

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	SCI, SPI
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	39
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf51ag96clf

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MCF51AG128 Family Configurations

Feature	I	MCF51AG128	3	MCF51AG96			
reature	80-pin	64-pin	48-pin	80-pin	64-pin	48-pin	
TPM3 (timer pulse-width modulator) channels			2	2			
Debug Visibility Bus	Yes	No	No	Yes	No	No	

Table 1. MCF51AG128 Series Device Comparison (continued)

¹ Up to 16 pins on Ports E and F are shared with the ColdFire Rapid GPIO module.

² Some pins of FTMx might not be bonded on small package, therefore these channels could be used as soft timer only.

1.2 Block Diagram

Figure 1 shows the connections between the MCF51AG128 series pins and modules.

MCF51AG128 Family Configurations

Functional Unit	Function
WDOG (Watchdog timer)	keeps a watch on the system functioning and resets it in case of its failure
RTC (Real Time Counter)	Provides a constant time-base with optional interrupt

Table 2. MCF51AG128 Series Functional Units (continued)

Figure 4 shows the pinout of the 48-pin LQFP.

Figure 4. 48-Pin LQFP

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to 5.8	V
Input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	I _D	±25	mA
Maximum current into V _{DD}	I _{DD}	120	mA
Storage temperature	⊤ _{stg}	-55 to 150	°C

Table 5. Absolute Maximum Ratings

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2~$ All functional non-supply pins are internally clamped to V_{SS} and $V_{DD}.$

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.

2.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} is very small.

Rating	Symbol	Value	Unit
Operating temperature range (packaged)	T _A	-40 to 105	°C
Maximum junction temperature	Τ _J	150	°C
Thermal resistance 1,2,3,4			
80-pin LQFP 1s 2s2p 64-pin QFP 1s 2s2p 64-pin LQFP	θ _{JA}	56 45 54 41	°C/W
1s 2s2p 48-pin LQFP 1s 2s2p		67 49 69 51	

Table	6.	Thermal	Characteristics
10010	•••	i iioi iiiai	01101000

¹ Typical values are based on characterization data at 25°C unless otherwise stated.

- ² Measured with $V_{In} = V_{DD}$ or V_{SS} .
- ³ Measured with $V_{In} = V_{SS}$.
- ⁴ Measured with $V_{In} = V_{DD}$.

⁵ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if clock rate is very low (which would reduce overall power consumption).

- 6 All functional non-supply pins are internally clamped to V_{SS} and V_{DD}.
- ⁷ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive and negative clamp voltages, then use the larger of the two values.
- $^8~$ The $\overline{\text{RESET}}$ pin does not have a clamp diode to $V_{\text{DD}}.$ Do not drive this pin above $V_{\text{DD}}.$

Figure 5. Typical I_{OH} vs. V_{DD} – V_{OH} (Low Drive,PTxDSn = 0)

Figure 6. Typical I_{OH} vs. V_{DD} – V_{OH} (High Drive, PTxDSn = 1)

MCF51AG128 ColdFire Microcontroller, Rev. 5

2.6 Supply Current Characteristics

Num	С	Parameter	Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit
1	С	Run supply current ³ measured at 4 MHz CPU	RI _{DD}	5	5.8	7	
		clock (All Peripheral Clocks are ON)		3	5.7	7	mA
2	С	Run supply current ³ measured at 16 MHz CPU		5	21	25	
		clock (All Peripheral Clocks are ON)		3	20.9	25	mA
3	С	Run supply current ³ measured at 32 MHz CPU		5	39.2	50	mA
		clock (All Peripheral Clocks are ON)		3	39.1	50	
4	Р	Run supply current ³ measured at 50MHz CPU		5	57.9	70	
		clock (All Peripheral Clocks are ON)		3	57.8	70	mA
5	С	Run supply current ³ measured at 4 MHz CPU	RI _{DD}	5	4.7	6	
		clock (All Peripheral Clocks are OFF ⁺)		3	4.6	6	mA
6	С	Run supply current ³ measured at 16 MHz CPU		5	16.1	20	
		Clock (All Peripheral Clocks are OFF ⁺)		3	15.9	20	mA
7	С	Run supply current ³ measured at 32 MHz CPU clock (All Peripheral Clocks are OFF ⁴)		5	29	35	mA
				3	28.9	35	
8	С	Run supply current ³ measured at 50 MHz CPU		5	44.1	50	
		Clock (All Peripheral Clocks are OFF ⁺)		3	44.0	50	mA
9	С	Wait supply current ³ measured at 4 MHz CPU	WI _{DD}	5	3.2	5	
		CIOCK		3	3.2	5	mA
10	С	Wait supply current ³ measured at 16 MHz		5	10.1	13	
		СРО сюск		3	10	13	mA
11	С	Wait supply current ³ measured at 32 MHz		5	19	25	
		CPU clock		3	18.8	25	mA
12	С	Wait supply current ³ measured at 50 MHz		5	29.2	40	
				3	29	40	mA
13	C P C	Stop2 mode supply current -40 °C 25 °C 105 °C	S2I _{DD}	5	1.17 1.35 28.6	3 3 40	μΑ
	C P C	–40 °C 25 °C 105 °C		3	1.0 1.34 26.8	3 3 40	μA

Table 10. Supply Current Characteristics

2.7 High Speed Comparator (HSCMP) Electricals

Num	С	Rating	Symbol	Min	Typical	Мах	Unit
1	_	Supply voltage	V _{DD}	2.7	—	5.5	V
2	Т	Supply current, high speed mode (EN = 1, PMODE = 1)	I _{DDAHS}	—	200	—	μA
3	Т	Supply current, low speed mode (EN = 1, PMODE = 0)	I _{DDALS}	_	20	—	μA
4	_	Analog input voltage	V _{AIN}	$V_{SS} - 0.3$	—	V _{DD}	V
5	D	Analog input offset voltage	V _{AIO}	—	5	40	mV
6	D	Analog Comparator hysteresis	V _H	3.0	9.0	20.0	mV
7	D	Propagation delay, high speed mode (EN = 1, PMODE = 1)	t _{DHS}	_	70	120	ns
8	D	Propagation delay, low speed mode (EN = 1, PMODE = 0)	t _{DLS}	—	400	600	ns
9	D	Analog Comparator initialization delay	t _{AINIT}	_	400	_	ns

Table 11. HSCMP Electrical Specifications

2.8 Digital to Analog (DAC) Characteristics

Num	С	Rating	Symbol	Min	Typical	Max	Unit
1	D	Supply voltage	V _{DDA}	2.7	_	5.5	V
2	D	Supply current (enabled)	I _{DDAC}	—	_	20	μA
3	D	Supply current (stand-by)	IDDACS	_		150	nA
4	D	DAC reference input voltage	$V_{in1,}V_{in2}$	V _{SSA}	_	V _{DDA}	V
5	D	DAC setup delay	t _{PRGST}	—	1000	—	nS
6	D	DAC step size	V _{step}	3V _{in} /128	V _{in} /32	5V _{in} /128	V
7	D	DAC output voltage range	V _{dacout}	V _{in} /32	_	V _{in}	V
8	Р	Bandgap voltage reference factory trimmed at $V_{DD} = 5 V$, Temp = 25 °C	V _{BG}	1.18	1.20	1.21	V

2.9 ADC Characteristics

Table 12. 5V 12-bit ADC Operating Conditions
--

Num	с	Characterist ic	Conditions	Symb	Min	Typic al ¹	Max	Unit	Comment
1	D	Supply	Absolute	V _{DDA}	2.7	_	5.5	V	_
		voltage	Delta to V _{DD} (V _{DD} –V _{DDA}) ²	ΔV_{DDA}	-100	0	100	mV	_
2	D	Ground voltage	Delta to V _{SS} (V _{SS} –V _{SSA}) ²	ΔV_{SSA}	-100	0	100	mV	—

Num	с	Characterist ic	Conditions	Symb	Min	Typic al ¹	Мах	Unit	Comment
3	D	Ref Voltage High	_	V _{REFH}	2.7	V _{DDA}	V _{DDA}	V	
4	D	Ref Voltage Low	_	V _{REFL}	V _{SSAD}	V _{SSA}	V _{SSA}	V	_
5	D	Input Voltage	_	V _{ADIN}	V _{REFL}	—	V _{REFH}	V	_
6	С	Input Capacitance	—	C _{ADIN}	—	4.5	5.5	pF	_
7	С	Input Resistance	—	R _{ADIN}	—	3	5	kΩ	_
8	С	Analog Source Resistance	12 bit mode f _{ADCK} > 4 MHz f _{ADCK} < 4 MHz	R _{AS}	_	_	2 5	kΩ	External to MCU
	С		10 bit mode f _{ADCK} > 4 MHz f _{ADCK} < 4 MHz		_	_	5 10		
	С		8 bit mode (all valid f _{ADCK})		—	—	10		
9	D	ADC	High Speed (ADLPC = 0)	f _{ADCK}	0.4		8.0	MHz	
	D	Clock Freq.	Low Power (ADLPC = 1)		0.4	_	4.0		

Table 12. 5V 12-bit ADC Operating Conditions (continued)

¹ Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

- ² When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.
- ³ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications.
- ⁴ 4 MHz crystal

2.11 ICS Specifications

Table	15. ICS Fre	auencv S	pecifications	(Tem	perature	Range	= -40 to	105 °C	C Ambi	ient)
IUNIC	10.100110	queney e	peomoutions		sciulaic	nunge		100 1		

Num	С	Rat	ing	Symbol	Min	Typical ¹	Max	Unit
1	С	Internal reference frequenc = 5 V and temperature = 25	y - factory trimmed at V _{DD} 5 °C	f _{int_ft}	—	32.768	—	kHz
2	С	Average internal reference frequency – untrimmed		f _{int_ut}	31.25	—	39.06	kHz
3	Т	Internal reference startup ti	ime	t _{irefst}	—	60	100	μS
4	С	DCO output frequency	Low range (DRS = 00)	f _{dco_ut}	16	—	20	MHz
	С	range - untrimmed ²	Mid range (DRS = 01)		32	—	40	
	С		High range (DRS = 10)		48	—	60	
5	Ρ	DCO output frequency ²	Low range (DRS = 00)	f _{dco_DMX32}	—	16.82	_	MHz
	Ρ	Reference =32768Hz	Mid range (DRS = 01)		_	33.69	_	
	Ρ	and $DWX32 = 1$	High range (DRS = 10)		_	50.48	_	
6	D	Resolution of trimmed DCC voltage and temperature (u	O output frequency at fixed sing FTRIM)	$\Delta f_{dco_res_t}$	_	±0.1	±0.2	%f _{dco}
7	D	Resolution of trimmed DCC voltage and temperature (n	O output frequency at fixed ot using FTRIM)	$\Delta f_{dco_res_t}$	—	±0.2	±0.4	%f _{dco}
8	D	Total deviation of trimmed DCO output frequency over full voltage and temperature range		Δf_{dco_t}	_	0.5 -1.0	±2	%f _{dco}
9	D	Total deviation of trimmed D fixed voltage and temperati	DCO output frequency over ure range of 0 –70 °C	Δf_{dco_t}	—	±0.5	±1	%f _{dco}

Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
10	D	FLL acquisition time ³	t _{fll_acquire}	—	—	1	ms
11	D	Long term Jitter of DCO output clock (averaged over 2ms interval) ⁴	C _{Jitter}	—	0.02	0.2	%f _{dco}
12	D	 Loss of external clock minimum freq. (RANGE = 0) ext. clock freq: above (3/5)f_{int}, never reset ext. clock freq: between (2/5)f_{int} and (3/5)f_{int}, maybe reset (phase dependency) ext. clock freq: below (2/5)f_{int}, always reset 	f _{loc_low}	(3/5) x f _{int}	_	_	kHz
13	D	 Loss of external clock minimum freq. (RANGE = 1) ext. clock freq: above (16/5)f_{int}, never reset ext. clock freq: between (15/5)f_{int} and (16/5)f_{int}, maybe reset (phase dependency) ext. clock freq: below (15/5)f_{int}, always reset 	f _{loc_high}	(16/5) x f _{int}	_	_	kHz

Table 15. ICS Frequency Specifications (continued)(Temperature Range = -40 to 105 °C Ambient)

¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value

² The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

³ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

⁴ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{BUS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry by V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

2.12.3 SPI Characteristics

Table 18 and Figure 15 through Figure 18 describe the timing requirements for the SPI system.

No.	С	Function	Symbol	Min	Max	Unit
_	D	Operating frequency Master Slave	f _{op}	f _{Bus} /2048 0	f _{Bus} /2 f _{Bus} /4	Hz
1	D	SPSCK period Master Slave	t _{SPSCK}	2 4	2048	t _{cyc} t _{cyc}
2	D	Enable lead time Master Slave	t _{Lead}	1/2 1		t _{SPSCK} t _{сус}
3	D	Enable lag time Master Slave	t _{Lag}	1/2 1		t _{SPSCK} t _{сус}
4	D	Clock (SPSCK) high or low time Master Slave	t _{WSPSCK}	t _{cyc} – 30 t _{cyc} – 30	1024 t _{cyc}	ns ns
5	D	Data setup time (inputs) Master Slave	t _{SU}	30 30		ns ns
6	D	Data hold time (inputs) Master Slave	t _{HI}	10 10		ns ns
7	D	Slave access time	t _a	—		t _{cyc}
8	D	Slave MISO disable time	t _{dis}			t _{cyc}
9	D	Data valid time (maximum delay after SPCLK edge to Data output) Master Slave	tv1		25 70	ns ns
10	D	Data hold time (minimum delay after SPCLK edge to Data output) Master Slave	t _{HO} 1	10 10		ns ns

Table 18. SPI Timing Characteristics

¹ SPI Output Load = 30 pf

1. Not defined but normally MSB of character just received

Figure 18. SPI Slave Timing (CPHA = 1)

2.13 Flash Specifications

This section provides details about program/erase times and program-erase endurance for the Flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see *MCF51AG128 Reference Manual*.

Num	С	Characteristic	Symbol	Min	Typical ¹	Max	Unit
1	—	Supply voltage for program/erase	V _{prog/erase}	2.7		5.5	V
2	—	Supply voltage for read operation	V _{Read}	2.7		5.5	V
3	—	Internal FCLK frequency ²	f _{FCLK}	150		200	kHz
4	—	Internal FCLK period (1/FCLK)	t _{Fcyc}	5		6.67	μS
5	—	Byte program time (random location) ²	t _{prog}	9			t _{Fcyc}
6	—	Byte program time (burst mode) ²	t _{Burst}	4			t _{Fcyc}
7	—	Page erase time ³	t _{Page}	4000			t _{Fcyc}
8	—	Mass erase time ²	t _{Mass}	20,000			t _{Fcyc}
9	С	Program/erase endurance ⁴ T_L to $T_H = -40$ °C to 105 °C T = 25 °C		10,000			cycles
10	С	Data retention ⁵	t _{D_ret}	15	100	—	years

Table 19. Flash Characteristics

¹ Typical values are based on characterization data at V_{DD} = 5.0 V, 25 °C unless otherwise stated.

² The frequency of this clock is controlled by a software setting.

³ These values are hardware state machine controlled. User code does not need to count cycles. This information supplied for calculating approximate time to program and erase.

- ⁴ Typical endurance for flash was evaluated for this product family on the HC9S12Dx64. For additional information on how Freescale Semiconductor defines typical endurance, please refer to Engineering Bulletin EB619/D, *Typical Endurance for Nonvolatile Memory.*
- ⁵ Typical data retention values are based on intrinsic capability of the technology measured at high temperature and de-rated to 25 °C using the Arrhenius equation. For additional information on how Freescale Semiconductor defines typical data retention, please refer to Engineering Bulletin EB618/D, *Typical Data Retention for Nonvolatile Memory.*

2.14 EMC Performance

Electromagnetic compatibility (EMC) performance is highly dependant on the environment in which the MCU resides. Board design and layout, circuit topology choices, location and characteristics of external components as well as MCU software operation all play a significant role in EMC performance. The system designer should consult Freescale applications notes such as AN2321, AN1050, AN1263, AN2764, and AN1259 for advice and guidance specifically targeted at optimizing EMC performance.

2.14.1 Radiated Emissions

Microcontroller radiated RF emissions are measured from 150 kHz to 1 GHz using the TEM/GTEM Cell method in accordance with the IEC 61967-2 and SAE J1752/3 standards. The measurement is performed with the microcontroller installed on a custom EMC evaluation board while running specialized EMC test software. The radiated emissions from the microcontroller are measured in a TEM cell in two package orientations (North and East). For more detailed information concerning the evaluation results, conditions and setup, please refer to the EMC Evaluation Report for this device.

Mechanical Outline Drawings

5.2 64-pin LQFP Package

Mechanical Outline Drawings

	MECHANICAL OUTLINES DICTIONARY		DOCUMENT NO: 98ASS23234W						
Treescale semiconductor sericonductor sericonductor inc. ALL RIGHTS RESERVED.			PAGE: 8		840F				
ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	E					
NOTES:									
1. DIMENSIONS ARE IN M	ILLIMETERS.								
2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.									
3. DATUMS A, B AND D TO BE DETERMINED AT DATUM PLANE H.									
A DIMENSIONS TO BE DE	TERMINED AT SE	ATING PLANE C.							
A THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED THE UPPER LIMIT BY MORE THAN 0.08 mm AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSION AND ADJACENT LEAD SHALL NOT BE LESS THAN 0.07 mm.									
A THIS DIMENSION DOES IS 0.25 mm PER SIDE DIMENSION INCLUDING	NOT INCLUDE M . THIS DIMENSI MOLD MISMATCH	OLD PROTRUSION ON IS MAXIMUM	N. ALLOWA Plastic	ABLE PROTRI C BODY SIZI	JSION E				
A EXACT SHAPE OF EACH	CORNER IS OPT	IONAL.							
A THESE DIMENSIONS AP	PLY TO THE FLA	T SECTION OF -	THE LEAD) BETWEEN					
0. I MM AND 0.25 MM	FRUM THE LEAD	112.							
TITLE: 641010FP		CASE NUMBER: 8	340F-02						
10 X 10 X 1. 4	PKG,	STANDARD: JEDE	EC MS-026 BCD						
0.5 PITCH, CASE	OUTLINE	PACKAGE CODE:	8426	SHEET:	3				

Mechanical Outline Drawings

5.4 48-pin LQFP Package

THIS PAGE INTENTIONALLY BLANK