

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	78K/0R
Core Size	16-Bit
Speed	20MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	46
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	7K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 8x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1512agk-gak-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(2) Non-port functions (1/4) : 78K0R/LF3

Function Name	I/O	Function	After Reset	Alternate Function
ANIO	Input	A/D converter analog input	Digital	P20/AMP0-Note 1
ANI1			input port	P21/AMP00 Note 1
ANI2				P22/AMP0+ ^{Note 1}
ANI3				P23/AMP1- ^{Note 1}
ANI4				P24/AMP10 ^{Note 1}
ANI5				P25/AMP1+ ^{Note 1}
ANI6				P26
ANI15				P157/AVREFM Note 1
AMP0- ^{Note 1}	Input	Operational amplifier input (negative side)	Digital	P20/ANI0
AMP1- ^{Note 1}			input port	P23/ANI3
AMP0+ ^{Note 1}	Input	Operational amplifier input (positive side)	Digital	P22/ANI2
AMP1+ ^{Note 1}			input port	P25/ANI5
AMP00 Note 1	Output	Operational amplifier output	Digital	P21/ANI1
AMP10 ^{Note 1}			input port	P24/ANI4
AV _{REFM} ^{Note 1}	Input	Analog negative reference voltage input	Digital input port	P157/ANI15
AVREFP ^{Note 1}		Analog positive reference voltage input	Input	VREFOUT Note 1
AVREF Note 2	-			
VREFOUT Note 1	Output	Analog reference voltage output	Input	AVREFP Note 1
ANO0 ^{Note 1}	Output	D/A converter analog output	Input port	P110
ANO1 Note 1	· ·			P111
SEG0 to SEG3	Output	LCD controller/driver segment signal outputs	Output	COM4 to COM7
SEG4 to	-			
SEG10	-			D. Loo
SEG11	-			P100
SEG12 to SEG19	-			P147 to P140
SEG20 to SEG22				P92 to P90
SEG23 to SEG26				P57 to P54
SEG27				P53/TI04
SEG28				P52/TI02
SEG29	-			P51/TxD3
SEG30	-			P50/RxD3
COM0 to COM3	Output	LCD controller/driver common signal outputs	Output	-
COM4 to COM7				SEG0 to SEG3
VLC0 to VLC2	_	LCD drive voltage	-	-
V _{LC3}]		Input port	P02

<R>

Notes 1. AMPxx, ANOx, AVREFP, AVREFM, and VREFOUT apply to μ PD78F150xA only.
2. AVREF applies to μ PD78F151xA only.

(1) Port functions (2/3): 78K0R/LH3

Function Name	I/O	Function	After Reset	Alternate Function
P50	I/O	Port 5.	Input port	SEG53/RxD3
P51		8-bit I/O port.		SEG52/TxD3
P52		Input/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software		SEG51/TI02
P53		setting.		SEG50/TI04
P54 to P57				SEG49 to SEG46
P60	I/O	Port 6.	Input port	SCL0
P61		2-bit I/O port. Output is N-ch open-drain output (6 V tolerance). Input/output can be specified in 1-bit units.		SDA0
P70 to P74	I/O	Port 7.	Input port	KR0 to KR4
P75		8-bit I/O port.		KR5/SCK01
P76		Input/output can be specified in 1-bit units. Input of P75 and P76 can be set to TTL buffer.		KR6/SI01
P77		Output of P75 and P77 can be set to TTL bunder. Output of P75 and P77 can be set to N-ch open-drain output (V _{DD} tolerance). Use of an on-chip pull-up resistor can be specified by a software setting.		KR7/SO01
P80	I/O	Port 8.	Input port	SCK00/INTP11
P81		8-bit I/O port.		RxD0/SI00/INTP9
P82		Inputs/output can be specified in 1-bit units.		TxD0/SO00
P83		Output of P80 and P82 can be set to N-ch open-drain output (Vob tolerance).		
P84		Use of an on-chip pull-up resistor can be specified by a software setting.		TI10/TO10
P85				TI11/TO11
P86				TI12/TO12
P87				TI13/TO13
P90 to P97	I/O	Port 9. 8-bit I/O port. Inputs/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG45 to SEG38
P100 to P102	I/O	Port 10. 3-bit I/O port. Inputs/output can be specified in 1-bit units. Use of an on-chip pull-up resistor can be specified by a software setting.	Input port	SEG29 to SEG27
P110	I/O	Port 11.	Input port	ANO0 ^{Note}
P111		2-bit I/O port. Inputs/output can be specified in 1-bit units.		ANO1 Note
P120	I/O	Port 12.	Input port	INTP0/EXLVI
P121	Input	1-bit I/O port and 4-bit input port.		X1
P122		For only P120, input/output can be specified in 1-bit units. For only P120, use of an on-chip pull-up resistor can be specified by a software setting.		X2/EXCLK
P123	1			XT1
P124				XT2
P130	Output	Port 13. 1-bit output port.	Output port	_

<R>

<R>

Note ANOx applies to μ PD78F150xA only.

3.2.3 ES and CS registers

The ES register is used for data access and the CS register is used to specify the higher address when a branch instruction is executed.

The default value of the ES register after reset is 0FH, and that of the CS register is 00H.

Figure 3-13. Configuration of ES and CS Registers

	7	6	5	4	3	2	1	0
ES	0	0	0	0	ES3	ES2	ES1	ES0
	-	0	F	4	0	0	4	
	1	6	5	4	3	2	I	0
CS	0	0	0	0	CS3	CP2	CP1	CP0

Figure 3-31. Example of ES:[HL + byte], ES:[DE + byte]

Figure 3-33. Example of ES:word[BC]

(2) Setting procedure when using I/O pins of simplified IIC10, IIC20 functions

- <1> After reset release, the port mode is the input mode (Hi-Z).
- <2> Externally pull up the pin to be used (on-chip pull-up resistor cannot be used).

In case of simplified IIC10: P14, P15 In case of simplified IIC20: P11, P10

- <3> Set the output latch of the corresponding port to 1.
- <4> Set the corresponding bit of the POM1 register to 1 to set the N-ch open drain output (V_{DD} withstand voltage) mode.
- <5> Set the corresponding bit of the PM1 register to the output mode (data I/O is possible in the output mode). At this time, the output data is high level, so the pin is in the Hi-Z state.
- <6> Enable the operation of the serial array unit and set the mode to the simplified I²C mode.

SAU1EN	Control of serial array unit 1 input clock
0	Stops input clock supply.SFR used by the serial array unit 1 cannot be written.The serial array unit is in the reset status.
1	Supplies input clock.SFR used by the serial array unit 1 can be read and written.

SAU0EN	Control of serial array unit 0 input clock
0	Stops input clock supply.SFR used by the serial array unit 0 cannot be written.The serial array unit 0 is in the reset status.
1	Supplies input clock. SFR used by the serial array unit 0 can be read and written.

TAU1EN	Control of timer array unit 1 input clock
0	Stops input clock supply.SFR used by timer array unit 1 cannot be written.Timer array unit 1 is in the reset status.
1	Supplies input clock. SFR used by timer array unit 1 can be read and written.

TAU0EN	Control of timer array unit 0 input clock
0	Stops input clock supply.SFR used by timer array unit 0 cannot be written.Timer array unit 0 is in the reset status.
1	Supplies input clock. SFR used by timer array unit 0 can be read and written.

Figure 5-12. Examples of Incorrect Resonator Connection (1/2)

- Note Do not place a power supply/GND pattern underneath the wiring section (in broken lines above) of the X1 and X2 pins and resonator in the multilayer board and double-sided board.
 Do not configure a layout that may cause capacitance elements and affect the oscillation characteristics.
- **Remark** When using the subsystem clock, replace X1 and X2 with XT1 and XT2, respectively. Also, insert resistors in series on the XT2 side.

Figure 6-11. Start Timing (In Interval Timer Mode)

Caution In the first cycle operation of count clock after writing TSmn, an error at a maximum of one clock is generated since count start delays until count clock has been generated. When the information on count start timing is necessary, an interrupt can be generated at count start by setting MDmn0

= 1.

Remark mn: Unit number + Channel number mn = 00 to 07, 10 to 13

- (b) Start timing in event counter mode
 - <1> While TEpq is set to 0, TCRpq holds the initial value.
 - <2> Writing 1 to TSpq sets 1 to TEpq.
 - <3> As soon as 1 has been written to TSpq and 1 has been set to TEpq, the "TDRpq value" is loaded to TCRpq to start counting.
 - <4> After that, the TCRpq value is counted down according to the count clock.

Figure 6-12. Start Timing (In Event Counter Mode)

Remarkpq: Unit number + Channel number (only for channels provided with timer I/O pins)78K0R/LF3:pq = 00 to 04, 0778K0R/LG3:pq = 00 to 0778K0R/LH3:pq = 00 to 07, 10 to 13

RENESAS

(15) Port mode registers 1, 3, 5, 8 (PM1, PM3, PM5, PM8)

These registers set input/output of ports 1, 3, 5, and 8 in 1-bit units.

When using the P30/T000/TI03/RTC1HZ/INTP1, P32/T001/TI01/INTP5/PCLBUZ0, P12/T002/S002/TxD2, P31/T003/TI00/RTCDIV/RTCCL/PCLBUZ1/INTP2, P13/T004/SO10/TxD1, P16/T005/TI05/INTP10, P34/T006/TI06/INTP8, P33/T007/TI07/INTP3, P84/T010/TI10, P85/T011/TI11, P86/T012/TI12, and P87/T013/TI13 pins for timer output, set PM30, PM32, PM12, PM31, PM13, PM16, PM34, PM33, and PM84 to PM87 and the output latches of P30, P32, P12, P31, P13, P16, P34, P33, and P84 to P87 to 0. When using the P31/TI00/TO03/RTCDIV/RTCCL/PCLBUZ1/INTP2, P32/TI01/T001/INTP5/PCLBUZ0, P52/TI02/SEGz (78K0R/LF3: z = 28, 78K0R/LG3: z = 37, 78K0R/LH3: z = 51), P30/TI03/T000/RTC1HZ/INTP1, P53/TI04/SEGz (78K0R/LF3: z = 27, 78K0R/LG3: z = 36, 78K0R/LH3: z = 50, P16/TI05/T005/INTP10, P34/TI06/T006/INTP8, P33/TI07/T007/INTP3, P84/TI10/T010, P85/TI11/T011, P86/TI12/T012, and P87/T113/T013 pins for timer input, set PM31, PM32, PM52, PM30, PM53, PM16, PM34 PM33, and PM84 to PM87 to 1. At this time, the output latches of P31, P32, P52, P30, P53, P16, P34, P33, and P84 to P87 may be 0 or 1.

PM1, PM3, PM5, and PM8 can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation sets these registers to FFH.

CHAPTER 7 REAL-TIME COUNTER

7.1 Functions of Real-Time Counter

The real-time counter is mounted onto all 78K0R/Lx3 microcontroller products. The real-time counter has the following features.

- Having counters of year, month, week, day, hour, minute, and second, and can count up to 99 years.
- Constant-period interrupt function (period: 1 month to 0.5 seconds)
- Alarm interrupt function (alarm: week, hour, minute)
- Interval interrupt function
- Pin output function of 1 Hz
- Pin output function of 512 Hz or 16.384 kHz or 32.768 kHz

7.2 Configuration of Real-Time Counter

The real-time counter includes the following hardware.

Item	Configuration
Control registers	Peripheral enable register 0 (PER0)
	Real-time counter control register 0 (RTCC0)
	Real-time counter control register 1 (RTCC1)
	Real-time counter control register 2 (RTCC2)
	Sub-count register (RSUBC)
	Second count register (SEC)
	Minute count register (MIN)
	Hour count register (HOUR)
	Day count register (DAY)
	Week count register (WEEK)
	Month count register (MONTH)
	Year count register (YEAR)
	Watch error correction register (SUBCUD)
	Alarm minute register (ALARMWM)
	Alarm hour register (ALARMWH)
	Alarm week register (ALARMWW)
	Port mode register 3
	Port register 3

Table 7-1. Configuration of Real-Time Counter

(13) Watch error correction register (SUBCUD)

This register is used to correct the watch with high accuracy when it is slow or fast by changing the value (reference value: 7FFFH) that overflows from the sub-count register (RSUBC) to the second count register.

Rewrite the SUBCUD register after disabling interrupt servicing INTRTC by using the interrupt mask flag register. Furthermore, after rewriting the SUBCUD register, enable interrupt servicing after clearing the interrupt request flag (RTCIF) and constant-period interrupt status flag (RIFG).

SUBCUD can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 7-14. Format of Watch Error Correction Register (SUBCUD)

Address: FFF99H After reset: 00H			/W					
Symbol	7	6	5	4	3	2	1	0
SUBCUD	DEV	F6	F5	F4	F3	F2	F1	F0

DEV	Setting of watch error correction timing					
0	0 Corrects watch error when the second digits are at 00, 20, or 40 (every 20 seconds).					
1	Corrects watch error only when the second digits are at 00 (every 60 seconds).					
Writing to the SUBCUD register at the following timing is prohibited.						
• When DEV = 0 is set: For a period of SEC = 00H, 20H, 40H						
• When DEV = 1 is set: For a period of SEC = 00H						

F6	Setting of watch error correction value						
0	reases by {(F5, F4, F3, F2, F1, F0) $- 1$ } × 2.						
1	Decreases by {(/F5, /F4, /F3, /F2, /F1, /F0) + 1} × 2.						
/F5 to /F0 are	, F4, F3, F2, F1, F0) = (*, 0, 0, 0, 0, 0, 0, *), the watch error is not corrected. * is 0 or 1. the inverted values of the corresponding bits (000011 when 111100). ection value: (when F6 = 0) 2, 4, 6, 8,, 120, 122, 124 (when F6 = 1) -2, -4, -6, -8,, -120, -122, -124						

The range of value that can be corrected by using the watch error correction register (SUBCUD) is shown below.

	DEV = 0 (correction every 20 seconds)	DEV = 1 (correction every 60 seconds)
Correctable range	-189.2 ppm to 189.2 ppm	-63.1 ppm to 63.1 ppm
Maximum excludes quantization error	±1.53 ppm	±0.51 ppm
Minimum resolution	±3.05 ppm	±1.02 ppm

Remark If a correctable range is -63.1 ppm or lower and 63.1 ppm or higher, set 0 to DEV.

(7) Serial flag clear trigger register mn (SIRmn)

SIRmn is a trigger register that is used to clear each error flag of channel n.

When each bit (FECTmn, PECTmn, OVCTmn) of this register is set to 1, the corresponding bit (FEFmn, PEFmn, OVFmn) of serial status register mn is cleared to 0. Because SIRmn is a trigger register, it is cleared immediately when the corresponding bit of SSRmn is cleared.

SIRmn can be set by a 16-bit memory manipulation instruction.

The lower 8 bits of SIRmn can be set with an 8-bit memory manipulation instruction with SIRmnL.

Reset signal generation clears this register to 0000H.

Figure 14-10. Format of Serial Flag Clear Trigger Register mn (SIRmn)

Address: F0108H, F0109H (SIR00) to F010EH, F010FH (SIR03), After reset: 0000H R/W

F0148H, F0149H (SIR10), F014AH, F014BH (SIR11),

F014EH, F014FH (SIR13)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SIRmn	0	0	0	0	0	0	0	0	0	0	0	0	0	FEC	PEC	OVC
														Tmn	Tmn	Tmn

FEC	Clear trigger of framing error of channel n
Tmn	
0	No trigger operation
1	Clears the FEFmn bit of the SSRmn register to 0.

PEC	Clear trigger of parity error flag of channel n						
Tmn							
0	No trigger operation						
1	Clears the PEFmn bit of the SSRmn register to 0.						

OVC	Clear trigger of overrun error flag of channel n
Tmn	
0	No trigger operation
1	Clears the OVFmn bit of the SSRmn register to 0.

Caution Be sure to clear bits 15 to 3 to "0".

Remarks 1. m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3)

2. When the SIRmn register is read, 0000H is always read.

(2) Baud rate error during transmission

The baud rate error of UART (UART0, UART1, UART2, UART3) communication during transmission can be calculated by the following expression. Make sure that the baud rate at the transmission side is within the permissible baud rate range at the reception side.

(Baud rate error) = (Calculated baud rate value) ÷ (Target baud rate) × 100 – 100 [%]

Here is an example of setting a UART baud rate at $f_{CLK} = 20$ MHz.

UART Baud Rate		fo	clk = 20 MHz	
(Target Baud Rate)	Operation Clock (MCK)	SDRmn[15:9]	Calculated Baud Rate	Error from Target Baud Rate
300 bps	fclк/2 ⁹	64	300.48 bps	+0.16 %
600 bps	fc∟ĸ/2 ⁸	64	600.96 bps	+0.16 %
1200 bps	fclk/2 ⁷	64	1201.92 bps	+0.16 %
2400 bps	fc∟ĸ/2 ⁶	64	2403.85 bps	+0.16 %
4800 bps	fc∟ĸ/2⁵	64	4807.69 bps	+0.16 %
9600 bps	fc∟ĸ/2⁴	64	9615.38 bps	+0.16 %
19200 bps	fc∟ĸ/2³	64	19230.8 bps	+0.16 %
31250 bps	fclк/2³	39	31250.0 bps	±0.0 %
38400 bps	fclĸ/2²	64	38461.5 bps	+0.16 %
76800 bps	fclк/2	64	76923.1 bps	+0.16 %
153600 bps	fclк	64	153846 bps	+0.16 %
312500 bps	fclĸ	31	312500 bps	±0.0 %

Figure 15-20. Wait (2/2)

(2) When master and slave devices both have a nine-clock wait (master transmits, slave receives, and ACKE = 1)

 Remark
 ACKE:
 Bit 2 of IICA control register 0 (IICCTL0)

 WREL:
 Bit 5 of IICA control register 0 (IICCTL0)

A wait may be automatically generated depending on the setting of bit 3 (WTIM) of IICA control register 0 (IICCTL0).

Normally, the receiving side cancels the wait state when bit 5 (WREL) of the IICCTL0 register is set to 1 or when FFH is written to the IICA shift register (IICA), and the transmitting side cancels the wait state when data is written to the IICA register.

- By setting bit 1 (STT) of IICCTL0 to 1
- By setting bit 0 (SPT) of IICCTL0 to 1

18.4.2 Transfer mode

The following four modes can be selected for DMA transfer by using bits 6 and 5 (DRSn and DSn) of the DMCn register.

DRSn	DSn	DMA Transfer Mode
0	0	Transfer from SFR of 1-byte data (fixed address) to RAM (address is incremented by +1)
0	1	Transfer from SFR of 2-byte data (fixed address) to RAM (address is incremented by +2)
1	0	Transfer from RAM of 1-byte data (address is incremented by +1) to SFR (fixed address)
1	1	Transfer from RAM of 2-byte data (address is incremented by +2) to SFR (fixed address)

By using these transfer modes, up to 1024 bytes of data can be consecutively transferred by using the serial interface, data resulting from A/D conversion can be consecutively transferred, and port data can be scanned at fixed time intervals by using a timer.

18.4.3 Termination of DMA transfer

When DBCn = 00H and DMA transfer is completed, the DSTn bit is automatically cleared to 0. An interrupt request (INTDMAn) is generated and transfer is terminated.

When the DSTn bit is cleared to 0 to forcibly terminate DMA transfer, the DBCn and DRAn registers hold the value when transfer is terminated.

The interrupt request (INTDMAn) is not generated if transfer is forcibly terminated.

Remark n: DMA channel number (n = 0, 1)

18.5 Example of Setting of DMA Controller

18.5.1 CSI consecutive transmission

A flowchart showing an example of setting for CSI consecutive transmission is shown below.

- Consecutive transmission of CSI10
- DMA channel 0 is used for DMA transfer.
- DMA start source: INTCSI10 (software trigger (STG0) only for the first start source)
- Interrupt of CSI10 is specified by IFC03 to IFC00 (bits 3 to 0 of the DMC0 register) = 1000B.
- Transfers FFB00H to FFBFFH (256 bytes) of RAM to FFF44H of the transmit buffer (SIO10) of CSI.

(1) When LVI is OFF upon power application (option byte: LVIOFF = 1)

- Notes 1. The operation guaranteed range is $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$. To make the state at lower than 1.8 V reset state when the supply voltage falls, use the reset function of the low-voltage detector, or input the low level to the RESET pin.
 - 2. If the rate at which the voltage rises to 1.8 V after power application is slower than 0.5 V/ms (MIN.), input a low level to the RESET pin before the voltage reaches to 1.8 V, or set LVI to ON by default by using an option byte (option byte: LVIOFF = 0).
 - **3.** The reset processing time, such as when waiting for internal voltage stabilization, includes the oscillation accuracy stabilization time of the internal high-speed oscillation clock.
 - 4. The internal reset processing time includes the oscillation accuracy stabilization time of the internal highspeed oscillation clock.
 - 5. The internal high-speed oscillation clock and a high-speed system clock or subsystem clock can be selected as the CPU clock. To use the X1 clock, use the OSTC register to confirm the lapse of the oscillation stabilization time. To use the XT1 clock, use the timer function for confirmation of the lapse of the stabilization time.
- Caution Set the low-voltage detector by software after the reset status is released (see CHAPTER 24 LOW-VOLTAGE DETECTOR).
- Remark VLVI: LVI detection voltage
 - VPOR: POC power supply rise detection voltage
 - VPDR: POC power supply fall detection voltage

Figure 23-3. Example of Software Processing After Reset Release (2/2)

Checking reset source

Note The illegal instruction is generated when instruction code FFH is executed. Reset by the illegal instruction execution not issued by emulation with the in-circuit emulator or on-chip debug emulator.

Instruction	Mnemonic	Operands	Bytes	Clo	cks	Operation		Flag
Group				Note 1	Note 2		Z	AC CY
16-bit	MOVW	AX, !addr16	3	1	4	$AX \leftarrow (addr16)$		
data		!addr16, AX	3	1	_	(addr16) ← AX		
transfer		AX, [DE]	1	1	4	$AX \leftarrow (DE)$		
		[DE], AX	1	1	-	$(DE) \leftarrow AX$		
		AX, [DE + byte]	2	1	4	AX ← (DE + byte)		
		[DE + byte], AX	2	1	-	(DE + byte) ← AX		
		AX, [HL]	1	1	4	$AX \leftarrow (HL)$		
		[HL], AX	1	1	-	$(HL) \leftarrow AX$		
		AX, [HL + byte]	2	1	4	$AX \leftarrow (HL + byte)$		
		[HL + byte], AX	2	1	-	(HL + byte) ← AX		
		AX, word[B]	3	1	4	$AX \leftarrow (B + word)$		
		word[B], AX	3	1	-	$(B + word) \leftarrow AX$		
		AX, word[C]	3	1	4	$AX \leftarrow (C + word)$		
		word[C], AX	3	1	-	$(C + word) \leftarrow AX$		
		AX, word[BC]	3	1	4	$AX \leftarrow (BC + word)$		
		word[BC], AX	3	1	-	$(BC + word) \leftarrow AX$		
		AX, [SP + byte]	2	1	-	$AX \leftarrow (SP + byte)$		
		[SP + byte], AX	2	1	-	$(SP + byte) \leftarrow AX$		
		BC, saddrp	2	1	-	$BC \leftarrow (saddrp)$		
		BC, !addr16	3	1	4	$BC \leftarrow (addr16)$		
		DE, saddrp	2	1	-	$DE \leftarrow (saddrp)$		
		DE, !addr16	3	1	4	DE ← (addr16)		
		HL, saddrp	2	1	-	$HL \leftarrow (saddrp)$		
		HL, !addr16	3	1	4	$HL \leftarrow (addr16)$		
		AX, ES:!addr16	4	2	5	$AX \leftarrow (ES, addr16)$		
		ES:laddr16, AX	4	2	-	(ES, addr16) \leftarrow AX		
		AX, ES:[DE]	2	2	5	$AX \leftarrow (ES, DE)$		
		ES:[DE], AX	2	2	-	$(ES,DE) \leftarrow AX$		
		AX, ES:[DE + byte]	3	2	5	$AX \leftarrow ((ES, DE) + byte)$		
		ES:[DE + byte], AX	3	2	_	$((ES,DE) + byte) \leftarrow AX$		
		AX, ES:[HL]	2	2	5	$AX \leftarrow (ES, HL)$		
		ES:[HL], AX	2	2	-	$(ES,HL) \leftarrow AX$		

Notes 1. When the internal RAM area or SFR area is accessed, or for an instruction with no data access.

2. When the program memory area is accessed.

Remarks 1. One instruction clock cycle is one cycle of the CPU clock (fcPu) selected by the system clock control register (CKC).

2. This number of clocks is for when the program is in the internal ROM (flash memory) area.

					(39/3	39)
Chapter	Classification	Function	Details of Function	Cautions	Page	
Chapter 31	Soft	Electrical specifications	During communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp internal clock output)	Select the TTL input buffer for SIp and the N-ch open drain output (V _{DD} tolerance) mode for SOp and \overline{SCKp} by using the PIMg and POMx registers.	pp.912 to 914	
			During communication at different potential (2.5 V, 3 V) (CSI mode) (slave mode, SCKp external clock input)	Select the TTL input buffer for SIp and SCKp and the N-ch open drain output (Voo tolerance) mode for SOp by using the PIMg and POMx registers.	pp.916, 917	
			During communication at different potential (2.5 V, 3 V) (simplified I ² C mode)	Select the TTL input buffer and the N-ch open drain output (V _{DD} tolerance) mode for SDAr and the N-ch open drain output (V _{DD} tolerance) mode for SCLr by using the PIMg and POMx registers.		
	Hard		VR circuit	Connect the VREFOUT pin to GND via a tantalum capacitor (capacitance: 10 μ F±30 %, ESR: 2 Ω (max.), ESL: 10 nH (max.)) and a ceramic capacitor (capacitance: 0.1 μ F±30 %, ESR: 2 Ω (max.), ESL: 10 nH (max.)).		
Chapter 33	Hard	Recommended soldering condition	_	The μ PD78F1500A to 78F1508A have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.	939	

