

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	SCI, SPI
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	39
Program Memory Size	128KB (128K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf51ag128vlf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MCF51AG128 Family Configurations

1 MCF51AG128 Family Configurations

1.1 Device Comparison

The following table compares the various device derivatives available within the MCF51AG128 series MCUs. **Table 1. MCF51AG128 Series Device Comparison**

Frature		MCF51AG128	8	MCF51AG96				
Feature	80-pin	64-pin	48-pin	80-pin	64-pin	48-pin		
Flash memory size (KB)		128			96			
RAM size (KB)			1	16				
ColdFire V1 core with BDM (background debug module)	Yes							
HSCMP (analog comparator)	2	2	1	2	2	1		
ADC (analog-to-digital converter) channels (12-bit)	24	19	12	24	19	12		
CRC (cyclic redundancy check)		•	Y	′es				
DAC	2	2	1	2	2	1		
DMA controller			4-	-ch				
iEvent (intelligent Event module)			Y	′es				
EWM (External Watchdog Monitor)	Yes							
WDOG (Watchdog timer)	Yes							
RTC			Y	és				
DBG (debug module)			Y	és				
IIC (inter-integrated circuit)	1	1	No	1	1	No		
IRQ (interrupt request input)	Yes							
INTC (interrupt controller)	Yes							
LVD (low-voltage detector)	Yes							
ICS (internal clock source)	Yes							
OSC (crystal oscillator)	Yes							
Port I/O ¹	69	53	39	69	53	39		
RGPIO (rapid general-purpose I/O)	16	16	15	16	16	15		
SCI (serial communications interface)	2							
SPI1 (serial peripheral interface)			Y	′es				
SPI2 (serial peripheral interface)	Yes	No	No	Yes	No	No		
FTM1 (flexible timer module) channels			6	6 ²				
FTM2 channels	6 ²							

MCF51AG128 Family Configurations

Figure 1. MCF51AG128 Series MCUs Block Diagram

1.3 Features

Table 2 describes the functional units of the MCF51AG128 series.

Functional Unit	Function
CF1Core (V1 ColdFire core)	Executes programs and interrupt handlers
BDM (background debug module)	Provides single pin debugging interface (part of the V1 ColdFire core)
DBG (debug)	Provides debugging and emulation capabilities (part of the V1 ColdFire core)
VBUS (debug visibility bus)	Allows for real-time program traces (part of the V1 ColdFire core)
SIM (system integration module)	Controls resets and chip level interfaces between modules
Flash (flash memory)	Provides storage for program code, constants, and variables
RAM (random-access memory)	Provides storage for program variables
RGPIO (rapid general-purpose input/output)	Allows for I/O port access at CPU clock speeds
VREG (voltage regulator)	Controls power management across the device
LVD (low-voltage detect)	Monitors internal and external supply voltage levels, and generates a reset or interrupt when the voltages are too low
CF1_INTC (interrupt controller)	Controls and prioritizes all device interrupts
ADC (analog-to-digital converter)	Measures analog voltages at up to 12 bits of resolution
FTM1, FTM2 (flexible timer/pulse-width modulators)	Provide a variety of timing-based features
TPM3 (timer/pulse-width modulator)	Provides a variety of timing-based features
CRC (cyclic redundancy check)	Accelerates computation of CRC values for ranges of memory
HSCMP1, HSCMP2 (analog comparators)	Compare two analog inputs
DAC1, DAC2 (digital-to-analog converter)	Provide programmable voltage reference for HSCMPx
IIC (inter-integrated circuit)	Supports standard IIC communications protocol
ICS (internal clock source)	Provides clocking options for the device, including a frequency-locked loop (FLL) for multiplying slower reference clock sources
OSC (crystal oscillator)	Allows a crystal or ceramic resonator to be used as the system clock source or reference clock for the FLL
SCI1, SCI2 (serial communications interfaces)	Serial communications UARTs capable of supporting RS-232 and LIN protocols
SPI1, SPI2 (8/16-bit serial peripheral interfaces)	Provide 8/16-bit 4-pin synchronous serial interface
DMA	Provides the means to directly transfer data between system memory and I/O peripherals
iEvent	Highly programmable module for creating combinational boolean outputs for use as interrupt requests, DMA transfer requests, or hardware triggers
EWM (External Watchdog Monitor)	Additional watchdog system to help reset external circuits

1.4 Pin Assignments

This section describes the pin assignments for the available packages.

Figure 2 shows the pinout of the 80-pin LQFP.

Figure 2. 80-Pin LQFP

Figure 4 shows the pinout of the 48-pin LQFP.

Figure 4. 48-Pin LQFP

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to 5.8	V
Input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	I _D	±25	mA
Maximum current into V _{DD}	I _{DD}	120	mA
Storage temperature	⊤ _{stg}	-55 to 150	°C

Table 5. Absolute Maximum Ratings

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2~$ All functional non-supply pins are internally clamped to V_{SS} and $V_{DD}.$

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.

2.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} is very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	-40 to 105	°C
Maximum junction temperature	Τ _J	150	°C
Thermal resistance 1,2,3,4			
80-pin LQFP 1s 2s2p 64-pin QFP 1s 2s2p 64-pin LQFP	θ _{JA}	56 45 54 41	°C/W
1s 2s2p 48-pin LQFP 1s 2s2p		67 49 69 51	

Table	6.	Thermal	Characteristics
10010	•••	i iioi iiiai	01101000

- ¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- ² Junction to Ambient Natural Convection
- ³ 1s Single layer board, one signal layer
- ⁴ 2s2p Four layer board, 2 signal and 2 power layers

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

$$\begin{split} T_A &= \text{Ambient temperature, } ^{\circ}\text{C} \\ \theta_{JA} &= \text{Package thermal resistance, junction-to-ambient, } ^{\circ}\text{C/W} \\ P_D &= P_{int} + P_{I/O} \\ P_{int} &= I_{DD} \times V_{DD}, \text{Watts } - \text{chip internal power} \\ P_{I/O} &= \text{Power dissipation on input and output pins } - \text{user determined} \end{split}$$

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273 \ ^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

2.4 Electrostatic Discharge (ESD) Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.

A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete dc parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Table 7.	ESD	and	Latch-up	Test	Conditions
----------	-----	-----	----------	------	------------

Model	Description	Symbol	Value	Unit
Human Body	Series Resistance	R1	1500	Ω
	Storage Capacitance	С	100	pF
	Number of Pulse per pin	—	3	—

Model	Description	Symbol	Value	Unit
Latch-up	Minimum input voltage limit	—	-2.5	V
	Maximum input voltage limit	—	7.5	V

Table 7. ESD and Latch-up Test Conditions (continued)

Table 8. ESD and Latch-Up Protection Characteristics

Num	Rating	Symbol	Min	Max	Unit
1	Human Body Model (HBM)	V _{HBM}	±2000	—	V
2	Charge Device Model (CDM)	V _{CDM}	±500		V
3	Latch-up Current at $T_A = 85^{\circ}C$	ILAT	±100		mA

2.5 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Num	С	Parameter	Symbol	Min	Typical ¹	Мах	Unit
1	—	Operating voltage		2.7	_	5.5	V
		Output high voltage — Low Drive (PTxDSn = 0) $5 \text{ V}, \text{ I}_{Load} = -5 \text{ mA}$ $3 \text{ V}, \text{ I}_{Load} = -1.5 \text{ mA}$ $5 \text{ V}, \text{ I}_{Load} = -3 \text{ mA}, \text{ PTC0 and PTC1}$ $3 \text{ V}, \text{ I}_{Load} = -1.5 \text{ mA}, \text{ PTC0 and PTC1}$	Vou	$V_{DD} - 1.5$ $V_{DD} - 0.8$ $V_{DD} - 0.4$ $V_{DD} - 0.4$		 	
2	Ρ	Output high voltage — High Drive (PTxDSn = 1) $5 \text{ V}, \text{ I}_{\text{Load}} = -20 \text{ mA}$ $3 \text{ V}, \text{ I}_{\text{Load}} = -8 \text{ mA}$ $5 \text{ V}, \text{ I}_{\text{Load}} = -12 \text{ mA}, \text{ PTC0 and PTC1}$ $3 \text{ V}, \text{ I}_{\text{Load}} = -8 \text{ mA}, \text{ PTC0 and PTC1}$	VOH	V _{DD} - 1.5 V _{DD} - 0.8 V _{DD} - 0.4 V _{DD} - 0.4		 	V
		Output low voltage — Low Drive (PTxDSn = 0) $5 \text{ V}, \text{ I}_{Load} = 5 \text{ mA}$ $3 \text{ V}, \text{ I}_{Load} = 1.5 \text{ mA}$ $5 \text{ V}, \text{ I}_{Load} = 3 \text{ mA}, \text{ PTC0 and PTC1}$ $3 \text{ V}, \text{ I}_{Load} = 1.5 \text{ mA}, \text{ PTC0 and PTC1}$	N.			1.5 0.8 0.4 0.4	
3	Ρ	Output low voltage — High Drive (PTxDSn = 1) $5 \text{ V}, \text{ I}_{Load} = 20 \text{ mA}$ $3 \text{ V}, \text{ I}_{Load} = 8 \text{ mA}$ $5 \text{ V}, \text{ I}_{Load} = 12 \text{ mA}, \text{ PTC0 and PTC1}$ $3 \text{ V}, \text{ I}_{Load} = 8 \text{ mA}, \text{ PTC0 and PTC1}$	VOL			1.5 0.8 0.4 0.4	V
4	С	Output high current — Max total I _{OH} for all ports 5V 3V	I _{OHT}	_	_	100 60	mA
5	С	Output low current — Max total I _{OL} for all ports 5 V 3 V	I _{OLT}			100 60	mA

Table 9. DC Characteristics

MCF51AG128 ColdFire Microcontroller, Rev. 5

Figure 10. ADC Input Impedance Equivalency Diagram

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
1	Т	Supply Current ADLPC = 1 ADLSMP = 1 ADCO = 1	_	I _{DDAD}	_	181	_	μA	_
2	Т	Supply Current ADLPC = 1 ADLSMP = 0 ADCO = 1	_	I _{DDAD}		334	_	μA	_
3	Т	Supply Current ADLPC = 0 ADLSMP = 1 ADCO = 1	_	I _{DDAD}	_	385		μA	_
4	D	Supply Current ADLPC = 0 ADLSMP = 0 ADCO = 1	_	I _{DDAD}	_	0.717	1	mA	_
5	Т	Supply Current	Stop, Reset, Module Off	I _{DDAD}	—	0.065	1	μA	_

Table 13. 5 V 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$)

- ² When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.
- ³ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications.
- ⁴ 4 MHz crystal

2.11 ICS Specifications

Table	15. ICS Fre	auencv S	pecifications	(Tem	perature	Range	= -40 to	105 °C	C Ambi	ient)
IUNIC	10.100110	queney e	peomoutions		sciulaic	nunge		100 1		

Num	С	Rat	ing	Symbol	Min	Typical ¹	Max	Unit
1	С	Internal reference frequency - factory trimmed at V_{DD} = 5 V and temperature = 25 °C		f _{int_ft}	—	32.768	—	kHz
2	С	Average internal reference	f _{int_ut}	31.25	—	39.06	kHz	
3	Т	Internal reference startup ti	ime	t _{irefst}	—	60	100	μS
4	С	DCO output frequency	Low range (DRS = 00)	f _{dco_ut}	16	—	20	MHz
	С	range - untrimmed ²	Mid range (DRS = 01)		32	—	40	
	С		High range (DRS = 10)		48	—	60	
5	Ρ	DCO output frequency ² Reference =32768Hz	Low range (DRS = 00)	f _{dco_DMX32}	—	16.82	_	MHz
	Ρ		Mid range (DRS = 01)		_	33.69	_	
	Ρ	and $DWX32 = 1$	High range (DRS = 10)		_	50.48	_	
6	D	Resolution of trimmed DCO output frequency at fixed voltage and temperature (using FTRIM)		$\Delta f_{dco_res_t}$	—	±0.1	±0.2	%f _{dco}
7	D	Resolution of trimmed DCO output frequency at fixed voltage and temperature (not using FTRIM)		$\Delta f_{dco_res_t}$	—	±0.2	±0.4	%f _{dco}
8	D	Total deviation of trimmed DCO output frequency over full voltage and temperature range		Δf_{dco_t}	_	0.5 -1.0	±2	%f _{dco}
9	D	Total deviation of trimmed DCO output frequency over fixed voltage and temperature range of 0 -70 °C		Δf_{dco_t}	_	±0.5	±1	%f _{dco}

2.12.3 SPI Characteristics

Table 18 and Figure 15 through Figure 18 describe the timing requirements for the SPI system.

No.	С	Function	Symbol	Min	Max	Unit
_	D	Operating frequency Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz
1	D	SPSCK period Master Slave	t _{SPSCK}	2 4	2048	t _{cyc} t _{cyc}
2	D	Enable lead time Master Slave	t _{Lead}	1/2 1		t _{SPSCK} t _{сус}
3	D	Enable lag time Master Slave	t _{Lag}	1/2 1		t _{SPSCK} t _{сус}
4	D	Clock (SPSCK) high or low time Master Slave	t _{WSPSCK}	t _{cyc} – 30 t _{cyc} – 30	1024 t _{cyc}	ns ns
5	D	Data setup time (inputs) Master Slave	t _{SU}	30 30		ns ns
6	D	Data hold time (inputs) Master Slave	t _{HI}	10 10	_	ns ns
7	D	Slave access time	t _a	—		t _{cyc}
8	D	Slave MISO disable time	t _{dis}			t _{cyc}
9	D	Data valid time (maximum delay after SPCLK edge to Data output) Master Slave	tv1		25 70	ns ns
10	D	Data hold time (minimum delay after SPCLK edge to Data output) Master Slave	t _{HO} 1	10 10		ns ns

Table 18. SPI Timing Characteristics

¹ SPI Output Load = 30 pf

1. Not defined but normally MSB of character just received

Figure 18. SPI Slave Timing (CPHA = 1)

2.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the Flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see *MCF51AG128 Reference Manual*.

Mechanical Outline Drawings

Mechanical Outline Drawings

5.2 64-pin LQFP Package

5.3 64-pin QFP Package

	MECHANICAL OUTLINES		DOCUMENT NO: 98ASB42844B						
© FREESCALE SEVICONDUCTOR, INC. ALL RIGHTS RESERVED.		NARY	PAGE:	840	ЭВ				
ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY, PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE THIS DRAWING		REV:	В					
NOTES:									
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.									
2. CONTROLLING DIMENSION: MILLIMETER.									
3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.									
4. DATUMS A-B AND -D- TO I	BE DETERMINED AT	DATUM PLANE	-H						
A DIMENSIONS TO BE DETERMIN	ED AT SEATING PL	ANE -C							
A DIMENSIONS DO NOT INCLUDE SIDE. DIMENSIONS DO INCLUE	MOLD PROTRUSIO DE MOLD MISMATCH	N. ALLOWABLE P 1 AND ARE DETE	ROTRUSIC RMINED A	N IS 0.251 T DATUM	mm PER PLANE -H				
A DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08mm TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDICTION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT.									
TITLE:		CASE NUMBER: 8	340B-01						
64LD QFP (14 X	(14)	STANDARD: NON-	ANDARD: NON-JEDEC						
		PACKAGE CODE:	6057	SHEET:	3 OF 4				

Mechanical Outline Drawings

5.4 48-pin LQFP Package

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MCF51AG128 Rev. 5 6/2010 Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see http://www.freescale.com or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to http://www.freescale.com/epp.

Freescale[™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2010. All rights reserved.

