

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	78K/0R
Core Size	16-Bit
Speed	20MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	60
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/upd78f1513agc-ueu-ax

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Other Documents

Document Name	Document No.
RENESAS MICROCOMPUTER GENERAL CATALOG	R01CS0001E
SEMICONDUCTOR SELECTION GUIDE - Products and Packages -	X13769X
Semiconductor Device Mount Manual	Note
Quality Grades on NEC Semiconductor Devices	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892E

<R>Note See the "Semiconductor Device Mount Manual" website (http://www.renesas.com/prod/package/manual/index.html).

Caution The related documents listed above are subject to change without notice. Be sure to use the latest version of each document when designing.

All trademarks and registered trademarks are the property of their respective owners.

EEPROM is a trademark of Renesas Electronics Corporation.

Windows is a registered trademark or trademark of Microsoft Corporation in the United States and/or other countries. SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

(2) Non-port functions (1/4) : 78K0R/LF3

Function Name	I/O	Function	After Reset	Alternate Function
ANIO	Input		Digital	P20/AMP0-Note 1
ANI1			input port	P21/AMP00 Note 1
ANI2				P22/AMP0+ ^{Note 1}
ANI3				P23/AMP1- ^{Note 1}
ANI4				P24/AMP10 ^{Note 1}
ANI5				P25/AMP1+ ^{Note 1}
ANI6				P26
ANI15				P157/AVREFM Note 1
AMP0- ^{Note 1}	Input	Operational amplifier input (negative side)	Digital	P20/ANI0
AMP1- ^{Note 1}			input port	P23/ANI3
AMP0+ ^{Note 1}	Input	Operational amplifier input (positive side)	Digital	P22/ANI2
AMP1+ ^{Note 1}			input port	P25/ANI5
AMP00 Note 1	Output	Operational amplifier output	Digital	P21/ANI1
AMP10 ^{Note 1}			input port	P24/ANI4
AV _{REFM} ^{Note 1}	Input	Analog negative reference voltage input	Digital input port	P157/ANI15
AVREFP ^{Note 1}		Analog positive reference voltage input	Input	VREFOUT Note 1
AVREF Note 2	-			
VREFOUT Note 1	Output	Analog reference voltage output	Input	AVREFP Note 1
ANO0 ^{Note 1}	Output	D/A converter analog output	Input port	P110
ANO1 Note 1	· ·			P111
SEG0 to SEG3	Output	LCD controller/driver segment signal outputs	Output	COM4 to COM7
SEG4 to	-			
SEG10	-			D. Loo
SEG11	-			P100
SEG12 to SEG19	-			P147 to P140
SEG20 to SEG22				P92 to P90
SEG23 to SEG26				P57 to P54
SEG27				P53/TI04
SEG28				P52/TI02
SEG29	-			P51/TxD3
SEG30	-			P50/RxD3
COM0 to COM3	Output	LCD controller/driver common signal outputs	Output	-
COM4 to COM7				SEG0 to SEG3
VLC0 to VLC2	_	LCD drive voltage	-	-
V _{LC3}]		Input port	P02

<R>

Notes 1. AMPxx, ANOx, AVREFP, AVREFM, and VREFOUT apply to μ PD78F150xA only.
2. AVREF applies to μ PD78F151xA only.

2.2 Description of Pin Functions

Remark The pins mounted depend on the product. Refer to 1.3 Pin Configuration (Top View) and 2.1 Pin Function List.

2.2.1 P00 to P02

P00 to P02 function as an I/O port. This port can also be used for connecting a capacitor for LCD controller/driver, and power supply voltage pin for driving the LCD.

	78K0R/LF3	78K0R/LG3	78K0R/LH3		
	(80 pins: μ PD78F15x0A,	(100 pins: <i>μ</i> PD78F15x3A,	(128 pins: <i>μ</i> PD78F15x6A,		
	78F1501A, 78F15x2A)	78F1504A, 78F15x5A)	78F1507A, 78F15x8A)		
P00/CAPH	\checkmark				
P01/CAPL		\checkmark			
P02/VLC3	\checkmark				

The following operation modes can be specified in 1-bit units.

(1) Port mode

P00 to P02 function as an I/O port. P00 to P02 can be set to input or output port in 1-bit units using port mode register 0 (PM0). Use of an on-chip pull-up resistor can be specified by pull-up resistor option register 0 (PU0).

(2) Control mode

P00 to P02 function as connecting a capacitor for LCD controller/driver, and power supply voltage pin for driving the LCD.

(a) CAPH, CAPL

These are the pins for connecting a capacitor for LCD controller/driver.

(b) VLC3

This is the pin for inputting a power supply voltage pin for driving the LCD.

Caution To use P00/CAPH, P01/CAPL, and P02/V_{LC3} as a general-purpose port, set bit 5 (MDSET1) and bit 4 (MDSET0) of LCD mode register (LCDMD) to "0", which is the same as their default status setting.

(4) On-chip debug security ID setting area

A 10-byte area of 000C4H to 000CDH and 010C4H to 010CDH can be used as an on-chip debug security ID setting area. Set the on-chip debug security ID of 10 bytes at 000C4H to 000CDH when the boot swap is not used and at 000C4H to 000CDH and 010C4H to 010CDH when the boot swap is used. For details, see **CHAPTER 28 ON-CHIP DEBUG FUNCTION**.

3.1.2 Mirror area

The μ PD78F1500A, 78F1503A, 78F01506A, 78F1510A, 78F1513A, and 78F1516A mirror the data flash area of 00000H to 0FFFFH, to F0000H to FFFFFH (the data flash area to be mirrored is set by the processor mode control register (PMC)).

<R>

<R>

The μ PD78F1501A, 78F1502A, 78F1504A, 78F1505A, 78F1507A, 78F1508A, 78F1512A, 78F1515A, and 78F1518A mirror the data flash area of 00000H to 0FFFFH or 10000H to 1FFFFH, to F0000H to FFFFFH (the data flash area to be mirrored is set by the processor mode control register (PMC)).

By reading data from F0000H to FFFFFH, an instruction that does not have the ES registers as an operand can be used, and thus the contents of the data flash can be read with the shorter code. However, the data flash area is not mirrored to the SFR, extended SFR, RAM, and use prohibited areas.

The mirror area can only be read and no instruction can be fetched from this area.

Address	Special Function Register (SFR) Name	Syr	nbol	R/W	Man	ipulabl	e Bit	After Reset		78K0R/LG3	78K0R/LH3
						Range			78K0R/LF3	0R/L	0R/L
					1-bit	8-bit	16-bit		-F3	-G3	-H3
FFF9DH	Real-time counter control register 0	RTCC0		R/W	\checkmark	\checkmark	-	00H			\checkmark
FFF9EH	Real-time counter control register 1	RTCC1		R/W	\checkmark	\checkmark	1	00H	\checkmark	\checkmark	\checkmark
FFF9FH	Real-time counter control register 2	RTCC2		R/W	\checkmark	\checkmark	-	00H		\checkmark	\checkmark
FFFA0H	Clock operation mode control register	CMC		R/W	-	\checkmark	-	00H		\checkmark	\checkmark
FFFA1H	Clock operation status control register	CSC		R/W	\checkmark	\checkmark	-	C0H	\checkmark	\checkmark	\checkmark
FFFA2H	Oscillation stabilization time counter status register	OSTC		R	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	\checkmark
FFFA3H	Oscillation stabilization time select register	OSTS		R/W	-	\checkmark	-	07H	\checkmark	\checkmark	\checkmark
FFFA4H	Clock control register	CKC		R/W	\checkmark	\checkmark	-	09H		\checkmark	\checkmark
FFFA5H	Clock output select register 0	CKS0		R/W	\checkmark	\checkmark	-	00H		\checkmark	\checkmark
FFFA6H	Clock output select register 1	CKS1		R/W	\checkmark	\checkmark	-	00H		\checkmark	\checkmark
FFFA8H	Reset control flag register	RESF		R	-	\checkmark	-	Undefined Note 1	\checkmark	V	\checkmark
FFFA9H	Low-voltage detection register	LVIM		R/W	\checkmark	\checkmark	-	00H ^{Note 2}		\checkmark	\checkmark
FFFAAH	Low-voltage detection level select register	LVIS		R/W	\checkmark	\checkmark	-	0EH ^{Note 3}		\checkmark	\checkmark
FFFABH	Watchdog timer enable register	WDTE		R/W	-	\checkmark	-	1A/9A ^{Note 4}		\checkmark	\checkmark
FFFB0H	DMA SFR address register 0	DSA0		R/W	-	\checkmark	-	00H		\checkmark	\checkmark
FFFB1H	DMA SFR address register 1	DSA1		R/W	1	\checkmark	1	00H	\checkmark	\checkmark	\checkmark
FFFB2H	DMA RAM address register 0L	DRA0L	DRA0	R/W	-	\checkmark	\checkmark	00H	\checkmark	\checkmark	\checkmark
FFFB3H	DMA RAM address register 0H	DRA0H		R/W	-	\checkmark		00H	\checkmark	\checkmark	\checkmark
FFFB4H	DMA RAM address register 1L	DRA1L	DRA1	R/W	-	\checkmark	\checkmark	00H		\checkmark	\checkmark
FFFB5H	DMA RAM address register 1H	DRA1H		R/W	-	\checkmark		00H	\checkmark	\checkmark	\checkmark
FFFB6H	DMA byte count register 0L	DBC0L	DBC0	R/W	-	\checkmark	\checkmark	00H		\checkmark	\checkmark
FFFB7H	DMA byte count register 0H	DBC0H		R/W	-	\checkmark		00H		\checkmark	\checkmark
FFFB8H	DMA byte count register 1L	DBC1L	DBC1	R/W	1	\checkmark	\checkmark	00H	\checkmark	\checkmark	\checkmark
FFFB9H	DMA byte count register 1H	DBC1H		R/W	-	\checkmark		00H		\checkmark	\checkmark
FFFBAH	DMA mode control register 0	DMC0		R/W	\checkmark	\checkmark	-	00H		\checkmark	\checkmark
FFFBBH	DMA mode control register 1	DMC1		R/W	\checkmark	\checkmark	-	00H	\checkmark	\checkmark	\checkmark
FFFBCH	DMA operation control register 0	DRC0		R/W	\checkmark	\checkmark	-	00H		\checkmark	\checkmark
FFFBDH	DMA operation control register 1	DRC1		R/W	\checkmark	\checkmark	_	00H		\checkmark	\checkmark
FFFBEH	Back ground event control register	BECTL		R/W	\checkmark	\checkmark	_	00H			\checkmark
FFFC0H	_	PFCMD	Note 5		-	-	-	Undefined		\checkmark	\checkmark
FFFC2H	_	PFS ^{Note 5}		-	-	-	-	Undefined		\checkmark	\checkmark
FFFC4H		FLPMC'	Note 5	-	-	_	-	Undefined		\checkmark	\checkmark

Table 3-5. SFR List (4/5)

Notes 1. The reset value of RESF varies depending on the reset source.

- 2. The reset value of LVIM varies depending on the reset source and the setting of the option byte.
- 3. The reset value of LVIS varies depending on the reset source.
- 4. The reset value of WDTE is determined by the setting of the option byte.
- 5. Do not directly operate this SFR, because it is to be used in the self programming library.

ANIO/AMIP2-/P20 PINS						
ADPC register	PM2 registers	OAENn bit	ADS register	ANI0/AMP0-/P20, ANI2/AMP0+/P22, ANI3/AMP1- /P23, ANI5/AMP1+/P25, and ANI6/AMP2-/P26 Pins		
Digital I/O	Input mode	0	-	Digital input		
selection		1	-	Setting prohibited		
	Output mode	0	-	Digital output		
		1	-	Setting prohibited		
Analog input	Input mode	0	Selects ANI.	Analog input (to be converted)		
selection			Does not select ANI.	Analog input (not to be converted)		
		1	Selects ANI.	Setting prohibited		
			Does not select ANI.	Operational amplifier input		
	Output mode	_	-	Setting prohibited		

Table 4-6. Setting Functions of ANI0/AMP0-/P20, ANI2/AMP0+/P22, ANI3/AMP1-/P23, ANI5/AMP1+/P25, and ANI6/AMP2-/P26 Pins

ADPC register	PM2 register	OAENn bit	ADS register	ANI1/AMP0O/P21, ANI4/AMP10/P24, and ANI7/AMP20/P27 Pins
Digital I/O	Input mode	0	_	Digital input
selection		1	-	Setting prohibited
	Output mode	0	-	Digital output
		1	_	Setting prohibited
Analog input	Input mode	0	Selects ANI.	Analog input (to be converted)
selection			Does not select ANI.	Analog input (not to be converted)
		1	Selects ANI.	Operational amplifier output (to be converted)
			Does not select ANI.	Operational amplifier output (not to be converted)
	Output mode	_	_	Setting prohibited

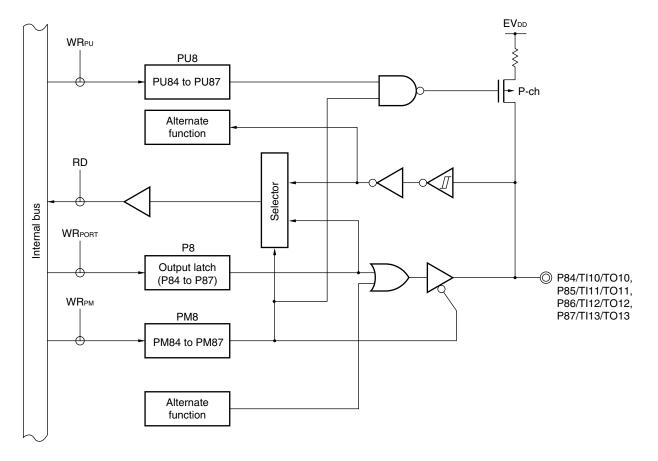


Figure 4-24. Block Diagram of P84 to P87

- P8: Port register 8
- PU8: Pull-up resistor option register 8
- PM8: Port mode register 8
- RD: Read signal
- WR××: Write signal

- **Notes 1.** The internal reset processing time includes the oscillation accuracy stabilization time of the internal high-speed oscillation clock.
 - 2. When releasing a reset, confirm the oscillation stabilization time for the X1 clock using the oscillation stabilization time counter status register (OSTC).
 - **3.** The microcontroller operates on the 8 MHz internal high-speed oscillation clock if 8 MHz or 20 MHz is selected for the internal high-speed oscillator by using the option byte or on the 1 MHz internal high-speed oscillation clock if 1 MHz is selected.
 - 4. If the internal high-speed oscillator is set to 1 MHz by using the option byte, the 20 MHz internal high-speed oscillation clock cannot be used.
- Cautions 1. A voltage stabilization time (about 2.12 to 5.84 ms) is required after the supply voltage reaches 1.61 V (TYP.). If the time for the supply voltage to rise from 1.61 V (TYP.) to 2.07 V (TYP.) is shorter than the voltage stabilization time, reset processing is entered after the voltage stabilization time elapses.
 - 2. It is not necessary to wait for the oscillation stabilization time when an external clock input from the EXCLK pin is used.

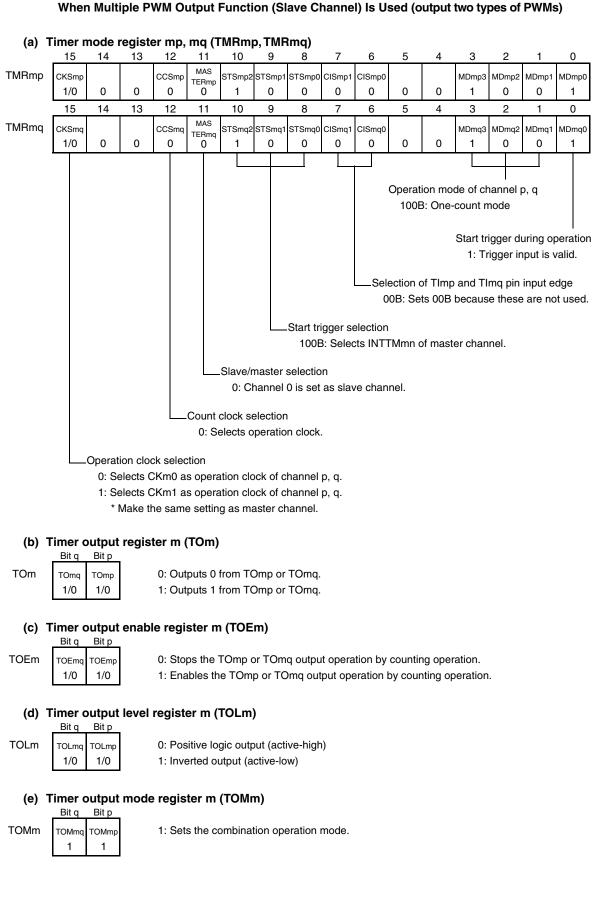
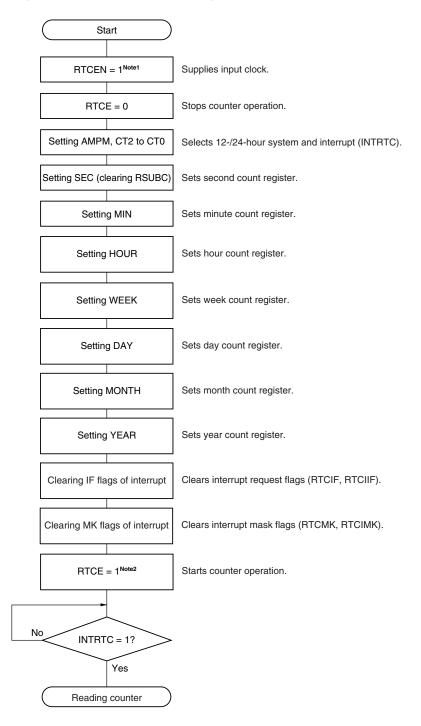
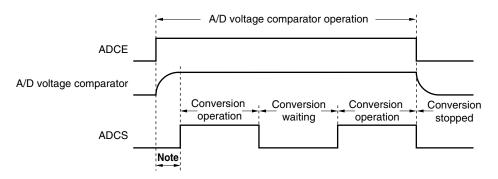

	Software Operation	Hardware Status
TAU default setting		Power-off status (Clock supply is stopped and writing to each register is disabled.)
	Sets the TAU0EN or TAU1EN bits of the PER0 register to 1.	Power-on status. Each channel stops operating. (Clock supply is started and writing to each register is enabled.)
	Sets the TPSm register. Determines clock frequencies of CKm0 and CKm1.	
Channel default setting	Sets the TMRmn and TMRmp registers of two channels to be used (determines operation mode of channels). An interval (period) value is set to the TDRmn register of the master channel, and a duty factor is set to the TDRmp register of the slave channel.	Channel stops operating. (Clock is supplied and some power is consumed.)
	Sets slave channel. The TOMmp bit of the TOMn register is set to 1 (combination operation mode). Sets the TOLmp bit. Sets the TOmp bit and determines default level of the TOmp output.	The TOmn pin goes into Hi-Z output state. The TOmn default setting level is output when the port
	Sets TOEmp to 1 and enables operation of TOmp.	mode register is in output mode and the port register is 0. TOmp does not change because channel stops operating. The TOmp pin outputs the TOmp set level.

Figure 6-61.	Operation	Procedure When	n PWM Function	Is Used (1/2)
--------------	-----------	-----------------------	----------------	---------------

Remarks 1. 78K0R/LF3:

- \bullet m = 0, n = 0, 2, 6, p = n+1, TO00 to TO04, and TO07 pins
- 2. 78K0R/LG3:
 - m = 0, n = 0, 2, 4, 6, p = n+1, TO00 to TO07 pins
- 3. 78K0R/LH3:
 - m = 0, n = 0, 2, 4, 6, p = n+1, TO00 to TO07 pins
 - m = 1, n = 0, 2, p = n+1, TO10 to TO13 pins




7.4 Real-Time Counter Operation

7.4.1 Starting operation of real-time counter

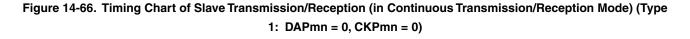
Figure 7-19. Procedure for Starting Operation of Real-Time Counter

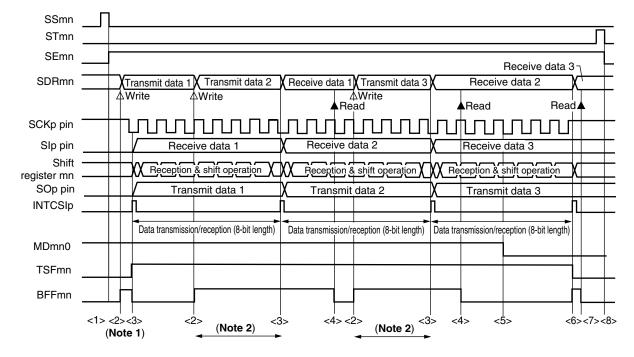
- Notes 1. First set RTCEN to 1, while oscillation of the subsystem clock (fsub) is stable.
 - 2. Confirm the procedure described in 7.4.2 Shifting to STOP mode after starting operation when shifting to STOP mode without waiting for INTRTC = 1 after RTCE = 1.

Figure 10-6. Timing Chart When A/D Voltage Comparator Is Used

- **Note** To stabilize the internal circuit, the time from the rising of the ADCE bit to the falling of the ADCS bit must be 1 μ s or longer.
- Cautions 1. A/D conversion must be stopped before rewriting bits ADSCM, FR0 to FR2, LV1, and LV0 to values other than the identical data.
 - 2 When using the A/D converter in normal mode 2 (LV1 = 0, LV0 = 1) or low voltage mode (LV1 = 1, LV0 = 0), enable the input gate voltage boost circuit for the A/D converter by using the analog reference voltage control register (ADVRC), and then set ADCE and ADCS to 1. After the voltage boost circuit stabilization time (10 μ s) passes after the input gate voltage boost circuit for the A/D converter has been enabled, set ADCS to 1.

14.5.5 Slave reception


Slave reception is that the 78K0R/Lx3 microcontrollers receive data from another device in the state of a transfer clock being input from another device.


3-Wire Serial I/O	CSI00	CSI01	CSI10	CSI20		
Target channel	Channel 0 of SAU0	Channel 1 of SAU0	Channel 2 of SAU0	Channel 0 of SAU1		
Pins used	SCK00, SI00	SCK01, SI01	SCK10, SI10	SCK20, SI20		
Interrupt	INTCSI00	INTCSI01	INTCSI10	INTCSI20		
	Transfer end interrupt onl	y (Setting the buffer empty	interrupt is prohibited.)			
Error detection flag	Overrun error detection f	ag (OVFmn) only				
Transfer data length	7 or 8 bits					
Transfer rate	Max. fmck/6 [MHz] ^{Notes 1, 2}					
Data phase	 Selectable by DAPmn bit DAPmn = 0: Data input starts from the start of the operation of the serial clock. DAPmn = 1: Data input starts half a clock before the start of the serial clock operation. 					
Clock phase	Selectable by CKPmn bit • CKPmn = 0: Forward • CKPmn = 1: Reverse					
Data direction	MSB or LSB first					

- **Notes 1.** Because the external serial clock input to pins SCK00, SCK01, SCK10, and SCK20 is sampled internally and used, the fastest transfer rate is fMcK/6 [MHz].
 - 2. Use this operation within a range that satisfies the conditions above and the AC characteristics in the electrical specifications (see CHAPTER 31 ELECTRICAL SPECIFICATIONS).
- Remarks 1. fMCK: Operation clock (MCK) frequency of target channel
 - 2. For 78K0R/LF3, CSI00 and CSI01 are not mounted.
 - 3. For 78K0R/LG3, CSI01 is not mounted.

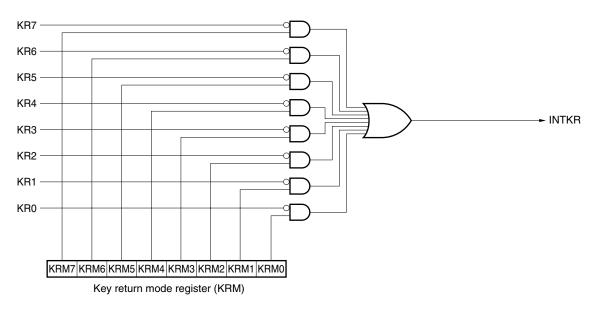
(4) Processing flow (in continuous transmission/reception mode)

- Notes 1. When transmit data is written to the SDRmn register while BFFmn = 1, the transmit data is overwritten.
 2. The transmit data can be read by reading the SDRmn register during this period. At this time, the transfer operation is not affected.
- Caution The MDmn0 bit can be rewritten even during operation. However, rewrite it before transfer of the last bit is started, so that it will be rewritten before the transfer end interrupt of the last transmit data.
- Remarks 1. <1> to <8> in the figure correspond to <1> to <8> in Figure 14-67 Flowchart of Slave Transmission/Reception (in Continuous Transmission/Reception Mode).
 - **2.** m: Unit number (m = 0, 1), n: Channel number (n = 0 to 2), p: CSI number (p = 00, 01, 10, 20)

14.6.5 Calculating baud rate

(1) Baud rate calculation expression

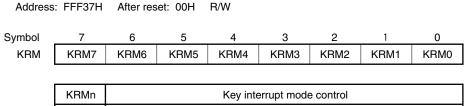
The baud rate for UART (UART0, UART1, UART2, UART3) communication can be calculated by the following expressions.


(Baud rate) = {Operation clock (MCK) frequency of target channel} ÷ (SDRmn[15:9] + 1) ÷ 2 [bps]

Caution Setting SDRmn [15:9] = (0000000B, 0000001B) is prohibited.

- **Remarks 1.** When UART is used, the value of SDRmn[15:9] is the value of bits 15 to 9 of the SDRmn register (0000010B to 1111111B) and therefore is 2 to 127.
 - **2.** m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3)

The operation clock (MCK) is determined by serial clock select register m (SPSm) and bit 15 (CKSmn) of serial mode register mn (SMRmn).


Figure 20-1. Block Diagram of Key Interrupt

20.3 Register Controlling Key Interrupt

(1) Key return mode register (KRM)

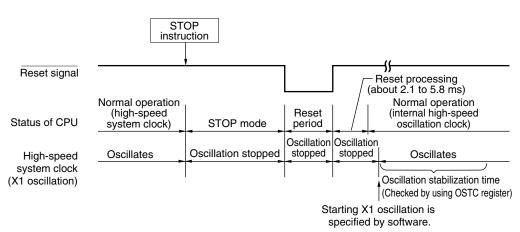
This register controls the KRM0 to KRM7 bits using the KR0 to KR7 signals, respectively. KRM can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation clears this register to 00H.

KRMn	Key interrupt mode control			
0	Does not detect key interrupt signal			
1 Detects key interrupt signal				

- Cautions 1. If any of the KRM0 to KRM7 bits used is set to 1, set bits 0 to 7 (PU70 to PU77) of the corresponding pull-up resistor register 7 (PU7) to 1.
 - 2. An interrupt will be generated if the target bit of the KRM register is set while a low level is being input to the key interrupt input pin. To ignore this interrupt, set the KRM register after disabling interrupt servicing by using the interrupt mask flag. Afterward, clear the interrupt request flag and enable interrupt servicing after waiting for the key interrupt input low-level width (250 ns or more).
 - 3. The bits not used in the key interrupt mode can be used as normal ports.

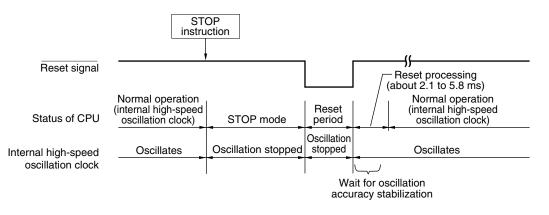
Remark n = 0 to 7

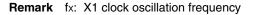
HALT Mode Setting		Setting	When HALT Instruction Is Executed While CPU Is Operating on Subsystem Clock				
Item			When CPU Is Operating on XT1 Clock (fxr)				
System clock			Clock supply to the CPU is stopped				
	Main system clock f _{IH} f _X f _{EX}		Status before HALT mode was set is retained				
			Operates or stops by external clock input				
Subsystem clock fxT			Operation continues (cannot be stopped)				
fu_			Set by bits 0 (WDSTBYON) and 4 (WTON) of option byte (000C0H) • WTON = 0: Stops • WTON = 1 and WDSTBYON = 1: Oscillates • WTON = 1 and WDSTBYON = 0: Stops				
CF	יט		Operation stopped				
Fla	ash memory		Operation stopped (wait state in low-power consumption mode)				
RA	M		Status before HALT mode was set is retained at voltage higher than POC detection voltage.				
Po	rt (latch)		Status before HALT mode was set is retained				
Tir	ner array unit (TAU)		Operable				
Re	al-time counter (RTC)					
Watchdog timer			Set by bits 0 (WDSTBYON) and 4 (WTON) of option byte (000C0H) • WTON = 0: Stops • WTON = 1 and WDSTBYON = 1: Operates • WTON = 1 and WDSTBYON = 0: Stops				
Clock output/buzzer output			Operable				
A/I	D converter	-	Cannot operate				
D/A converter			Operable				
Op	erational amplifier						
Vo	ltage reference						
Serial array unit (SAU)							
Se	rial interface (IICA)		Cannot operate				
LCD controller/driver			Operable				
Multiplier/divider							
DMA controller							
Power-on-clear function							
Low-voltage detection function		unction	1				
External interrupt							
Key interrupt							


Table 21-1. Ope	erating Statuses	in HALT M	ode (2/3)
-----------------	------------------	-----------	-----------

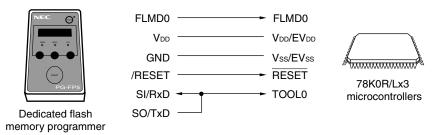
Remarks 1.	fıн:	Internal high-speed oscillation clock,	f ін20:	20 MHz internal high-speed oscillation clock
	fx:	X1 oscillation clock,	fex:	External main system clock
	fx⊤:	XT1 oscillation clock,	fı∟:	Internal low-speed oscillation clock
2.	The functions mounted depend on the pro		roduct.	Refer to 1.4 Block Diagram and 1.5 Outline of
	Functions.			

(b) Release by reset signal generation


When the reset signal is generated, STOP mode is released, and then, as in the case with a normal reset operation, the program is executed after branching to the reset vector address.


Figure 21-7. STOP Mode Release by Reset

(1) When high-speed system clock is used as CPU clock



27.3 Communication Mode

Communication between the dedicated flash memory programmer and the 78K0R/Lx3 microcontrollers is established by serial communication using the TOOL0 pin via a dedicated single-line UART of the 78K0R/Lx3 microcontrollers.

Transfer rate: 115,200 bps to 1,000,000 bps

When using the FlashPro5 as the dedicated flash memory programmer, the FlashPro5 generates the following signals for the 78K0R/Lx3 microcontrollers. For details, refer to the user's manual for the FlashPro5.

		FlashPro5	78K0R/Lx3 microcontrollers	Connection
Signal Name	I/O	Pin Function	Pin Name	
FLMD0	Output	Mode signal	FLMD0	0
Vdd	I/O	VDD voltage generation/power monitoring	VDD, EVDD, AVDD0, AVDD1	0
GND	-	Ground	Vss, EVss, AVss	0
CLK	Output	Clock output	-	×
/RESET	Output	Reset signal	RESET	0
SI/RxD	Input	Receive signal	TOOL0	0
SO/TxD	Output	Transmit signal		
SCK	Output	Transfer clock	-	×

Table 27-1. Pin Connection

Remark \bigcirc : Be sure to connect the pin.

 \times : The pin does not have to be connected.

<R>

DC Characteristics (1/11)

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, 1.8 \text{ V} \le \text{AV}_{DD0} \le \text{V}_{DD}, 1.8 \text{ V} \le \text{AV}_{DD1} \le \text{V}_{DD}, 1.8 \text{ V} \le \text{AV}_{DD1} \le \text{V}_{DD}, 1.8 \text{ V} \le \text{EV}_{DD1} = \text{V}_{DD}, \text{V}_{SS} = \text{EV}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current,	Іон1	Per pin for P00 to P02, P10 to P17, P30 to P34, P40, P41, P70 to P77, P80 to P87, P120, P130	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-3.0	mA
high ^{Note 1}			$2.7~V \leq V_{\text{DD}} < 4.0~V$			-1.0	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			-1.0	mA
		Per pin for P50 to P57, P90 to P97, P100 to P102, P140 to P147	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-1.6	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			-0.45	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			-0.45	mA
		Total of P00 to P02, P10 to P17, P30 to P34, P40, P41, P70 to P77, P80 to P87, P120, P130 (When duty = 70% ^{Note 2})	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-20.0	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			-10.0	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			-5.0	mA
		Total of P50 to P57, P90 to P97, P100 to P102, P140 to P147 (When duty = 70% ^{Note 2})	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-12.8	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			-3.6	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			-3.6	mA
		Total of all pins (When duty = 60% ^{Note 2})	$4.0~V \leq V_{\text{DD}} \leq 5.5~V$			-32.8	mA
			$2.7~V \leq V_{\text{DD}} < 4.0~V$			-13.6	mA
			$1.8~V \leq V_{\text{DD}} < 2.7~V$			-8.6	mA
	Іон2	Per pin for P20 to P27, P150 to P152, P157				-0.1	mA
		Per pin for P110, P111				-0.1	mA

Notes 1. Value of current at which the device operation is guaranteed even if the current flows from V_{DD} pin to an output pin.

2. Specification under conditions where the duty factor is 60% or 70%.

The output current value that has changed the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

•Total output current of pins = $(I_{OH} \times 0.7)/(n \times 0.01)$

<Example> Where n = 50% and IoH = -20.0 mA

Total output current of pins = $(-20.0 \times 0.7)/(50 \times 0.01) = -28.0$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P10 to P15, P75, P77, P80 and P82 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of port pins.

