

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, SCI, SPI
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	53
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 19x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf51ag96vlh

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 MCF51AG128 Family Configurations

1.1 Device Comparison

The following table compares the various device derivatives available within the MCF51AG128 series MCUs. **Table 1. MCF51AG128 Series Device Comparison**

-		MCF51AG12	8		MCF51AG96		
Feature	80-pin	64-pin	48-pin	80-pin	64-pin	48-pin	
Flash memory size (KB)		128			96		
RAM size (KB)			1	16			
ColdFire V1 core with BDM (background debug module)			Y	′es			
HSCMP (analog comparator)	2	2	1	2	2	1	
ADC (analog-to-digital converter) channels (12-bit)	24	19	12	24	19	12	
CRC (cyclic redundancy check)			Y	/es			
DAC	2	2	1	2	2	1	
DMA controller			4-	-ch			
iEvent (intelligent Event module)		Yes					
EWM (External Watchdog Monitor)	Yes						
WDOG (Watchdog timer)	Yes						
RTC Yes							
DBG (debug module)			Y	′es			
IIC (inter-integrated circuit)	1	1	No	1	1	No	
IRQ (interrupt request input)			Y	/es			
INTC (interrupt controller)			Y	′es			
LVD (low-voltage detector)			Y	′es			
ICS (internal clock source)			Y	′es			
OSC (crystal oscillator)			Y	′es			
Port I/O ¹	69	53	39	69	53	39	
RGPIO (rapid general-purpose I/O)	16	16	15	16	16	15	
SCI (serial communications interface)				2	•		
SPI1 (serial peripheral interface)			Y	′es			
SPI2 (serial peripheral interface)	Yes	No	No	Yes	No	No	
FTM1 (flexible timer module) channels			(6 ²			
FTM2 channels			(6 ²			

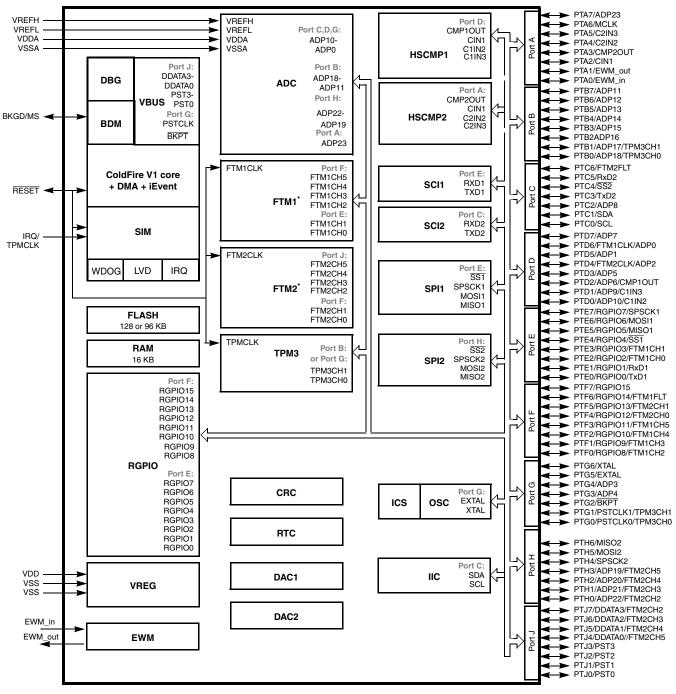


Figure 1. MCF51AG128 Series MCUs Block Diagram

1.3 Features

Table 2 describes the functional units of the MCF51AG128 series.

Table 2.	MCF51AG128	Series	Functional	Units
----------	------------	--------	------------	-------

Functional Unit	Function
CF1Core (V1 ColdFire core)	Executes programs and interrupt handlers
BDM (background debug module)	Provides single pin debugging interface (part of the V1 ColdFire core)
DBG (debug)	Provides debugging and emulation capabilities (part of the V1 ColdFire core)
VBUS (debug visibility bus)	Allows for real-time program traces (part of the V1 ColdFire core)
SIM (system integration module)	Controls resets and chip level interfaces between modules
Flash (flash memory)	Provides storage for program code, constants, and variables
RAM (random-access memory)	Provides storage for program variables
RGPIO (rapid general-purpose input/output)	Allows for I/O port access at CPU clock speeds
VREG (voltage regulator)	Controls power management across the device
LVD (low-voltage detect)	Monitors internal and external supply voltage levels, and generates a reset or interrupt when the voltages are too low
CF1_INTC (interrupt controller)	Controls and prioritizes all device interrupts
ADC (analog-to-digital converter)	Measures analog voltages at up to 12 bits of resolution
FTM1, FTM2 (flexible timer/pulse-width modulators)	Provide a variety of timing-based features
TPM3 (timer/pulse-width modulator)	Provides a variety of timing-based features
CRC (cyclic redundancy check)	Accelerates computation of CRC values for ranges of memory
HSCMP1, HSCMP2 (analog comparators)	Compare two analog inputs
DAC1, DAC2 (digital-to-analog converter)	Provide programmable voltage reference for HSCMPx
IIC (inter-integrated circuit)	Supports standard IIC communications protocol
ICS (internal clock source)	Provides clocking options for the device, including a frequency-locked loop (FLL) for multiplying slower reference clock sources
OSC (crystal oscillator)	Allows a crystal or ceramic resonator to be used as the system clock source or reference clock for the FLL
SCI1, SCI2 (serial communications interfaces)	Serial communications UARTs capable of supporting RS-232 and LIN protocols
SPI1, SPI2 (8/16-bit serial peripheral interfaces)	Provide 8/16-bit 4-pin synchronous serial interface
DMA	Provides the means to directly transfer data between system memory and I/O peripherals
iEvent	Highly programmable module for creating combinational boolean outputs for use as interrupt requests, DMA transfer requests, or hardware triggers
EWM (External Watchdog Monitor)	Additional watchdog system to help reset external circuits

Functional Unit	Function
WDOG (Watchdog timer)	keeps a watch on the system functioning and resets it in case of its failure
RTC (Real Time Counter)	Provides a constant time-base with optional interrupt

Table 2. MCF51AG128 Series Functional Units (continued)

Figure 3 shows the pinout of the 64-pin LQFP and QFP.

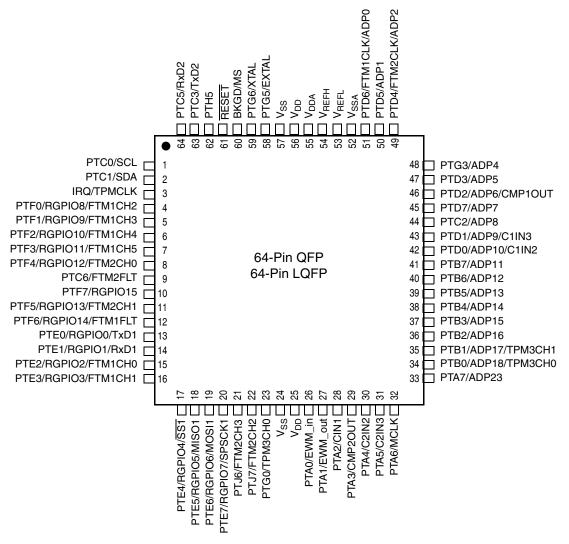


Figure 3. 64-Pin QFP and LQFP

MCF51AG128 ColdFire Microcontroller, Rev. 5

Figure 4 shows the pinout of the 48-pin LQFP.

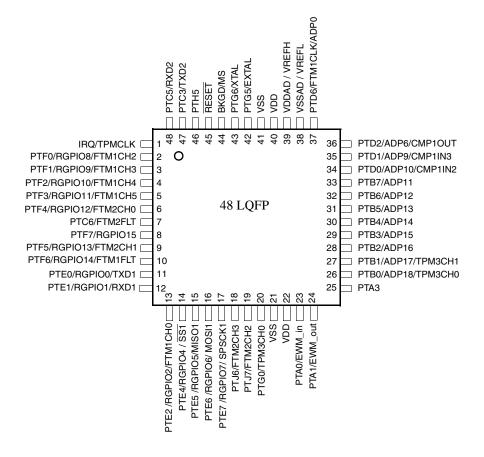


Figure 4. 48-Pin LQFP

Rating	Symbol	Value	Unit
Supply voltage	V _{DD}	-0.3 to 5.8	V
Input voltage	V _{In}	–0.3 to V _{DD} + 0.3	V
Instantaneous maximum current Single pin limit (applies to all port pins) ^{1, 2, 3}	I _D	±25	mA
Maximum current into V _{DD}	I _{DD}	120	mA
Storage temperature	T _{stg}	-55 to 150	°C

Table 5. Absolute Maximum Ratings

¹ Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate resistance values for positive (V_{DD}) and negative (V_{SS}) clamp voltages, then use the larger of the two resistance values.

 $^2~$ All functional non-supply pins are internally clamped to V_{SS} and $V_{DD}.$

³ Power supply must maintain regulation within operating V_{DD} range during instantaneous and operating maximum current conditions. If positive injection current (V_{In} > V_{DD}) is greater than I_{DD}, the injection current may flow out of V_{DD} and could result in external power supply going out of regulation. Ensure external V_{DD} load will shunt current greater than maximum injection current. This will be the greatest risk when the MCU is not consuming power. Examples are: if no system clock is present, or if the clock rate is very low which would reduce overall power consumption.

2.3 Thermal Characteristics

This section provides information about operating temperature range, power dissipation, and package thermal resistance. Power dissipation on I/O pins is usually small compared to the power dissipation in on-chip logic and it is user-determined rather than being controlled by the MCU design. To take $P_{I/O}$ into account in power calculations, determine the difference between actual pin voltage and V_{SS} or V_{DD} and multiply by the pin current for each I/O pin. Except in cases of unusually high pin current (heavy loads), the difference between pin voltage and V_{SS} or V_{DD} is very small.

Symbol	Value	Unit
T _A	-40 to 105	°C
TJ	150	°C
θ _{JA}	56 45 54 41 67 49 69	°C/W
	θ _{JA}	$\begin{array}{c c} T_{J} & 150 \\ & 56 \\ 45 \\ \theta_{JA} & 54 \\ 41 \\ & 67 \\ 49 \\ & 69 \end{array}$

Table 6. Thermal Characteristics	able 6. Thermal (Characteristics	;
----------------------------------	-------------------	-----------------	---

- ¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- ² Junction to Ambient Natural Convection
- ³ 1s Single layer board, one signal layer
- ⁴ 2s2p Four layer board, 2 signal and 2 power layers

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

$$\begin{split} T_A &= \text{Ambient temperature, } ^{\circ}\text{C} \\ \theta_{JA} &= \text{Package thermal resistance, junction-to-ambient, } ^{\circ}\text{C/W} \\ P_D &= P_{int} + P_{I/O} \\ P_{int} &= I_{DD} \times V_{DD}, \text{Watts } - \text{chip internal power} \\ P_{I/O} &= \text{Power dissipation on input and output pins } - \text{user determined} \end{split}$$

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273 \ ^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

2.4 Electrostatic Discharge (ESD) Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.

A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete dc parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Table 7.	ESD	and L	_atch-up	Test	Conditions
----------	-----	-------	----------	------	------------

Model	Description	Symbol	Value	Unit
Human Body	Series Resistance	R1	1500	Ω
	Storage Capacitance	С	100	pF
	Number of Pulse per pin	_	3	—

Num	С	Parameter	Symbol	V _{DD} (V)	Typical ¹	Max ²	Unit
14	C P C	Stop3 mode supply current -40 °C 25 °C 105 °C	S3I _{DD}	5	1.2 1.7 43.3	3 3 60	μΑ
	C P C	–40 °C 25 °C 105 °C		3	1.04 1.6 45.5	3 3 60	μA
15	C P C	Stop4 mode supply current -40 °C 25 °C 105 °C	S4I _{DD}	5	106 109 155	130 130 170	μΑ
	C P C	–40 °C 25 °C 105 °C		3	95 98 142	130 130 170	μA
16	С	RTC adder to stop2 or stop3 ⁵ , 25 °C	S23I _{DDRTC}	5	300	—	nA
				3	300	_	nA
17	С	Adder to stop3 for oscillator enabled ⁶ (ERCLKEN = 1 and EREFSTEN = 1)	S3I _{DDOSC}	5, 3	5	_	μΑ

Table 10. Supply Current Characteristics

¹ Typicals are measured at 25 °C.

² Values given here are preliminary estimates prior to completing characterization.

³ Code run from flash, FEI mode, and does not include any dc loads on port pins. Bus CLK= (CPU CLK/2)

⁴ GPIO filters are working on LPO clock.

⁵ Most customers are expected to use auto-wakeup from stop2 or stop3 instead of the higher current wait mode.

⁶ Values given under the following conditions: low range operation (RANGE = 0), low power mode (HGO = 0).

Figure 9. Run Current at Different Conditions

2.7 High Speed Comparator (HSCMP) Electricals

Num	С	Rating	Symbol	Min	Typical	Мах	Unit
1		Supply voltage	V _{DD}	2.7	_	5.5	V
2	Т	Supply current, high speed mode (EN = 1, PMODE = 1)	I _{DDAHS}	—	200	—	μA
3	Т	Supply current, low speed mode (EN = 1, PMODE = 0)	I _{DDALS}	_	20	—	μΑ
4	_	Analog input voltage	V _{AIN}	$V_{SS} - 0.3$	_	V _{DD}	V
5	D	Analog input offset voltage	V _{AIO}	—	5	40	mV
6	D	Analog Comparator hysteresis	V _H	3.0	9.0	20.0	mV
7	D	Propagation delay, high speed mode (EN = 1, $PMODE = 1$)	t _{DHS}	—	70	120	ns
8	D	Propagation delay, low speed mode (EN = 1, $PMODE = 0$)	t _{DLS}	—	400	600	ns
9	D	Analog Comparator initialization delay	t _{AINIT}		400		ns

Table 11. HSCMP Electrical Specifications

2.8 Digital to Analog (DAC) Characteristics

Num	С	Rating	Symbol	Min	Typical	Max	Unit
1	D	Supply voltage	V _{DDA}	2.7	—	5.5	V
2	D	Supply current (enabled) I _{DDAC}		—	—	20	μA
3	D	Supply current (stand-by)	IDDACS	_	—	150	nA
4	D	DAC reference input voltage	V_{in1}, V_{in2}	V _{SSA}	—	V _{DDA}	V
5	D	DAC setup delay	t _{PRGST}	—	1000	—	nS
6	D	DAC step size	V _{step}	3V _{in} /128	V _{in} /32	5V _{in} /128	V
7	D	DAC output voltage range	V _{dacout}	V _{in} /32	—	V _{in}	V
8	Ρ	Bandgap voltage reference factory trimmed at V_{DD} = 5 V, Temp = 25 °C	V _{BG}	1.18	1.20	1.21	V

2.9 ADC Characteristics

Table 12.	5V	12-bit	ADC	Operating	Conditions
-----------	----	--------	-----	-----------	------------

Num	с	Characterist ic	Conditions	Symb	Min	Typic al ¹	Max	Unit	Comment
1	D	Supply	Absolute	V_{DDA}	2.7	_	5.5	V	—
		voltage	Delta to V _{DD} (V _{DD} -V _{DDA}) ²	ΔV_{DDA}	-100	0	100	mV	—
2	D	Ground voltage	Delta to V _{SS} (V _{SS} –V _{SSA}) ²	ΔV_{SSA}	-100	0	100	mV	—

				Γ				1	
Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
6	Р	ADC Asynchronous Clock Source	High Speed (ADLPC = 0)	f _{ADACK}	2	3.3	5	MHz	t _{ADACK} = 1/f _{ADACK}
		Clock Source	Low Power (ADLPC = 1)		1.25	2	3.3		
7	Р	Conversion Time (Including	Short Sample (ADLSMP = 0)	t _{ADC}	_	20	_	ADCK cycles	See Table 10 for conversion time
		sample time)	Long Sample (ADLSMP = 1)		_	40	_		variances
8	Т	Sample Time	Short Sample (ADLSMP = 0)	t _{ADS}	_	3.5	_	ADCK cycles	
			Long Sample (ADLSMP = 1)		—	23.5	—		
9	Т	Total	12 bit mode	E _{TUE}		±3.0	_	LSB ²	Includes
	Р	Unadjusted Error	10 bit mode	-		±1	±2.5		quantization
	Т		8 bit mode	-		±0.5	±1.0		
10	Т	Differential	12 bit mode	DNL	_	±1.75	_	LSB ²	—
	Р	Non-Linearity	10 bit mode ³	-	_	±0.5	±1.0		
	т		8 bit mode ⁵	-	_	±0.3	±0.5		
11	Т	Integral	12 bit mode	INL	—	±1.5	—	LSB ²	—
	Р	Non-Linearity	10 bit mode		—	±0.5	±1.0		
	Т		8 bit mode	-	_	±0.3	±0.5		
12	Т	Zero-Scale	12 bit mode	E _{ZS}	—	±1.5	—	LSB ²	$V_{ADIN} = V_{SSAD}$
	Р	Error	10 bit mode		—	±0.5	±1.5		
	Т		8 bit mode		—	±0.5	±0.5		
13	Т	Full-Scale Error	12 bit mode	E _{FS}	—	±1	_	LSB ²	$V_{ADIN} = V_{DDAD}$
	Р		10 bit mode		_	±0.5	±1		
	Т		8 bit mode		—	±0.5	±0.5		
14	D	Quantization	12 bit mode	EQ	—	-1 to 0	—	LSB ²	—
		Error	10 bit mode		—	—	±0.5		
			8 bit mode		_		±0.5		
15	D	Input Leakage	12 bit mode	E _{IL}	_	±1	_	LSB ²	Pad leakage ⁴ *
		Error	10 bit mode			±0.2	±2.5		R _{AS}
			8 bit mode			±0.1	±1		

Table 13. 5 V 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
16	D	Temp Sensor Voltage	25 °C	V _{TEMP25}	-	1.396	_	mV	_
17	D	Temp Sensor	–40 °C — 25 °C	m	_	3.266	_	mV/°C	_
		Slope	25 °C — 85 °C			3.638	_		

Table 13. 5 V 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

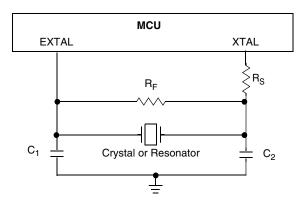
¹ Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{REFH} - V_{REFL})/2^N$

³ Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes

⁴ Based on input pad leakage current. Refer to pad electricals.

2.10 External Oscillator (XOSC) Characteristics


Table 14. Oscillator Electrical S	pecifications (Tem	perature Range = -4°	0 to 105 °C Ambient)
		perutare nunge - +	

Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1) FEE or FBE mode ² High range (RANGE = 1, HGO = 1) FBELP mode High range (RANGE = 1, HGO = 0) FBELP mode	flo f _{hi} f _{hi-hgo} f _{hi-lp}	32 1 1 1		38.4 16 16 8	kHz MHz MHz MHz
2	_	Load capacitors	C ₁ C ₂		e crystal o acturer's re		
3		Feedback resistor Low range (32 kHz to 100 kHz) High range (1 MHz to 16 MHz)	R _F		10 1	_	MΩ
4	_	Series resistor Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz	R _S		0 100 0 0 0 0	 0 10 20	kΩ
5	Т	Crystal start-up time ³ Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) ⁴ High range, high gain (RANGE = 1, HGO = 1) ³	t CSTL-LP CSTL-HGO t CSTH-LP t CSTH-HGO	 	1500 2000 3 7	 	ms
6	Т	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE mode ² FBE mode ² FBELP mode	f _{extal}	0.03125 0 0		50.33 50.33 50.33	MHz

¹ Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

MCF51AG128 ColdFire Microcontroller, Rev. 5

- ² When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.
- ³ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications.
- ⁴ 4 MHz crystal

2.11 ICS Specifications

Table 15, ICS Frequenc	v Specifications	(Temperature Ran	ge = -40 to 105 °C Ambient)
	, opeenieanene		

Num	С	Rati	ng	Symbol	Min	Typical ¹	Max	Unit
1	С	Internal reference frequence = 5 V and temperature = 25		f _{int_ft}	_	32.768	_	kHz
2	С	Average internal reference	f _{int_ut}	31.25	—	39.06	kHz	
3	Т	Internal reference startup ti	me	t _{irefst}	_	60	100	μS
4	С	DCO output frequency	Low range (DRS = 00)	f _{dco_ut}	16	—	20	MHz
	С	range - untrimmed ²	Mid range (DRS = 01)		32	—	40	
	С		High range (DRS = 10)		48	—	60	
5	Ρ	DCO output frequency ²	Low range (DRS = 00)	f _{dco_DMX32}	_	16.82	_	MHz
	Ρ	Reference =32768Hz	Mid range (DRS = 01)			33.69		
	Ρ	and DMX32 = 1	High range (DRS = 10)			50.48		
6	D	Resolution of trimmed DCC voltage and temperature (u	-	$\Delta f_{dco_res_t}$	_	±0.1	±0.2	%f _{dco}
7	D	Resolution of trimmed DCC voltage and temperature (n		$\Delta f_{dco_res_t}$	_	±0.2	±0.4	%f _{dco}
8	D	Total deviation of trimmed D full voltage and temperature	Δf_{dco_t}	_	0.5 -1.0	±2	%f _{dco}	
9	D	Total deviation of trimmed D fixed voltage and temperatu		Δf_{dco_t}	_	±0.5	±1	%f _{dco}

Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
10	D	FLL acquisition time ³	t _{fll_acquire}	—		1	ms
11	D	Long term Jitter of DCO output clock (averaged over 2ms interval) ⁴	C _{Jitter}	_	0.02	0.2	%f _{dco}
12	D	 Loss of external clock minimum freq. (RANGE = 0) ext. clock freq: above (3/5)f_{int}, never reset ext. clock freq: between (2/5)f_{int} and (3/5)f_{int}, maybe reset (phase dependency) ext. clock freq: below (2/5)f_{int}, always reset 	f _{loc_low}	(3/5) x f _{int}	_	_	kHz
13	D	 Loss of external clock minimum freq. (RANGE = 1) ext. clock freq: above (16/5)f_{int}, never reset ext. clock freq: between (15/5)f_{int} and (16/5)f_{int}, maybe reset (phase dependency) ext. clock freq: below (15/5)f_{int}, always reset 	floc_high	(16/5) x f _{int}	_	_	kHz

Table 15. ICS Frequency Specifications (continued)(Temperature Range = -40 to 105 °C Ambient)

¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value

² The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

³ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

⁴ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{BUS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry by V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

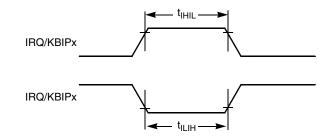


Figure 12. IRQ/KBIPx Timing

2.12.2 Timer (TPM/FTM) Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

NUM	с	Function	Symbol	Min	Мах	Unit
1	—	External clock frequency	f _{TPMext}	DC	f _{Bus} /4	MHz
2	—	External clock period	t _{TPMext}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	_	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	_	t _{cyc}

Table 17. TPM/FTM Input Timing

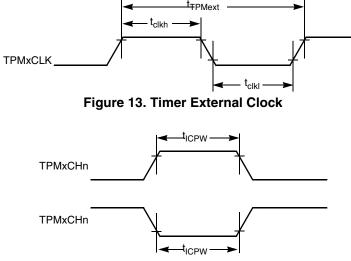
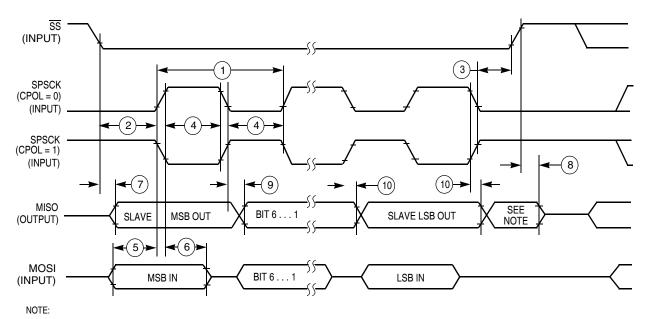



Figure 14. Timer Input Capture Pulse

MCF51AG128 ColdFire Microcontroller, Rev. 5

1. Not defined but normally MSB of character just received

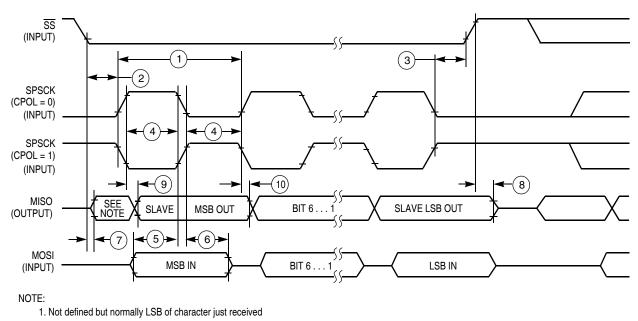
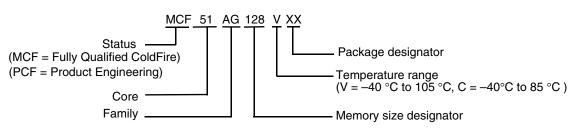


Figure 18. SPI Slave Timing (CPHA = 1)

2.13 Flash Specifications


This section provides details about program/erase times and program-erase endurance for the Flash memory.

Program and erase operations do not require any special power sources other than the normal V_{DD} supply. For more detailed information about program/erase operations, see *MCF51AG128 Reference Manual*.

Ordering Information

3 Ordering Information

This section contains ordering information for MCF51AG128 devices.

Table 20. Orderable Part Number Summary

Freescale Part Number	Description	Flash / SRAM (KB)	Package	Temperature
MCF51AG128VLK	MCF51AG128 ColdFire Microcontroller	128 / 16	80 LQFP	–40°C to 105°C
MCF51AG128VLH	MCF51AG128 ColdFire Microcontroller	128 / 16	64 LQFP	–40°C to 105°C
MCF51AG128VQH	MCF51AG128 ColdFire Microcontroller	128 / 16	64 QFP	–40°C to 105°C
MCF51AG128VLF	MCF51AG128 ColdFire Microcontroller	128 / 16	48 LQFP	–40°C to 105°C
MCF51AG96VLK	MCF51AG96 ColdFire Microcontroller	96 / 16	80 LQFP	–40°C to 105°C
MCF51AG96VLH	MCF51AG96 ColdFire Microcontroller	96 / 16	64 LQFP	–40°C to 105°C
MCF51AG96VQH	MCF51AG96 ColdFire Microcontroller	96 / 16	64 QFP	–40°C to 105°C
MCF51AG96VLF	MCF51AG96 ColdFire Microcontroller	96 / 16	48 LQFP	–40°C to 105°C

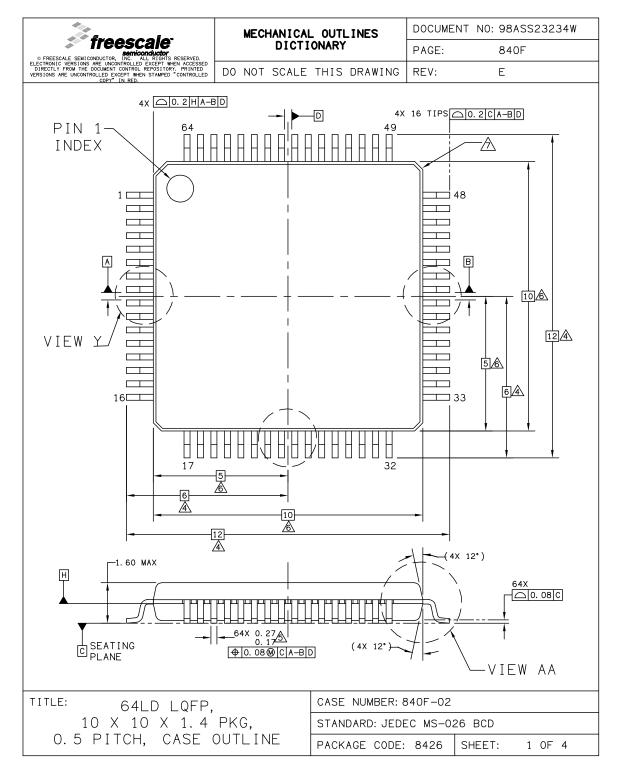

4 Package Information

Table 21. Package Descriptions

Pin Count	Package Type	Abbreviation	Designator	Case No.	Document No.
80	Low Quad Flat Package	LQFP	LK	917A	98ASS23237W
64	Low Quad Flat Package	LQFP	LH	840F	98ASS23234W
64	Quad Flat Package	QFP	QH	840B	98ASB42844B
48	Low Quad Flat Package	LQFP	LF	932	98ASH00962A

Mechanical Outline Drawings

5.2 64-pin LQFP Package

Mechanical Outline Drawings

5.4 48-pin LQFP Package