

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	Coldfire V1
Core Size	32-Bit Single-Core
Speed	50MHz
Connectivity	I ² C, SCI, SPI
Peripherals	DMA, LVD, PWM, WDT
Number of I/O	69
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 3.6V
Data Converters	A/D 24x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=mcf51ag96vlk

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

MCF51AG128 Family Configurations

1 MCF51AG128 Family Configurations

1.1 Device Comparison

The following table compares the various device derivatives available within the MCF51AG128 series MCUs. **Table 1. MCF51AG128 Series Device Comparison**

Frature		MCF51AG128	8		MCF51AG96	
Feature	80-pin	64-pin	48-pin	80-pin	64-pin	48-pin
Flash memory size (KB)		128			96	
RAM size (KB)			1	16		
ColdFire V1 core with BDM (background debug module)			Y	és		
HSCMP (analog comparator)	2	2	1	2	2	1
ADC (analog-to-digital converter) channels (12-bit)	24	19	12	24	19	12
CRC (cyclic redundancy check)		•	Y	′es		
DAC	2	2	1	2	2	1
DMA controller			4-	-ch		
iEvent (intelligent Event module)			Y	′es		
EWM (External Watchdog Monitor)			Y	és		
WDOG (Watchdog timer)			Y	′es		
RTC			Y	és		
DBG (debug module)			Y	és		
IIC (inter-integrated circuit)	1	1	No	1	1	No
IRQ (interrupt request input)			Y	és		
INTC (interrupt controller)			Y	′es		
LVD (low-voltage detector)			Y	és		
ICS (internal clock source)			Y	és		
OSC (crystal oscillator)			Y	és		
Port I/O ¹	69	53	39	69	53	39
RGPIO (rapid general-purpose I/O)	16	16	15	16	16	15
SCI (serial communications interface)				2		
SPI1 (serial peripheral interface)			Y	′es		
SPI2 (serial peripheral interface)	Yes	No	No	Yes	No	No
FTM1 (flexible timer module) channels			6	6 ²		
FTM2 channels			6	6 ²		

MCF51AG128 Family Configurations

Feature	I	MCF51AG128	3		MCF51AG96		
reature	80-pin	64-pin	48-pin	80-pin	64-pin	48-pin	
TPM3 (timer pulse-width modulator) channels			2	2			
Debug Visibility Bus	Yes	Yes No No		Yes	No	No	

Table 1. MCF51AG128 Series Device Comparison (continued)

¹ Up to 16 pins on Ports E and F are shared with the ColdFire Rapid GPIO module.

² Some pins of FTMx might not be bonded on small package, therefore these channels could be used as soft timer only.

1.2 Block Diagram

Figure 1 shows the connections between the MCF51AG128 series pins and modules.

2 **Preliminary Electrical Characteristics**

This section contains electrical specification tables and reference timing diagrams for the MCF51AG128 series MCUs, including detailed information on power considerations, DC/AC electrical characteristics, and AC timing specifications.

The electrical specifications are preliminary and are from previous designs or design simulations. These specifications may not be fully tested or guaranteed at this early stage of the product life cycle. These specifications will, however, be met for production silicon. Finalized specifications will be published after complete characterization and device qualifications have been completed.

NOTE

The parameters specified in this data sheet supersede any values found in the module specifications.

2.1 Parameter Classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding the following classification is used and the parameters are tagged accordingly in the tables where appropriate:

Table 4. Parameter Classifications

Р	Those parameters are guaranteed during production testing on each individual device.
С	Those parameters are achieved by the design characterization by measuring a statistically relevant sample size across process variations.
Т	Those parameters are achieved by design characterization on a small sample size from typical devices under typical conditions unless otherwise noted. All values shown in the typical column are within this category.
D	Those parameters are derived mainly from simulations.

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

2.2 Absolute Maximum Ratings

Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the limits specified in Table 5 may affect device reliability or cause permanent damage to the device. For functional operating conditions, refer to the remaining tables in this section.

This device contains circuitry protecting against damage due to high static voltage or electrical fields; however, it is advised that normal precautions be taken to avoid application of any voltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are tied to an appropriate logic voltage level (for instance, either V_{SS} or V_{DD}).

¹ TPMCLK, FTM1CLK, and FTM2CLK options are configured via software; out of reset, FTM1CLK, FTM2CLK, and TPMCLK are available to FTM1, FTM2, and TPM3 respectively.

- ¹ Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- ² Junction to Ambient Natural Convection
- ³ 1s Single layer board, one signal layer
- ⁴ 2s2p Four layer board, 2 signal and 2 power layers

The average chip-junction temperature (T_J) in °C can be obtained from:

$$T_{J} = T_{A} + (P_{D} \times \theta_{JA})$$
 Eqn. 1

where:

$$\begin{split} T_A &= \text{Ambient temperature, } ^{\circ}\text{C} \\ \theta_{JA} &= \text{Package thermal resistance, junction-to-ambient, } ^{\circ}\text{C/W} \\ P_D &= P_{int} + P_{I/O} \\ P_{int} &= I_{DD} \times V_{DD}, \text{Watts } - \text{chip internal power} \\ P_{I/O} &= \text{Power dissipation on input and output pins } - \text{user determined} \end{split}$$

For most applications, $P_{I/O} \ll P_{int}$ and can be neglected. An approximate relationship between P_D and T_J (if $P_{I/O}$ is neglected) is:

$$P_{D} = K \div (T_{J} + 273 \ ^{\circ}C)$$
 Eqn. 2

Solving Equation 1 and Equation 2 for K gives:

where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring P_D (at equilibrium) for a known T_A . Using this value of K, the values of P_D and T_J can be obtained by solving Equation 1 and Equation 2 iteratively for any value of T_A .

2.4 Electrostatic Discharge (ESD) Protection Characteristics

Although damage from static discharge is much less common on these devices than on early CMOS circuits, normal handling precautions should be used to avoid exposure to static discharge. Qualification tests are performed to ensure that these devices can withstand exposure to reasonable levels of static without suffering any permanent damage.

All ESD testing is in conformity with CDF-AEC-Q00 Stress Test Qualification for Automotive Grade Integrated Circuits. (http://www.aecouncil.com/) This device was qualified to AEC-Q100 Rev E.

A device is considered to have failed if, after exposure to ESD pulses, the device no longer meets the device specification requirements. Complete dc parametric and functional testing is performed per the applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Table 7.	ESD	and	Latch-up	Test	Conditions
----------	-----	-----	----------	------	------------

Model	Description	Symbol	Value	Unit
Human Body	Series Resistance	R1	1500	Ω
	Storage Capacitance	С	100	pF
	Number of Pulse per pin	—	3	—

Model	Description	Symbol	Value	Unit
Latch-up	Minimum input voltage limit	—	-2.5	V
	Maximum input voltage limit	—	7.5	V

Table 7. ESD and Latch-up Test Conditions (continued)

Table 8. ESD and Latch-Up Protection Characteristics

Num	Rating	Symbol	Min	Max	Unit
1	Human Body Model (HBM)	V _{HBM}	±2000	—	V
2	Charge Device Model (CDM)	V _{CDM}	±500		V
3	Latch-up Current at $T_A = 85^{\circ}C$	ILAT	±100		mA

2.5 DC Characteristics

This section includes information about power supply requirements, I/O pin characteristics, and power supply current in various operating modes.

Num	С	Parameter	Symbol	Min	Typical ¹	Мах	Unit
1	—	Operating voltage		2.7	_	5.5	V
		Output high voltage — Low Drive (PTxDSn = 0) $5 \text{ V}, \text{ I}_{Load} = -5 \text{ mA}$ $3 \text{ V}, \text{ I}_{Load} = -1.5 \text{ mA}$ $5 \text{ V}, \text{ I}_{Load} = -3 \text{ mA}, \text{ PTC0 and PTC1}$ $3 \text{ V}, \text{ I}_{Load} = -1.5 \text{ mA}, \text{ PTC0 and PTC1}$	Vou	$V_{DD} - 1.5$ $V_{DD} - 0.8$ $V_{DD} - 0.4$ $V_{DD} - 0.4$		 	
2	Ρ	Output high voltage — High Drive (PTxDSn = 1) $5 \text{ V}, \text{ I}_{\text{Load}} = -20 \text{ mA}$ $3 \text{ V}, \text{ I}_{\text{Load}} = -8 \text{ mA}$ $5 \text{ V}, \text{ I}_{\text{Load}} = -12 \text{ mA}, \text{ PTC0 and PTC1}$ $3 \text{ V}, \text{ I}_{\text{Load}} = -8 \text{ mA}, \text{ PTC0 and PTC1}$	VOH	V _{DD} - 1.5 V _{DD} - 0.8 V _{DD} - 0.4 V _{DD} - 0.4		 	V
		Output low voltage — Low Drive (PTxDSn = 0) $5 \text{ V}, \text{ I}_{Load} = 5 \text{ mA}$ $3 \text{ V}, \text{ I}_{Load} = 1.5 \text{ mA}$ $5 \text{ V}, \text{ I}_{Load} = 3 \text{ mA}, \text{ PTC0 and PTC1}$ $3 \text{ V}, \text{ I}_{Load} = 1.5 \text{ mA}, \text{ PTC0 and PTC1}$	N.			1.5 0.8 0.4 0.4	
3	Ρ	Output low voltage — High Drive (PTxDSn = 1) $5 \text{ V}, \text{ I}_{\text{Load}} = 20 \text{ mA}$ $3 \text{ V}, \text{ I}_{\text{Load}} = 8 \text{ mA}$ $5 \text{ V}, \text{ I}_{\text{Load}} = 12 \text{ mA}, \text{ PTC0 and PTC1}$ $3 \text{ V}, \text{ I}_{\text{Load}} = 8 \text{ mA}, \text{ PTC0 and PTC1}$	VOL			1.5 0.8 0.4 0.4	V
4	С	Output high current — Max total I _{OH} for all ports 5V 3V	I _{OHT}		_	100 60	mA
5	С	Output low current — Max total I _{OL} for all ports 5 V 3 V	I _{OLT}			100 60	mA

Table 9. DC Characteristics

Figure 7. Typical I_{OL} vs. V_{OL} (Low Drive, PTxDSn = 0)

Figure 8. Typical I_{OL} vs. V_{OL} (High Drive, PTxDSn = 1)

2.7 High Speed Comparator (HSCMP) Electricals

Num	С	Rating	Symbol	Min	Typical	Мах	Unit
1	_	Supply voltage	V _{DD}	2.7	—	5.5	V
2	Т	Supply current, high speed mode (EN = 1, PMODE = 1)	I _{DDAHS}	—	200	—	μA
3	Т	Supply current, low speed mode (EN = 1, PMODE = 0)	I _{DDALS}	_	20	—	μA
4	_	Analog input voltage	V _{AIN}	$V_{SS} - 0.3$	—	V _{DD}	V
5	D	Analog input offset voltage	V _{AIO}	—	5	40	mV
6	D	Analog Comparator hysteresis	V _H	3.0	9.0	20.0	mV
7	D	Propagation delay, high speed mode (EN = 1, PMODE = 1)	t _{DHS}	_	70	120	ns
8	D	Propagation delay, low speed mode (EN = 1, PMODE = 0)	t _{DLS}	—	400	600	ns
9	D	Analog Comparator initialization delay	t _{AINIT}	_	400	_	ns

Table 11. HSCMP Electrical Specifications

2.8 Digital to Analog (DAC) Characteristics

Num	С	Rating	Symbol	Min	Typical	Max	Unit
1	D	Supply voltage	V _{DDA}	2.7	_	5.5	V
2	D	Supply current (enabled)	I _{DDAC}	—	_	20	μA
3	D	Supply current (stand-by)	IDDACS	_		150	nA
4	D	DAC reference input voltage	$V_{in1,}V_{in2}$	V _{SSA}	_	V _{DDA}	V
5	D	DAC setup delay	t _{PRGST}	—	1000	—	nS
6	D	DAC step size	V _{step}	3V _{in} /128	V _{in} /32	5V _{in} /128	V
7	D	DAC output voltage range	V _{dacout}	V _{in} /32	_	V _{in}	V
8	Р	Bandgap voltage reference factory trimmed at $V_{DD} = 5 V$, Temp = 25 °C	V _{BG}	1.18	1.20	1.21	V

2.9 ADC Characteristics

Table 12. 5V 12-bit ADC Operating Conditions
--

Num	с	Characterist ic	Conditions	Symb	Min	Typic al ¹	Max	Unit	Comment
1	D	Supply	Absolute	V _{DDA}	2.7	_	5.5	V	_
		voltage	Delta to V _{DD} (V _{DD} –V _{DDA}) ²	ΔV_{DDA}	-100	0	100	mV	_
2	D	Ground voltage	Delta to V _{SS} (V _{SS} –V _{SSA}) ²	ΔV_{SSA}	-100	0	100	mV	—

Num	с	Characterist ic	Conditions	Symb	Min	Typic al ¹	Мах	Unit	Comment
3	D	Ref Voltage High	_	V _{REFH}	2.7	V _{DDA}	V _{DDA}	V	
4	D	Ref Voltage Low	_	V _{REFL}	V _{SSAD}	V _{SSA}	V _{SSA}	V	_
5	D	Input Voltage	_	V _{ADIN}	V _{REFL}	—	V _{REFH}	V	_
6	С	Input Capacitance	—	C _{ADIN}	—	4.5	5.5	pF	_
7	С	Input Resistance	—	R _{ADIN}	—	3	5	kΩ	_
8	С	Analog Source Resistance	12 bit mode f _{ADCK} > 4 MHz f _{ADCK} < 4 MHz	R _{AS}	_	_	2 5	kΩ	External to MCU
	С		10 bit mode f _{ADCK} > 4 MHz f _{ADCK} < 4 MHz		_	_	5 10		
	С		8 bit mode (all valid f _{ADCK})		—	—	10		
9	D	ADC	High Speed (ADLPC = 0)	f _{ADCK}	0.4		8.0	MHz	
	D	Clock Freq.	Low Power (ADLPC = 1)		0.4	_	4.0		

Table 12. 5V 12-bit ADC Operating Conditions (continued)

¹ Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² DC potential difference.

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Мах	Unit	Comment
6	Р	ADC Asynchronous	High Speed (ADLPC = 0)	f _{ADACK}	2	3.3	5	MHz	t _{ADACK} = 1/f _{ADACK}
		Clock Source	Low Power (ADLPC = 1)		1.25	2	3.3		
7	Р	Conversion Time (Including	Short Sample (ADLSMP = 0)	t _{ADC}	-	20	—	ADCK cycles	See Table 10 for conversion time
		sample time)	Long Sample (ADLSMP = 1)		-	40	—		vanances
8	Т	Sample Time	Short Sample (ADLSMP = 0)	t _{ADS}	_	3.5	_	ADCK cycles	
			Long Sample (ADLSMP = 1)		_	23.5	_		
9	Т	Total	12 bit mode	E _{TUE}	_	±3.0	—	LSB ²	Includes
	Ρ	Unadjusted Error	10 bit mode		_	±1	±2.5		quantization
	Т		8 bit mode		_	±0.5	±1.0		
10	Т	Differential	12 bit mode	DNL	_	±1.75	—	LSB ²	—
	Ρ	Non-Linearity	10 bit mode ³		_	±0.5	±1.0		
	Т		8 bit mode ⁵		_	±0.3	±0.5		
11	Т	Integral	12 bit mode	INL	_	±1.5	—	LSB ²	—
	Ρ	Non-Lineanty	10 bit mode			±0.5	±1.0		
	Т		8 bit mode		_	±0.3	±0.5		
12	Т	Zero-Scale	12 bit mode	E _{ZS}	_	±1.5	—	LSB ²	$V_{ADIN} = V_{SSAD}$
	Ρ	Error	10 bit mode			±0.5	±1.5		
	Т		8 bit mode		_	±0.5	±0.5		
13	Т	Full-Scale Error	12 bit mode	E _{FS}		±1	—	LSB ²	$V_{ADIN} = V_{DDAD}$
	Ρ		10 bit mode			±0.5	±1		
	Т		8 bit mode		—	±0.5	±0.5		
14	D	Quantization	12 bit mode	EQ		-1 to 0	—	LSB ²	—
			10 bit mode			—	±0.5		
			8 bit mode			—	±0.5		
15	D	Input Leakage	12 bit mode	EIL	_	±1		LSB ²	Pad leakage ⁴ *
		10 bit mode		_	±0.2	±2.5		T _{AS}	
			8 bit mode		_	±0.1	±1		

Table 13. 5 V 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

Num	С	Characteristic	Conditions	Symb	Min	Typical ¹	Max	Unit	Comment
16	D	Temp Sensor Voltage	25 °C	V _{TEMP25}	_	1.396		mV	_
17	D	Temp Sensor	−40 °C — 25 °C	m	—	3.266	_	mV/°C	—
		Slope	25 °C — 85 °C		—	3.638			

Table 13. 5 V 12-bit ADC Characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

¹ Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.

² 1 LSB = $(V_{REFH} - V_{REFL})/2^{N}$

³ Monotonicity and No-Missing-Codes guaranteed in 10 bit and 8 bit modes

⁴ Based on input pad leakage current. Refer to pad electricals.

2.10 External Oscillator (XOSC) Characteristics

Table 14. Oscillator Electrical S	pecifications (Tem	perature Range = -4	0 to 105 °C Ambient)

Num	С	Rating	Symbol	Min	Typical ¹	Мах	Unit
1	С	Oscillator crystal or resonator (EREFS = 1, ERCLKEN = 1) Low range (RANGE = 0) High range (RANGE = 1) FEE or FBE mode ² High range (RANGE = 1, HGO = 1) FBELP mode High range (RANGE = 1, HGO = 0) FBELP mode	flo f _{hi} f _{hi-hgo} f _{hi-lp}	32 1 1 1	 	38.4 16 16 8	kHz MHz MHz MHz
2	_	Load capacitors	C ₁ C ₂	Se manufa	e crystal o acturer's re	r resonato commenda	r ation.
3	_	Feedback resistor Low range (32 kHz to 100 kHz) High range (1 MHz to 16 MHz)	R _F		10 1	_	MΩ
4	_	Series resistor Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) High range, high gain (RANGE = 1, HGO = 1) ≥ 8 MHz 4 MHz 1 MHz	R _S		0 100 0 0 0 0	 10 20	kΩ
5	т	Crystal start-up time ³ Low range, low gain (RANGE = 0, HGO = 0) Low range, high gain (RANGE = 0, HGO = 1) High range, low gain (RANGE = 1, HGO = 0) ⁴ High range, high gain (RANGE = 1, HGO = 1) ³	t CSTL-LP CSTL-HGO CSTH-LP CSTH-HGO		1500 2000 3 7		ms
6	Т	Square wave input clock frequency (EREFS = 0, ERCLKEN = 1) FEE mode ² FBE mode ² FBELP mode	f _{extal}	0.03125 0 0		50.33 50.33 50.33	MHz

¹ Data in Typical column was characterized at 5.0 V, 25 °C or is typical recommended value.

- ² When MCG is configured for FEE or FBE mode, input clock source must be divisible using RDIV to within the range of 31.25 kHz to 39.0625 kHz.
- ³ This parameter is characterized and not tested on each device. Proper PC board layout procedures must be followed to achieve specifications.
- ⁴ 4 MHz crystal

2.11 ICS Specifications

Table	15. ICS Fre	auencv S	pecifications	(Tem	perature	Range	= -40 to	105 °C	C Ambi	ient)
IUNIC	10.100110	queney e	peomoutions		sciulaic	nunge		100 1		

Num	С	Rat	ing	Symbol	Min	Typical ¹	Max	Unit
1	С	Internal reference frequenc = 5 V and temperature = 28	y - factory trimmed at V _{DD} 5 °C	f _{int_ft}	—	32.768	—	kHz
2	С	Average internal reference	frequency – untrimmed	f _{int_ut}	31.25	—	39.06	kHz
3	Т	Internal reference startup t	ime	t _{irefst}	—	60	100	μS
4	С	DCO output frequency	Low range (DRS = 00)	f _{dco_ut}	16	—	20	MHz
	С	range - untrimmed ²	Mid range (DRS = 01)		32	—	40	
	С		High range (DRS = 10)		48	—	60	
5	Ρ	DCO output frequency ²	Low range (DRS = 00)	f _{dco_DMX32}	—	16.82	_	MHz
	Ρ	Reference =32768Hz	Mid range (DRS = 01)		_	33.69	_	
	Ρ	and DMX32 = 1	High range (DRS = 10)		_	50.48	_	
6	D	Resolution of trimmed DCC voltage and temperature (u	O output frequency at fixed sing FTRIM)	$\Delta f_{dco_res_t}$	_	±0.1	±0.2	%f _{dco}
7	D	Resolution of trimmed DCC voltage and temperature (n	O output frequency at fixed ot using FTRIM)	$\Delta f_{dco_res_t}$	—	±0.2	±0.4	%f _{dco}
8	D	Total deviation of trimmed E full voltage and temperatur	DCO output frequency over e range	Δf_{dco_t}	_	0.5 -1.0	±2	%f _{dco}
9	D	Total deviation of trimmed E fixed voltage and temperate	DCO output frequency over ure range of 0 –70 °C	Δf_{dco_t}	—	±0.5	±1	%f _{dco}

Num	С	Rating	Symbol	Min	Typical ¹	Max	Unit
10	D	FLL acquisition time ³	t _{fll_acquire}	—	—	1	ms
11	D	Long term Jitter of DCO output clock (averaged over 2ms interval) ⁴	C _{Jitter}	—	0.02	0.2	%f _{dco}
12	D	 Loss of external clock minimum freq. (RANGE = 0) ext. clock freq: above (3/5)f_{int}, never reset ext. clock freq: between (2/5)f_{int} and (3/5)f_{int}, maybe reset (phase dependency) ext. clock freq: below (2/5)f_{int}, always reset 	f _{loc_low}	(3/5) x f _{int}	_	_	kHz
13	D	 Loss of external clock minimum freq. (RANGE = 1) ext. clock freq: above (16/5)f_{int}, never reset ext. clock freq: between (15/5)f_{int} and (16/5)f_{int}, maybe reset (phase dependency) ext. clock freq: below (15/5)f_{int}, always reset 	f _{loc_high}	(16/5) x f _{int}	_	_	kHz

Table 15. ICS Frequency Specifications (continued)(Temperature Range = -40 to 105 °C Ambient)

¹ Data in Typical column was characterized at 3.0 V, 25 °C or is typical recommended value

² The resulting bus clock frequency should not exceed the maximum specified bus clock frequency of the device.

³ This specification applies to any time the FLL reference source or reference divider is changed, trim value changed or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

⁴ Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum f_{BUS}. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the FLL circuitry by V_{DD} and V_{SS} and variation in crystal oscillator frequency increase the C_{Jitter} percentage for a given interval.

2.12 AC Characteristics

This section describes ac timing characteristics for each peripheral system.

2.12.1 Control Timing

Num	С	Parameter	Symbol	Min	Typ ¹	Мах	Unit
1	D	Bus frequency (t _{cyc} = 1/f _{Bus})	f _{Bus}	dc	_	24	MHz
2	D	Internal low-power oscillator period	t _{LPO}	800	—	1500	μS
3	D	External reset pulse width ² (t _{cyc} = 1/f _{Self_reset})	t _{extrst}	100	_	_	ns
4	D	Reset low drive	t _{rstdrv}	66 x t _{cyc}	—	—	ns
5	D	Active background debug mode latch setup time	t _{MSSU}	500	—	—	ns
6	D	Active background debug mode latch hold time	t _{MSH}	100	—	—	ns
7	D	IRQ pulse width Asynchronous path ² Synchronous path ³	t _{ILIH,} t _{IHIL}	100 1.5 x t _{cyc}	_	_	ns
8		Port rise and fall time (load = 30 pF for SPI, rest 50 pF) ⁴ Slew rate control disabled (PTxSE = 0) High drive Slew rate control enabled (PTxSE = 1) High drive Slew rate control disabled (PTxSE = 0) Low drive Slew rate control enabled (PTxSE = 1) Low drive	t _{Rise} , t _{Fall}		11 35 40 75		ns

Table 16. Control Timing

¹ Typical values are based on characterization data at $V_{DD} = 5.0 \text{ V}$, 25 °C unless otherwise stated.

² This is the shortest pulse that is guaranteed to be recognized as a RESET pin request. Shorter pulses are not guaranteed to override reset requests from internal sources.

³ This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In stop mode, the synchronizer is bypassed so shorter pulses can be recognized in that case.

 4 Timing is shown with respect to 20% V_{DD} and 80% V_{DD} levels. Temperature range –40°C to 105°C.

Figure 11. Reset Timing

Figure 12. IRQ/KBIPx Timing

2.12.2 Timer (TPM/FTM) Module Timing

Synchronizer circuits determine the shortest input pulses that can be recognized or the fastest clock that can be used as the optional external source to the timer counter. These synchronizers operate from the current bus rate clock.

NUM	С	Function	Symbol	Min	Max	Unit
1		External clock frequency	f _{TPMext}	DC	f _{Bus} /4	MHz
2		External clock period	t _{TPMext}	4	_	t _{cyc}
3	D	External clock high time	t _{clkh}	1.5	_	t _{cyc}
4	D	External clock low time	t _{clkl}	1.5	—	t _{cyc}
5	D	Input capture pulse width	t _{ICPW}	1.5	—	t _{cyc}

Table 17. TPM/FTM Input Timing

Figure 14. Timer Input Capture Pulse

NOTES:

1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 15. SPI Master Timing (CPHA = 0)

NOTES:

1. \overline{SS} output mode (DDS7 = 1, SSOE = 1).

2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 16. SPI Master Timing (CPHA = 1)

Mechanical Outline Drawings

Mechanical Outline Drawings

	MECHANICA	OUTLINES	DOCUME	NT NO: 98AS	S23234W
Treescale semiconductor sericonductor sericonductor inc. ALL RIGHTS RESERVED.	DICTI	ONARY	PAGE:	840F	-
ELECTRONIC VERSIONS ARE UNCONTROLLED EXCEPT WHEN ACCESSED DIRECTLY FROM THE DOCUMENT CONTROL REPOSITORY. PRINTED VERSIONS ARE UNCONTROLLED EXCEPT WHEN STAMPED "CONTROLLED COPY" IN RED.	DO NOT SCALE	THIS DRAWING	REV:	E	
NOTES:					
1. DIMENSIONS ARE IN M	ILLIMETERS.				
2. DIMENSIONING AND TO	LERANCING PER	ASME Y14.5M-19	994.		
3. DATUMS A, B AND D T	0 BE DETERMINE	D AT DATUM PL/	ANE H.		
A DIMENSIONS TO BE DE	TERMINED AT SE	ATING PLANE C.			
THIS DIMENSION DOES PROTRUSION SHALL NO BY MORE THAN 0.08 m LOCATED ON THE LOWE PROTRUSION AND ADJA	NOT INCLUDE D T CAUSE THE LE m AT MAXIMUM M R RADIUS OR TH CENT LEAD SHAL	AMBAR PROTRUS: AD WIDTH TO EX ATERIAL CONDI ^T E FOOT. MINIMU L NOT BE LESS	ION. ALL KCEED TH TION. DA JM SPACE THAN O.	LOWABLE DAN HE UPPER L AMBAR CANNO E BETWEEN 07 mm.	MBAR IMIT DT BE
A THIS DIMENSION DOES IS 0.25 mm PER SIDE DIMENSION INCLUDING	NOT INCLUDE M . THIS DIMENSI MOLD MISMATCH	OLD PROTRUSION ON IS MAXIMUM	N. ALLOWA Plastic	ABLE PROTRU C BODY SIZE	JSION E
A EXACT SHAPE OF EACH	CORNER IS OPT	IONAL.			
A THESE DIMENSIONS AP	PLY TO THE FLA	T SECTION OF	THE LEAD) BETWEEN	
0. I MM AND 0.25 MM	FRUM THE LEAD	112.			
TITLE: 641 D LOFP		CASE NUMBER: 8	340F-02		
10 X 10 X 1. 4	PKG,	STANDARD: JEDE	EC MS-02	26 BCD	
0.5 PITCH, CASE	OUTLINE	PACKAGE CODE:	8426	SHEET:	3

5.3 64-pin QFP Package

6 Revision History

Table 22. Revision History

Rev. No.	Date	Description
1	11/2008	Initial Draft Release.
2	4/2009	Internal Release.
3	5/2009	Alpha Customer Release.
4	12/2009	 Added 48-pin LQFP information; Updated Section 2.5/17 and 2.6/21. Provided the supply current in Section 2.7/23, and setup delay in Section 2.8/23.
5	6/2010	 Updated Table 10. Added Figure 9. Corrected pin names of PTG6 and PTG5 in 48-pin LQFP. Standardized Generation 2008 Watchdog to Watchdog. In Table 9, updated Output high/low voltage — Low Drive (PTxDSn = 0) 3 V, I_{Load} value.