

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, SCI, SPI
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	53
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 19x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf51ag128clh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

System Clock Sources

- Oscillator (XOSC) Loop-control pierce oscillator; crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz or 1 MHz to 16 MHz
- Internal Clock Source (ICS) Frequency-locked-loop (FLL) controlled by internal or external reference; trimmable internal reference allows 0.2% resolution and 2% deviation (1% across 0 to 70 °C)
- Peripherals
 - ADC 24 analog inputs with 12 bits resolution; output formatted in 12-, 10- or 8-bit right-justified format; single or continuous conversion (automatic return to idle after single conversion); interrupt or DMA request when conversion complete; operation in low-power modes for lower noise operation; asynchronous clock source for lower noise operation; selectable asynchronous hardware conversion triggers from RTC, PDB, or iEvent; dual samples based on hardware triggers during ping-pong mode; on-chip temperature sensor
 - PDB 16-bit of resolution with prescaler; seven possible trigger events input; positive transition of trigger event signal initiates the counter; support continuous trigger or single shot, bypass mode; supports two triggered delay outputs or ORed together; pulsed output could be used for HSCMP windowing signal
 - iEvent User programmable combinational boolean output using the four selected iEvent input channels for use as interrupt requests, DMA transfer requests, or hardware triggers
 - FTM Two 6-channel flexible timer/PWM modules with DMA request option; deadtime insertion is available for each complementary channel pair; channels operate as pairs with equal outputs, pairs with complimentary outputs or independent channels (with independent outputs); 16-bit free-running counter; the load of the FTM registers which have write buffer can be synchronized; write protection for critical registers; backwards compatible with TPM
 - TPM 16-bit free-running or modulo up/down count operation; two channels, each channel may be input capture, output compare, or edge-aligned PWM; one interrupt per channel plus terminal count interrupt
 - CRC High speed hardware CRC generator circuit using 16-bit shift register; CRC16-CCITT compliancy with $x^{16} + x^{12} + x^5 + 1$ polynomial; error detection for all single, double, odd, and most multi-bit errors; programmable initial seed value
 - HSCMP Two analog comparators with selectable interrupt on rising edge, falling edge, or either edges of comparator output; the positive and negative inputs of the comparator are both driven from 4-to-1 muxes; programmable voltage reference from two internal DACs; support DMA transfer
 - IIC Compatible with IIC bus standard and SMBus version 2 features; up to 100 kbps with maximum bus loading; multi-master operation; software programmable for one of 64 different serial clock frequencies; programmable slave address and glitch input filter; interrupt driven byte-by-byte data transfer; arbitration lost interrupt with automatic mode switching from master to slave; calling address identification interrupt; bus busy detection; broadcast and 10-bit address extension; address matching causes wake-up when MCU is in Stop3 mode; DMA support
 - SCI Two serial communications interface modules with optional 13-bit break; full-duplex, standard non-return-to-zero (NRZ) format; double-buffered transmitter and receiver with separate enables; 13-bit baud rate selection with /32 fractional divide; interrupt-driven or polled operation; hardware parity generation and checking; programmable 8-bit or 9-bit character length; receiver wakeup by idle-line or address-mark; address match feature in receiver to reduce address-mark wakeup ISR overhead; 1/16 bit-time noise detection; DMA transmission for both transmit and receive
 - SPI Two serial peripheral interfaces with full-duplex or single-wire bidirectional option; double-buffered transmitter and receiver; master or slave mode operation; selectable MSB-first or LSB-first shifting; 8-bit or 16-bit data modes; programmable transmit bit rate; receive data buffer hardware match feature; DMA transmission for transmit and receive
- Input/Output
 - Up to 69 GPIOs and one Input-only pin
 - Interrupt or DMA request with selectable polarity on all input pins
 - Programmable glitch filter, hysteresis and configurable pull up/down device on all input pins
 - Configurable slew rate and drive strength on all output pins
 - Independent pin value register to read logic level on digital pin
 - Up to 16 rapid general purpose I/O (RGPIO) pins connected to the processor's local 32-bit platform bus with set, clear, and faster toggle functionality

MCF51AG128 Family Configurations

Feature	I	MCF51AG12	B	MCF51AG96			
reature	80-pin	64-pin	48-pin	80-pin	64-pin	48-pin	
TPM3 (timer pulse-width modulator) channels	modulator) 2						
Debug Visibility Bus	Yes	No	No	Yes	No	No	

Table 1. MCF51AG128 Series Device Comparison (continued)

¹ Up to 16 pins on Ports E and F are shared with the ColdFire Rapid GPIO module.

² Some pins of FTMx might not be bonded on small package, therefore these channels could be used as soft timer only.

1.2 Block Diagram

Figure 1 shows the connections between the MCF51AG128 series pins and modules.

MCF51AG128 Family Configurations

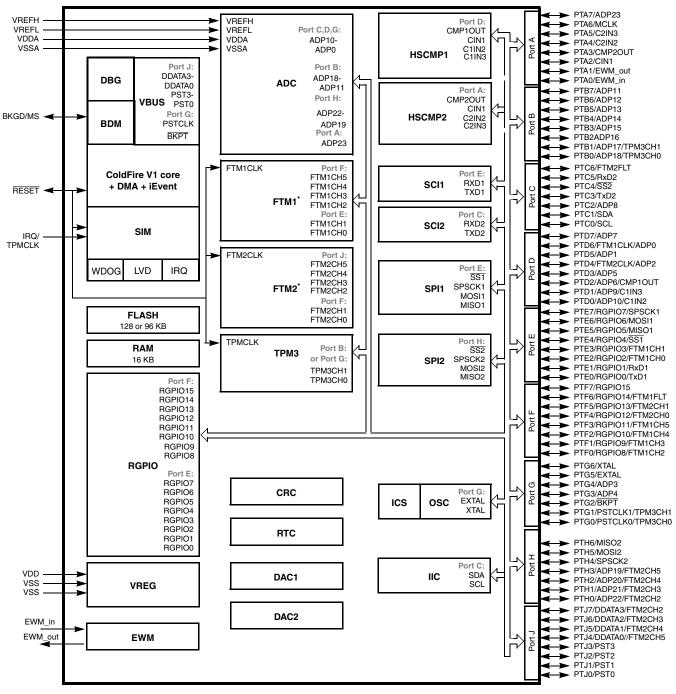


Figure 1. MCF51AG128 Series MCUs Block Diagram

MCF51AG128 Family Configurations

Functional Unit	Function
WDOG (Watchdog timer)	keeps a watch on the system functioning and resets it in case of its failure
RTC (Real Time Counter)	Provides a constant time-base with optional interrupt

Table 2. MCF51AG128 Series Functional Units (continued)

Figure 4 shows the pinout of the 48-pin LQFP.

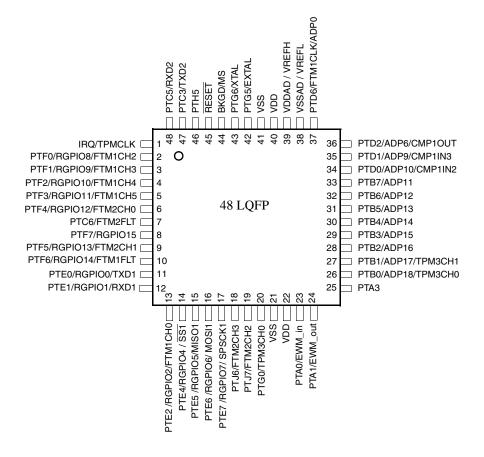


Figure 4. 48-Pin LQFP

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to 5.8	V
Input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	I _D	±25	mA
Maximum current into V _{DD}	I _{DD}	120	mA
Storage temperature	T _{stg}	-55 to 150	°C

Table 5. Absolute Maximum Ratings

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2~$ All functional non-supply pins are internally clamped to V_{SS} and $V_{DD}.$

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.

2.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} is very small.

Symbol	Value	Unit
T _A	-40 to 105	°C
TJ	150	°C
θ _{JA}	56 45 54 41 67 49 69	°C/W
	θ _{JA}	$\begin{array}{c c} T_{J} & 150 \\ & 56 \\ 45 \\ \theta_{JA} & 54 \\ 41 \\ & 67 \\ 49 \\ & 69 \end{array}$

Table 6. Thermal Characteristics	able 6. Thermal (Characteristics	;
----------------------------------	-------------------	-----------------	---

Num	С	Parameter	Symbol	Min	Typical ¹	Мах	Unit
6	Ρ	Input high voltage; all digital inputs	V _{IH}	$0.65 \times V_{DD}$	—	—	
7	Ρ	Input low voltage; all digital inputs	V _{IL}	—		$0.35 \times V_{DD}$	V
8	D	Input hysteresis; all digital inputs	V _{hys}	$0.06 \times V_{DD}$		—	mV
9	Ρ	Input leakage current; input only pins ²	ll _{ln} l	—	0.1	1	μA
10	Ρ	High Impedance (off-state) leakage current ²	ll _{oz} l		0.1	1	μA
11	Ρ	Internal pullup resistors ³ Internal pullup resistorsPTC0 and PTC1	R _{PU}	20 10	45 22	65 32	kΩ
12	Ρ	Internal pulldown resistors ⁴	R _{PD}	20	45	65	kΩ
13	С	Input Capacitance; all non-supply pins	C _{In}	—	—	8	pF
14	Ρ	POR rearm voltage	V _{POR}	0.9	1.4	2.0	V
15	D	POR rearm time	t _{POR}	10	—	—	μs
16	Ρ	Low-voltage detection threshold — high range V _{DD} falling V _{DD} rising	V _{LVD1}	3.9 4.0	4.0 4.1	4.1 4.2	V
17	Ρ	Low-voltage detection threshold — low range V _{DD} falling V _{DD} rising	V _{LVD0}	2.48 2.54	2.56 2.62	2.64 2.70	v
18	Ρ	Low-voltage warning threshold — high range 1 V _{DD} falling V _{DD} rising	V _{LVW3}	4.5 4.6	4.6 4.7	4.7 4.8	v
19	Ρ	Low-voltage warning threshold — high range 0 V _{DD} falling V _{DD} rising	V _{LVW2}	4.2 4.3	4.3 4.4	4.4 4.5	v
20	Ρ	Low-voltage warning threshold low range 1 V _{DD} falling V _{DD} rising	V _{LVW1}	2.84 2.90	2.92 2.98	3.00 3.06	v
21	Ρ	Low-voltage warning threshold — low range 0 V _{DD} falling V _{DD} rising	V _{LVW0}	2.66 2.72	2.74 2.80	2.82 2.88	v
22	т	Low-voltage inhibit reset/recover hysteresis 5 V 3 V	V _{hys}	—	100 60		mV
23	D	RAM retention voltage	V _{RAM}		0.6	1.0	V
		DC injection current ^{5 6 7 8} (single pin limit) V _{IN} >V _{DD} V _{IN} <v<sub>SS</v<sub>		0 0		2 -0.2	mA
24	D	DC injection current (Total MCU limit, includes sum of all stressed pins) $\begin{array}{c} V_{IN} > V_{DD} \\ V_{IN} < V_{SS} \end{array}$	Ι _{IC}	0 0	—	25 5	mA

Table 9. DC Characteristics (continued)

¹ Typical values are based on characterization data at 25°C unless otherwise stated.

- ² Measured with $V_{In} = V_{DD}$ or V_{SS} .
- ³ Measured with $V_{In} = V_{SS}$.
- ⁴ Measured with $V_{In} = V_{DD}$.

⁵ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

- 6 All functional non-supply pins are internally clamped to V_{SS} and V_{DD}.
- ⁷ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- $^8~$ The $\overline{\text{RESET}}$ pin does not have a clamp diode to $V_{\text{DD}}.$ Do not drive this pin above $V_{\text{DD}}.$

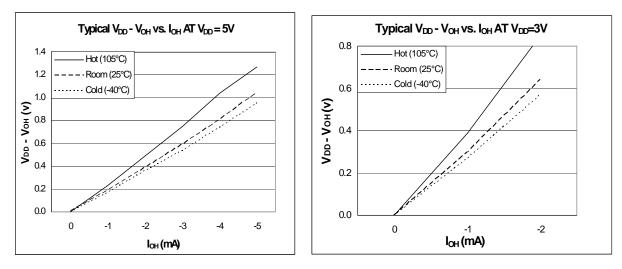


Figure 5. Typical I_{OH} vs. V_{DD} – V_{OH} (Low Drive,PTxDSn = 0)

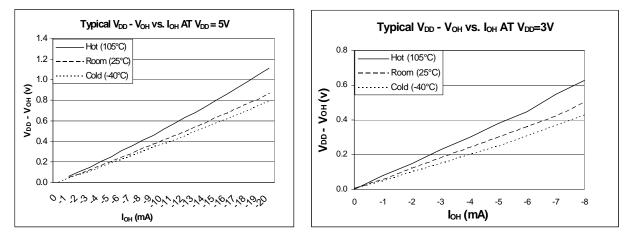


Figure 6. Typical I_{OH} vs. V_{DD} – V_{OH} (High Drive, PTxDSn = 1)

MCF51AG128 ColdFire Microcontroller, Rev. 5

Preliminary Electrical Characteristics

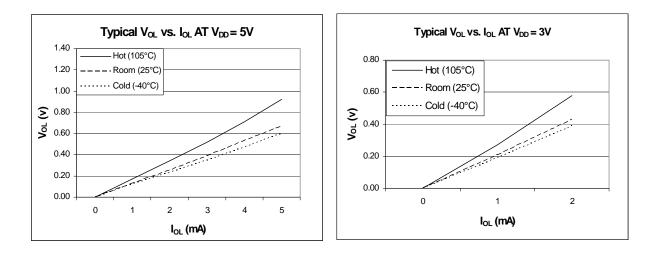


Figure 7. Typical I_{OL} vs. V_{OL} (Low Drive, PTxDSn = 0)

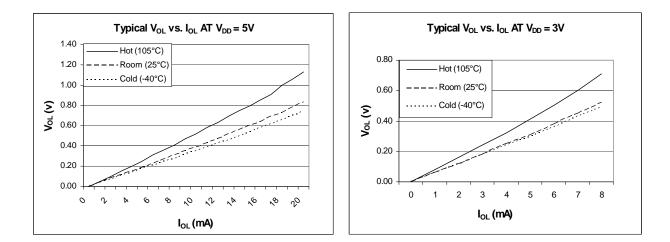


Figure 8. Typical I_{OL} vs. V_{OL} (High Drive, PTxDSn = 1)

Preliminary Electrical Characteristics

Num	с	Characterist ic	Conditions	Symb	Min	Typic al ¹	Max	Unit	Comment
3	D	Ref Voltage High	_	V _{REFH}	2.7	V _{DDA}	V _{DDA}	V	—
4	D	Ref Voltage Low	_	V _{REFL}	V _{SSAD}	V _{SSA}	V _{SSA}	V	—
5	D	Input Voltage	—	V _{ADIN}	V _{REFL}	—	V _{REFH}	V	—
6	С	Input Capacitance	_	C _{ADIN}	_	4.5	5.5	pF	—
7	С	Input Resistance	_	R _{ADIN}	_	3	5	kΩ	—
8	С	Analog Source Resistance	12 bit mode f _{ADCK} > 4 MHz f _{ADCK} < 4 MHz	R _{AS}	_		2 5	kΩ	External to MCU
	С		10 bit mode f _{ADCK} > 4 MHz f _{ADCK} < 4 MHz		_		5 10		
	С		8 bit mode (all valid f _{ADCK})		_	—	10		
9	D	ADC	High Speed (ADLPC = 0)	f _{ADCK}	0.4	—	8.0	MHz	—
	D	Conversion Clock Freq.	Low Power (ADLPC = 1)		0.4	_	4.0		—

Table 12. 5V 12-bit ADC Operating Conditions (continued)

¹ Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

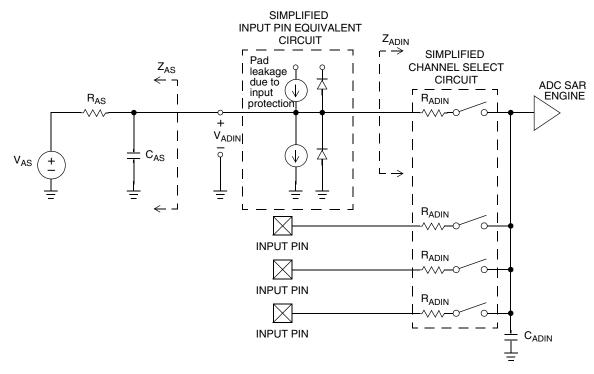


Figure 10. ADC Input Impedance Equivalency Diagram

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
1	Т	Supply Current ADLPC = 1 ADLSMP = 1 ADCO = 1	-	I _{DDAD}	_	181		μA	_
2	Т	Supply Current ADLPC = 1 ADLSMP = 0 ADCO = 1	_	I _{DDAD}	_	334		μA	_
3	Т	Supply Current ADLPC = 0 ADLSMP = 1 ADCO = 1	_	I _{DDAD}	_	385	_	μA	_
4	D	Supply Current ADLPC = 0 ADLSMP = 0 ADCO = 1	_	I _{DDAD}	_	0.717	1	mA	_
5	Т	Supply Current	Stop, Reset, Module Off	I _{DDAD}		0.065	1	μA	—

Table 13. 5 V 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

Preliminary Electrical Characteristics

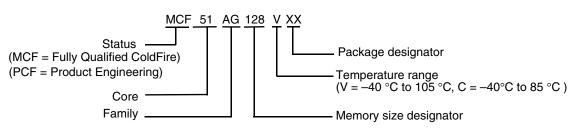
				Γ				1	
Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
6	Р	ADC Asynchronous Clock Source	High Speed (ADLPC = 0)	f _{ADACK}	2	3.3	5	MHz	t _{ADACK} = 1/f _{ADACK}
		Clock Source	Low Power (ADLPC = 1)		1.25	2	3.3		
7	Р	Conversion Time (Including	Short Sample (ADLSMP = 0)	t _{ADC}	_	20	_	ADCK cycles	See Table 10 for conversion time
		sample time)	Long Sample (ADLSMP = 1)		_	40	_		variances
8	Т	Sample Time	Short Sample (ADLSMP = 0)	t _{ADS}	_	3.5	_	ADCK cycles	
			Long Sample (ADLSMP = 1)		—	23.5	—		
9	Т	Total	12 bit mode	E _{TUE}		±3.0	_	LSB ²	Includes
	Р	Unadjusted Error	10 bit mode	-		±1	±2.5		quantization
	Т		8 bit mode	-		±0.5	±1.0		
10	Т	Differential	12 bit mode	DNL	_	±1.75	_	LSB ²	—
	Р	Non-Linearity	10 bit mode ³	-	_	±0.5	±1.0]	
	т		8 bit mode ⁵	-	_	±0.3	±0.5		
11	Т	Integral	12 bit mode	INL	—	±1.5	—	LSB ²	—
	Р	Non-Linearity	10 bit mode		—	±0.5	±1.0		
	Т		8 bit mode	-	_	±0.3	±0.5		
12	Т	Zero-Scale	12 bit mode	E _{ZS}	—	±1.5	—	LSB ²	V _{ADIN} = V _{SSAD}
	Р	Error	10 bit mode		—	±0.5	±1.5		
	Т		8 bit mode		—	±0.5	±0.5		
13	Т	Full-Scale Error	12 bit mode	E _{FS}	—	±1	_	LSB ²	$V_{ADIN} = V_{DDAD}$
	Р		10 bit mode		_	±0.5	±1		
	Т		8 bit mode		—	±0.5	±0.5		
14	D	Quantization	12 bit mode	EQ	—	-1 to 0	—	LSB ²	—
		Error	10 bit mode		—	—	±0.5		
			8 bit mode		_	_	±0.5		
15	D	Input Leakage	12 bit mode	E _{IL}	_	±1	_	LSB ²	Pad leakage ⁴ *
		Error	10 bit mode			±0.2	±2.5		R _{AS}
			8 bit mode			±0.1	±1		

Table 13. 5 V 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
10	D	FLL acquisition time ³	t _{fll_acquire}	—		1	ms
11	D	Long term Jitter of DCO output clock (averaged over 2ms interval) ⁴	C _{Jitter}	_	0.02	0.2	%f _{dco}
12	D	 Loss of external clock minimum freq. (RANGE = 0) ext. clock freq: above (3/5)f_{int}, never reset ext. clock freq: between (2/5)f_{int} and (3/5)f_{int}, maybe reset (phase dependency) ext. clock freq: below (2/5)f_{int}, always reset 	f _{loc_low}	(3/5) x f _{int}	_	_	kHz
13	D	 Loss of external clock minimum freq. (RANGE = 1) ext. clock freq: above (16/5)f_{int}, never reset ext. clock freq: between (15/5)f_{int} and (16/5)f_{int}, maybe reset (phase dependency) ext. clock freq: below (15/5)f_{int}, always reset 	floc_high	(16/5) x f _{int}	_	_	kHz

Table 15. ICS Frequency Specifications (continued)(Temperature Range = -40 to 105 °C Ambient)

¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value


² The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

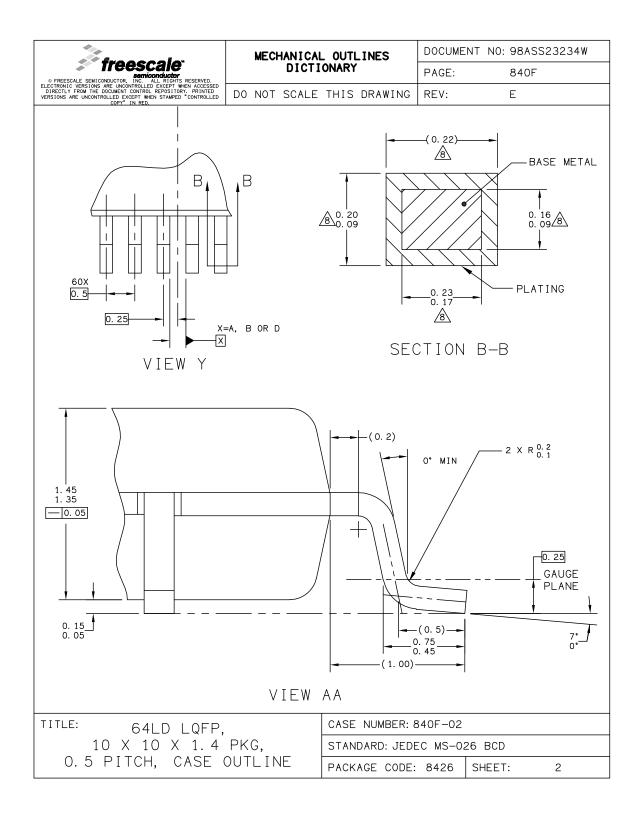
³ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

⁴ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{BUS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry by V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval. **Ordering Information**

3 Ordering Information

This section contains ordering information for MCF51AG128 devices.

Table 20. Orderable Part Number Summary


Freescale Part Number	Description	Flash / SRAM (KB)	Package	Temperature
MCF51AG128VLK	MCF51AG128 ColdFire Microcontroller	128 / 16	80 LQFP	–40°C to 105°C
MCF51AG128VLH	MCF51AG128 ColdFire Microcontroller	128 / 16	64 LQFP	–40°C to 105°C
MCF51AG128VQH	MCF51AG128 ColdFire Microcontroller	128 / 16	64 QFP	–40°C to 105°C
MCF51AG128VLF	MCF51AG128 ColdFire Microcontroller	128 / 16	48 LQFP	–40°C to 105°C
MCF51AG96VLK	MCF51AG96 ColdFire Microcontroller	96 / 16	80 LQFP	–40°C to 105°C
MCF51AG96VLH	MCF51AG96 ColdFire Microcontroller	96 / 16	64 LQFP	–40°C to 105°C
MCF51AG96VQH	MCF51AG96 ColdFire Microcontroller	96 / 16	64 QFP	–40°C to 105°C
MCF51AG96VLF	MCF51AG96 ColdFire Microcontroller	96 / 16	48 LQFP	–40°C to 105°C

4 Package Information

Table 21. Package Descriptions

Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
80	Low Quad Flat Package	LQFP	LK	917A	98ASS23237W
64	Low Quad Flat Package	LQFP	LH	840F	98ASS23234W
64	Quad Flat Package	QFP	QH	840B	98ASB42844B
48	Low Quad Flat Package	LQFP	LF	932	98ASH00962A

- 5 Mechanical Outline Drawings
- 5.1 80-pin LQFP Package

Mechanical Outline Drawings

5.4 48-pin LQFP Package

6 Revision History

Table 22. Revision History

Rev. No.	Date	Description		
1	11/2008	Initial Draft Release.		
2	4/2009	Internal Release.		
3	5/2009	Alpha Customer Release.		
4	12/2009	 Added 48-pin LQFP information; Updated Section 2.5/17 and 2.6/21. Provided the supply current in Section 2.7/23, and setup delay in Section 2.8/23. 		
5	6/2010	 Updated Table 10. Added Figure 9. Corrected pin names of PTG6 and PTG5 in 48-pin LQFP. Standardized Generation 2008 Watchdog to Watchdog. In Table 9, updated Output high/low voltage — Low Drive (PTxDSn = 0) 3 V, I_{Load} value. 		

THIS PAGE INTENTIONALLY BLANK

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF51AG128 Rev. 5 6/2010 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2010. All rights reserved.

