is performed (from valid address detection to stop condition detection, no detection of ACK from master, address mismatch)

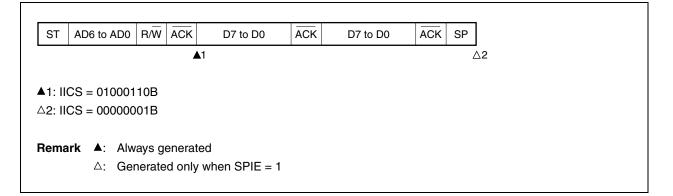
## <2> Ready flag


This flag indicates that data communication is enabled. Its function is the same as the INTIICA interrupt for ordinary data communication. This flag is set by interrupt servicing and cleared by the main processing. Clear this flag by interrupt servicing when communication is started. However, the ready flag is not set by interrupt servicing when the first data is transmitted. Therefore, the first data is transmitted without the flag being cleared (an address match is interpreted as a request for the next data).

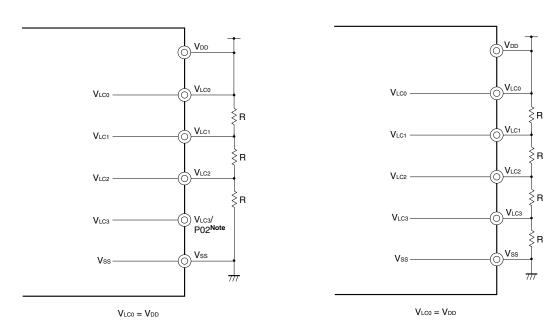
## <3> Communication direction flag

This flag indicates the direction of communication. Its value is the same as TRC.

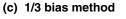



## (ii) When WTIM = 1




## (6) Operation when arbitration loss occurs (no communication after arbitration loss)

When the device is used as a master in a multi-master system, read the MSTS bit each time interrupt request signal INTIICA has occurred to check the arbitration result.


## (a) When arbitration loss occurs during transmission of slave address data (when WTIM = 1)







## Figure 16-31. Examples of LCD Drive Power Connections (External Resistance Division Method) (2/2)



(d) 1/4 bias method

Note VLC3 can be used as port (P02).

# Caution To stabilize the potential of the V<sub>LC0</sub> to V<sub>LC3</sub> pins, it is recommended to connect a capacitor of about 0.1 $\mu$ F between each of the pins from V<sub>LC0</sub> to V<sub>LC3</sub> and the GND pin as needed.

## 16.8.2 Internal voltage boosting method

The 78K0R/Lx3 microcontrollers contain an internal voltage boost circuit for generating LCD drive power supplies. The internal voltage boost circuit and external capacitors (0.47  $\mu$ F±30%) are used to generate an LCD drive voltage. Only 1/3 bias mode or 1/4 bias mode can be set for the internal voltage boost method.

The LCD drive voltage of the internal voltage boost method can supply a constant voltage, regardless of changes in V<sub>DD</sub>, because it is a power supply separate from the main unit.

In addition, a contrast can be adjusted by using the LCD boost level control register (VLCD).

| Bias Method           | 1/3 Bias Method       | 1/4 Bias Method       |
|-----------------------|-----------------------|-----------------------|
| LCD Drive Voltage Pin |                       |                       |
| VLCO                  | 3 x VLC2              | 4 x VLC3              |
| VLC1                  | 2 x V <sub>LC2</sub>  | 3 x VLC3              |
| VLC2                  | LCD reference voltage | 2 x VLC3              |
| VLC3                  | -                     | LCD reference voltage |

## (3) Multiplication/division data register C (MDCL, MDCH)

The MDCH and MDCL registers store remainder value of the operation result in the division mode. They are not used in the multiplication mode.

MDCH and MDCL can be read by a 16-bit manipulation instruction.

Reset signal generation clears these registers to 0000H.

## Figure 17-4. Format of Multiplication/Division Data Register C (MDCH, MDCL)



## Caution The MDCH and MDCL values read during division operation processing (while the multiplication/division control register (MDUC) is 81H) will not be guaranteed.

## Table 17-4. Functions of MDCH and MDCL During Operation Execution

| DIVMODE | Operation Mode      | Setting | Operation Result                                                    |
|---------|---------------------|---------|---------------------------------------------------------------------|
| 0       | Multiplication mode | -       | _                                                                   |
| 1       | Division mode       | _       | MDCH: Remainder (higher 16 bits)<br>MDCL: Remainder (lower 16 bits) |

Remark DIVMODE: Bit 7 of the multiplication/division control register (MDUC)

The register configuration differs between when multiplication is executed and when division is executed, as follows.

- Register configuration during multiplication

   Multiplier A>
   Multiplier B>
   Product>

   MDAL (bits 15 to 0) × MDAH (bits 15 to 0) = [MDBH (bits 15 to 0), MDBL (bits 15 to 0)]
- Register configuration during division



# Figure 19-10. Format of Priority Specification Flag Registers (PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H) (78K0R/LH3) (1/2)

| Address: FF | FE8H After | reset: FFH | R/W      |         |         |         |        |          |
|-------------|------------|------------|----------|---------|---------|---------|--------|----------|
| Symbol      | <7>        | <6>        | <5>      | <4>     | <3>     | <2>     | <1>    | <0>      |
| PR00L       | PPR05      | PPR04      | PPR03    | PPR02   | PPR01   | PPR00   | LVIPR0 | WDTIPR0  |
|             |            |            |          |         |         |         |        |          |
| Address: FF | FECH After | reset: FFH | R/W      |         |         |         |        |          |
| Symbol      | <7>        | <6>        | <5>      | <4>     | <3>     | <2>     | <1>    | <0>      |
| PR10L       | PPR15      | PPR14      | PPR13    | PPR12   | PPR11   | PPR10   | LVIPR1 | WDTIPR1  |
|             |            |            |          |         |         |         |        |          |
| Address: FF | FE9H After | reset: FFH | R/W      |         |         |         |        |          |
| Symbol      | <7>        | <6>        | <5>      | <4>     | <3>     | <2>     | <1>    | <0>      |
| PR00H       | SREPR00    | CSIPR001   | CSIPR000 | DMAPR01 | DMAPR00 | SREPR03 | SRPR03 | STPR03   |
|             |            | SRPR00     | STPR00   |         |         |         |        |          |
|             |            |            |          |         |         |         |        |          |
| Address: FF | FEDH After | reset: FFH | R/W      |         |         |         |        |          |
| Symbol      | <7>        | <6>        | <5>      | <4>     | <3>     | <2>     | <1>    | <0>      |
| PR10H       | SREPR10    | CSIPR101   | CSIPR100 | DMAPR11 | DMAPR10 | SREPR13 | SRPR13 | STPR13   |
|             |            | SRPR10     | STPR10   |         |         |         |        |          |
|             |            |            |          |         |         |         |        |          |
| Address: FF | FEAH After | reset: FFH | R/W      |         |         |         |        |          |
| Symbol      | <7>        | <6>        | <5>      | <4>     | <3>     | <2>     | <1>    | <0>      |
| PR01L       | TMPR003    | TMPR002    | TMPR001  | TMPR000 | IICAPR0 | SREPR01 | SRPR01 | CSIPR010 |
|             |            |            |          |         |         |         |        | IICPR010 |
|             |            |            |          |         |         |         |        | STPR01   |
|             |            |            |          |         |         |         |        |          |
| Address: FF |            | reset: FFH | R/W      | _       | _       | _       |        | _        |
| Symbol      | <7>        | <6>        | <5>      | <4>     | <3>     | <2>     | <1>    | <0>      |
| PR11L       | TMPR103    | TMPR102    | TMPR101  | TMPR100 | IICAPR1 | SREPR11 | SRPR11 | CSIPR110 |
|             |            |            |          |         |         |         |        | IICPR110 |



STPR11

## CHAPTER 30 INSTRUCTION SET

This chapter lists the instructions in the 78K0R microcontroller instruction set. For details of each operation and operation code, refer to the separate document **78K0R Microcontrollers Instructions User's Manual (U17792E)**.

**Remark** The shaded parts of the tables in **Table 30-5 Operation List** indicate the operation or instruction format that is newly added for the 78K0R microcontrollers.

## 30.1 Conventions Used in Operation List

#### 30.1.1 Operand identifiers and specification methods

Operands are described in the "Operand" column of each instruction in accordance with the description method of the instruction operand identifier (refer to the assembler specifications for details). When there are two or more description methods, select one of them. Alphabetic letters in capitals and the symbols, #, !, !!, \$, \$!, [], and ES: are keywords and are described as they are. Each symbol has the following meaning.

- #: Immediate data specification
- !: 16-bit absolute address specification
- !!: 20-bit absolute address specification
- \$: 8-bit relative address specification
- \$1: 16-bit relative address specification
- []: Indirect address specification
- ES: Extension address specification

In the case of immediate data, describe an appropriate numeric value or a label. When using a label, be sure to describe the #, !, !!, \$, \$!, [], and ES: symbols.

For operand register identifiers, r and rp, either function names (X, A, C, etc.) or absolute names (names in parentheses in the table below, R0, R1, R2, etc.) can be used for description.

| Identifier | Description Method                                                                                                   |
|------------|----------------------------------------------------------------------------------------------------------------------|
| r          | X (R0), A (R1), C (R2), B (R3), E (R4), D (R5), L (R6), H (R7)                                                       |
| rp         | AX (RP0), BC (RP1), DE (RP2), HL (RP3)                                                                               |
| sfr        | Special-function register symbol (SFR symbol)                                                                        |
| sfrp       | Special-function register symbols (16-bit manipulatable SFR symbol. Even addresses only <sup>Note</sup> )            |
| saddr      | FFE20H to FFF1FH Immediate data or labels                                                                            |
| saddrp     | FFE20H to FF1FH Immediate data or labels (even addresses only <sup>Note</sup> )                                      |
| addr20     | 00000H to FFFFFH Immediate data or labels                                                                            |
| addr16     | 0000H to FFFFH Immediate data or labels (only even addresses for 16-bit data transfer instructions <sup>Note</sup> ) |
| addr5      | 0080H to 00BFH Immediate data or labels (even addresses only)                                                        |
| word       | 16-bit immediate data or label                                                                                       |
| byte       | 8-bit immediate data or label                                                                                        |
| bit        | 3-bit immediate data or label                                                                                        |
| RBn        | RB0 to RB3                                                                                                           |

#### Table 30-1. Operand Identifiers and Specification Methods

**Note** Bit 0 = 0 when an odd address is specified.

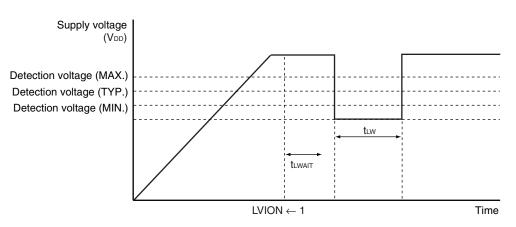
## 30.1.2 Description of operation column

The operation when the instruction is executed is shown in the "Operation" column using the following symbols.

| Symbol     | Function                                                                                 |
|------------|------------------------------------------------------------------------------------------|
| A          | A register; 8-bit accumulator                                                            |
| х          | X register                                                                               |
| В          | B register                                                                               |
| С          | C register                                                                               |
| D          | D register                                                                               |
| E          | E register                                                                               |
| н          | H register                                                                               |
| L          | L register                                                                               |
| ES         | ES register                                                                              |
| CS         | CS register                                                                              |
| AX         | AX register pair; 16-bit accumulator                                                     |
| BC         | BC register pair                                                                         |
| DE         | DE register pair                                                                         |
| HL         | HL register pair                                                                         |
| PC         | Program counter                                                                          |
| SP         | Stack pointer                                                                            |
| PSW        | Program status word                                                                      |
| CY         | Carry flag                                                                               |
| AC         | Auxiliary carry flag                                                                     |
| Z          | Zero flag                                                                                |
| RBS        | Register bank select flag                                                                |
| IE         | Interrupt request enable flag                                                            |
| ()         | Memory contents indicated by address or register contents in parentheses                 |
| Xн, XL     | 16-bit registers: $X_{H}$ = higher 8 bits, $X_{L}$ = lower 8 bits                        |
| Xs, Xh, Xl | 20-bit registers: $X_S =$ (bits 19 to 16), $X_H =$ (bits 15 to 8), $X_L =$ (bits 7 to 0) |
| ^          | Logical product (AND)                                                                    |
| V          | Logical sum (OR)                                                                         |
| ¥          | Exclusive logical sum (exclusive OR)                                                     |
| _          | Inverted data                                                                            |
| addr5      | 16-bit immediate data (even addresses only in 0080H to 00BFH)                            |
| addr16     | 16-bit immediate data                                                                    |
| addr20     | 20-bit immediate data                                                                    |
| jdisp8     | Signed 8-bit data (displacement value)                                                   |
| jdisp16    | Signed 16-bit data (displacement value)                                                  |

#### Table 30-2. Symbols in "Operation" Column

|             | Parameter                                 | Symbol         | Conditions                                                                                            | MIN. | TYP. | MAX. | Unit |
|-------------|-------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------|------|------|------|------|
| Detection   | Supply voltage level                      | VLVIO          |                                                                                                       | 4.12 | 4.22 | 4.32 | V    |
| voltage     |                                           | VLVI1          |                                                                                                       | 3.97 | 4.07 | 4.17 | V    |
|             |                                           | VLVI2          |                                                                                                       | 3.82 | 3.92 | 4.02 | V    |
|             |                                           | VLVI3          |                                                                                                       | 3.66 | 3.76 | 3.86 | V    |
|             |                                           | VLVI4          |                                                                                                       | 3.51 | 3.61 | 3.71 | V    |
|             |                                           | VLVI5          |                                                                                                       | 3.35 | 3.45 | 3.55 | V    |
|             |                                           | VLVI6          |                                                                                                       | 3.20 | 3.30 | 3.40 | V    |
|             |                                           | VLVI7          |                                                                                                       | 3.05 | 3.15 | 3.25 | V    |
|             |                                           | VLVI8          |                                                                                                       | 2.89 | 2.99 | 3.09 | V    |
|             |                                           | VLVI9          |                                                                                                       | 2.74 | 2.84 | 2.94 | V    |
|             |                                           | VLVI10         |                                                                                                       | 2.58 | 2.68 | 2.78 | V    |
|             |                                           | VLVI11         |                                                                                                       | 2.43 | 2.53 | 2.63 | V    |
|             |                                           | VLVI12         |                                                                                                       | 2.28 | 2.38 | 2.48 | V    |
|             |                                           | VLVI13         |                                                                                                       | 2.12 | 2.22 | 2.32 | V    |
|             |                                           | VLVI14         |                                                                                                       | 1.97 | 2.07 | 2.17 | V    |
|             |                                           | VLVI15         |                                                                                                       | 1.81 | 1.91 | 2.01 | V    |
|             | External input pin <sup>Note 1</sup>      | VEXLVI         | $\text{EXLVI} < \text{V}_{\text{DD}}, \ 1.8 \ \text{V} \leq \text{V}_{\text{DD}} \leq 5.5 \ \text{V}$ | 1.11 | 1.21 | 1.31 | V    |
|             | Power supply voltage on power application | VPUPLVI        | When LVI default start function enabled is set                                                        | 1.87 | 2.07 | 2.27 | V    |
| Minimum pu  | ulse width                                | t∟w            |                                                                                                       | 200  |      |      | μS   |
| Detection d | elay time                                 |                |                                                                                                       |      |      | 200  | μS   |
| Operation s | tabilization wait time <sup>Note 2</sup>  | <b>t</b> lwait |                                                                                                       |      |      | 10   | μS   |


## LVI Circuit Characteristics (TA = -40 to +85°C, VPDR $\leq$ VDD = EVDD $\leq$ 5.5 V, Vss = EVss = 0 V)

Notes 1. The EXLVI/P120/INTP0 pin is used.

2. Time required from setting bit 7 (LVION) of the low-voltage detection register (LVIM) to 1 to operation stabilization

**Remark**  $V_{LVI(n-1)} > V_{LVIn}$ : n = 1 to 15

## **LVI Circuit Timing**





| Edition     | Description                                                                                                                                                                                                | Chapter                                 |  |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|--|
| 4th Edition | Addition of example of calculation of LCD frame frequency to (c) and (d) of <b>Figure</b><br><b>16-13. Common Signal Waveforms (2/2)</b>                                                                   | CHAPTER 16 LCD<br>CONTROLLER/           |  |  |
|             | Change of Caution of Figure 16-31. Examples of LCD Drive Power Connections (External Resistance Division Method)                                                                                           | DRIVER                                  |  |  |
|             | Change the capacitance value of external capacitors to 0.47 $\mu$ F±30% in 16.8.2 Internal voltage boosting method and 16.8.3 Capacitor split method                                                       |                                         |  |  |
|             | Addition of Note to Figure 18-4. Format of DMA Mode Control Register n<br>(DMCn) (1/2)                                                                                                                     | CHAPTER 18 DMA<br>CONTROLLER            |  |  |
|             | Change of description of Figure 18-7. Example of Setting for CSI Consecutive Transmission                                                                                                                  |                                         |  |  |
|             | Addition of 18.5.2 CSI master reception and 18.5.3 CSI transmission/reception                                                                                                                              |                                         |  |  |
|             | Change of <b>18.5.6 Holding DMA transfer pending by DWAITn</b> and addition of <b>Caution</b>                                                                                                              |                                         |  |  |
|             | Change of 18.5.7 Forced termination by software                                                                                                                                                            |                                         |  |  |
|             | Change of 18.6 Cautions on Using DMA Controller                                                                                                                                                            |                                         |  |  |
|             | Change value of maskable interrupts of 78K0R/LF3                                                                                                                                                           | CHAPTER 19<br>INTERRUPT<br>FUNCTIONS    |  |  |
|             | Change of Figure 26-1. Format of User Option Byte (000C0H/010C0H) (1/2)                                                                                                                                    | CHAPTER 26 OPTIC<br>BYTE                |  |  |
|             | Change of 26.4 Setting of Option Byte                                                                                                                                                                      |                                         |  |  |
|             | Addition of Figure 27-3. Example of Wiring Adapter for Flash Memory Writing (µPD78F1508A)                                                                                                                  | CHAPTER 27 FLASH<br>MEMORY              |  |  |
|             | Addition of 27.9 Creating ROM Code to Place Order for Previously Written<br>Product                                                                                                                        |                                         |  |  |
|             | Change of Examples 2 in 29.3 BCD Correction Circuit Operation                                                                                                                                              | CHAPTER 29 BCD<br>CORRECTION<br>CIRCUIT |  |  |
|             | Change of Table 30-5. Operation List                                                                                                                                                                       | CHAPTER 30<br>INSTRUCTION SET           |  |  |
|             | Deletion of (TARGET)                                                                                                                                                                                       | CHAPTER 31                              |  |  |
|             | Change of analog output voltage, output current, high, and output current, low in <b>Absolute Maximum Ratings (T</b> <sub>A</sub> = 25°C)                                                                  | ELECTRICAL<br>SPECIFICATIONS            |  |  |
|             | Change of Internal Oscillator Characteristics                                                                                                                                                              |                                         |  |  |
|             | Addition of Recommended oscillator circuit constants                                                                                                                                                       |                                         |  |  |
|             | Change of output voltage, low (VoL2), supply current, and operating current of $\mbox{DC}$ Characteristics                                                                                                 |                                         |  |  |
|             | Change of Caution of (1) Basic operation (3/6) in AC Characteristics                                                                                                                                       |                                         |  |  |
|             | Change of (b) During communication at same potential (CSI mode) (master mode, SCKp internal clock output) of (2) Serial interface: Serial array unit (2/18) and addition of Note 1                         |                                         |  |  |
|             | Change of (c) During communication at same potential (CSI mode) (slave mode, SCKp external clock input) of (2) Serial interface: Serial array unit (3/18)                                                  |                                         |  |  |
|             | Change of (d) During communication at same potential (simplified I <sup>2</sup> C mode) of (2) Serial interface: Serial array unit (5/18)                                                                  |                                         |  |  |
|             | Change of (f) Communication at different potential (2.5 V, 3 V) (CSI mode)<br>(master mode, SCKp internal clock output) (1/2) of (2) Serial interface: Serial<br>array unit (11/18) and addition of Note 1 |                                         |  |  |

