

Welcome to E-XFL.COM

Embedded - Microcontrollers - Application Specific: Tailored Solutions for Precision and Performance

Embedded - Microcontrollers - Application Specific

represents a category of microcontrollers designed with unique features and capabilities tailored to specific application needs. Unlike general-purpose microcontrollers, application-specific microcontrollers are optimized for particular tasks, offering enhanced performance, efficiency, and functionality to meet the demands of specialized applications.

What Are <u>Embedded - Microcontrollers -</u> <u>Application Specific</u>?

Application enacific microcontrollars are analyzared to

Details

Details	
Product Status	Obsolete
Applications	HB LED Controller
Core Processor	M8C
Program Memory Type	FLASH (4KB)
Controller Series	CY8CLED
RAM Size	256 x 8
Interface	I ² C, IrDA, SPI, UART/USART
Number of I/O	16
Voltage - Supply	2.4V ~ 5.25V
Operating Temperature	-40°C ~ 85°C
Mounting Type	Surface Mount
Package / Case	24-VFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/cy8cled02-24lfxi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

CY8CLED02

Contents

EZ-Color™ Functional Overview	3
Target Applications	3
The PSoC Core	3
The Digital System	3
The Analog System	4
Additional System Resources	4
EZ-Color Device Characteristics	5
Getting Started	5
Application Notes	
Development Kits	5
Training	5
CYPros Consultants	5
Solutions Library	5
Technical Support	5
Development Tools	6
PSoC Designer Software Subsystems	6
Designing with PSoC Designer	7
Select User Modules	
Configure User Modules	7
Organize and Connect	7
Generate, Verify, and Debug	7
Pin Information	
Pinouts	8
Register Reference	10
Register Conventions	10
Register Mapping Tables	10
Electrical Specifications	13
Absolute Maximum Ratings	
Operating Temperature	
DC Electrical Characteristics	
AC Electrical Characteristics	22

Packaging Information	31
Thermal Impedances	
Solder Reflow Peak Temperature	
Development Tool Selection	35
Software Tools	
Hardware Tools	
Evaluation Tools	
Device Programmers	35
Accessories (Emulation and Programming)	
Ordering Information	
Key Device Features	
Ordering Code Definitions	
Acronyms	
Acronyms Used	
Reference Documents	
Document Conventions	38
Units of Measure	
Numeric Conventions	
Glossary	38
Document History Page	43
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	
Products	
PSoC Solutions	

The Analog System

The analog system is composed of four configurable blocks that enable creation of complex analog signal flows. Analog peripherals are very flexible and can be customized to support specific application requirements. Some of the more common EZ-Color analog functions (most available as user modules) are listed below.

- ADCs (single or dual, with 10-bit resolution)
- Pin-to-pin comparators (1)
- Single-ended comparators (up to two) with absolute (1.3-V) reference or 8-bit DAC reference
- 1.3-V reference (as a system resource)

In most PSoC based devices, analog blocks are provided in columns of three, which includes one continuous time (CT) and two switched capacitor (SC) blocks. This particular EZ-Color device provides limited functionality Type E analog blocks. Each column contains one CT block and one SC block.

Figure 2. Analog System Block Diagram

Array Input Configuration ACI0[1:0] ACI1[1:0] ACI1[1:0]

Additional System Resources

System resources, some of which have been previously listed, provide additional capability useful to complete systems. Additional resources include:

- Digital clock dividers provide three customizable clock frequencies for use in applications. The clocks can be routed to both the digital and analog systems. Additional clocks can be generated using digital blocks as clock dividers.
- The I²C module provides 100- and 400-kHz communication over two wires. Slave, master, and multi-master modes are all supported.
- Low-voltage detect (LVD) interrupts can signal the application of falling voltage levels, while the advanced power-on reset (POR) circuit eliminates the need for a system supervisor.
- An internal 1.3-V voltage reference provides an absolute reference for the analog system, including ADCs and DACs.
- An integrated switch mode pump generates normal operating voltages from a single 1.2-V battery cell, providing a low cost boost converter.

PSoC Designer[™] is the revolutionary integrated design environment (IDE) that you can use to customize PSoC to meet your specific application requirements. PSoC Designer software accelerates system design and time to market. Develop your applications using a library of precharacterized analog and digital peripherals (called user modules) in a drag-and-drop design environment. Then, customize your design by leveraging the dynamically generated application programming interface (API) libraries of code. Finally, debug and test your designs with the integrated debug environment, including in-circuit emulation and standard software debug features. PSoC Designer includes:

- Application editor graphical user interface (GUI) for device and user module configuration and dynamic reconfiguration
- Extensive user module catalog
- Integrated source-code editor (C and assembly)
- Free C compiler with no size restrictions or time limits
- Built-in debugger
- In-circuit emulation
- Built-in support for communication interfaces:
- Hardware and software I²C slaves and masters
- □ Full-speed USB 2.0
- Up to four full-duplex universal asynchronous receiver/transmitters (UARTs), SPI master and slave, and wireless

PSoC Designer supports the entire library of PSoC 1 devices and runs on Windows XP, Windows Vista, and Windows 7.

PSoC Designer Software Subsystems

Design Entry

In the chip-level view, choose a base device to work with. Then select different onboard analog and digital components that use the PSoC blocks, which are called user modules. Examples of user modules are analog-to-digital converters (ADCs), digital-to-analog converters (DACs), amplifiers, and filters. Configure the user modules for your chosen application and connect them to each other and to the proper pins. Then generate your project. This prepopulates your project with APIs and libraries that you can use to program your application.

The tool also supports easy development of multiple configurations and dynamic reconfiguration. Dynamic reconfiguration makes it possible to change configurations at run time. In essence, this lets you to use more than 100 percent of PSoC's resources for an application.

Code Generation Tools

The code generation tools work seamlessly within the PSoC Designer interface and have been tested with a full range of debugging tools. You can develop your design in C, assembly, or a combination of the two.

Assemblers. The assemblers allow you to merge assembly code seamlessly with C code. Link libraries automatically use absolute addressing or are compiled in relative mode, and linked with other software modules to get absolute addressing.

C Language Compilers. C language compilers are available that support the PSoC family of devices. The products allow you to create complete C programs for the PSoC family devices. The optimizing C compilers provide all of the features of C, tailored to the PSoC architecture. They come complete with embedded libraries providing port and bus operations, standard keypad and display support, and extended math functionality.

Debugger

PSoC Designer has a debug environment that provides hardware in-circuit emulation, allowing you to test the program in a physical system while providing an internal view of the PSoC device. Debugger commands allow you to read and program and read and write data memory, and read and write I/O registers. You can read and write CPU registers, set and clear breakpoints, and provide program run, halt, and step control. The debugger also lets you to create a trace buffer of registers and memory locations of interest.

Online Help System

The online help system displays online, context-sensitive help. Designed for procedural and quick reference, each functional subsystem has its own context-sensitive help. This system also provides tutorials and links to FAQs and an Online Support Forum to aid the designer.

In-Circuit Emulator

A low-cost, high-functionality in-circuit emulator (ICE) is available for development support. This hardware can program single devices.

The emulator consists of a base unit that connects to the PC using a USB port. The base unit is universal and operates with all PSoC devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the PSoC device in the target board and performs full-speed (24 MHz) operation.

Register Reference

Register Conventions

This section lists the registers of the CY8CLED02 EZ-Color device.

The register conventions specific to this section are listed in the following table.

Table 5. Register Conventions

Convention	Description
R	Read register or bit(s)
W	Write register or bit(s)
L	Logical register or bit(s)
С	Clearable register or bit(s)
#	Access is bit specific

Register Mapping Tables

The device has a total register address space of 512 bytes. The register space is referred to as I/O space and is divided into two banks, Bank 0 and Bank 1. The XOI bit in the Flag register (CPU_F) determines which bank the user is currently in. When the XOI bit is set to 1, the user is in Bank 1.

Note In the following register mapping tables, blank fields are Reserved and should not be accessed.

Table 6. Register Map Bank 0: User Space

Name	Addr (0,Hex)		Name	Addr (0,Hex)	Access	Name	Addr (0,Hex)		Name	Addr (0,Hex)	Access
PRT0DR	00	RW		40		ASE10CR0	80	RW		C0	
PRT0IE	01	RW		41			81			C1	
PRT0GS	02	RW		42			82			C2	
PRT0DM2	03	RW		43			83			C3	
PRT1DR	04	RW		44		ASE11CR0	84	RW		C4	
PRT1IE	05	RW		45			85			C5	
PRT1GS	06	RW		46			86			C6	
PRT1DM2	07	RW		47			87			C7	
	08	1		48			88			C8	
	09			49			89			C9	
	0A			4A			8A			CA	
	0B			4B			8B			СВ	
	0C			4C			8C			CC	
	0D			4D			8D			CD	
	0E			4E			8E			CE	
	0F			4F			8F			CF	
	10			50			90			D0	
	11			51			91			D1	
	12			52			92			D2	
	13			53			93			D3	+
	14		1	54			94			D4	+
	15		l	55			95			D5	───
							96		I2C CFG	D6	DW/
	16			56 57			96			D6 D7	RW
	17			57					I2C_SCR		#
	18			58			98		I2C_DR	D8	RW
	19			59			99		I2C_MSCR	D9	#
	1A			5A			9A		INT_CLR0	DA	RW
	1B			5B			9B		INT_CLR1	DB	RW
	1C			5C			9C			DC	
	1D			5D			9D		INT_CLR3	DD	RW
	1E			5E			9E		INT_MSK3	DE	RW
	1F			5F			9F		_	DF	
DBB00DR0	20	#	AMX_IN	60	RW		A0		INT_MSK0	E0	RW
DBB00DR1	21	W	,	61			A1		INT_MSK1	E1	RW
DBB00DR2	22	RW	PWM_CR	62	RW		A2		INT_VC	E2	RC
DBB00CR0	23	#		63	1		A3		RES_WDT	E3	W
			OMD ODO						RES_WD1		VV
DBB01DR0	24	#	CMP_CR0	64	#		A4			E4	
DBB01DR1	25	W		65			A5			E5	
DBB01DR2	26	RW	CMP_CR1	66	RW		A6		DEC_CR0	E6	RW
DBB01CR0	27	#		67			A7		DEC_CR1	E7	RW
DCB02DR0	28	#	ADC0_CR	68	#		A8			E8	
DCB02DR1	29	W	ADC1_CR	69	#		A9			E9	
DCB02DR2	2A	RW		6A			AA			EA	
DCB02CR0	2B	#		6B			AB			EB	
DCB03DR0	2C	#	TMP_DR0	6C	RW		AC			EC	
DCB03DR1	2D	W	TMP_DR1	6D	RW	-	AD			ED	
DCB03DR2	2E	RW	TMP_DR2	6E	RW		AE			EE	
DCB03CR0	2F	#	TMP_DR3	6F	RW	-	AF			EF	<u> </u>
DODOGOINO	30	m		70	1	RDIORI	B0	RW		F0	
	30		}	70		RDIORI	B1	RW		F0 F1	───
					DW						
	32		ACE00CR1	72	RW	RDI0IS	B2	RW		F2	<u> </u>
	33		ACE00CR2	73	RW	RDI0LT0	B3	RW		F3	
	34			74		RDI0LT1	B4	RW		F4	
	35			75		RDI0RO0	B5	RW		F5	
	36		ACE01CR1	76	RW	RDI0RO1	B6	RW		F6	
	37	1	ACE01CR2	77	RW		B7		CPU_F	F7	RL
	38		ł	78			B8		l –	F8	1
	39			79			B9			F9	<u> </u>
	3A		ł	7A			BA		1	FA	╂────
	3B			7B			BB			FB	+
	3B 3C		}	7B 7C			BC		}	FC	───
	3D			7D			BD			FD	<u> </u>
	3E			7E			BE		CPU_SCR1	FE	#
	3F			7F			BF		CPU_SCR0	FF	#

Table 7. Register Map Bank 1: Configuration Space

Name	Addr (1,Hex)		Name	Addr (1,Hex)	Access	Name	Addr (1,Hex)		Name	Addr (1,Hex)	Access
PRT0DM0	00	RW		40		ASE10CR0	80	RW		C0	
PRT0DM1	01	RW		41			81			C1	
PRT0IC0	02	RW		42			82			C2	
PRT0IC1	03	RW		43			83			C3	
PRT1DM0	04	RW		44		ASE11CR0	84	RW		C4	
PRT1DM1	05	RW		45			85			C5	
PRT1IC0	06	RW		46			86			C6	
PRT1IC1	07	RW		40			87			C7	
FRINCI		RVV									
	08			48			88			C8	
	09			49			89			C9	
	0A			4A			8A			CA	
	0B			4B			8B			СВ	
	0C			4C			8C			CC	
	0D			4D			8D			CD	
	0E			4E			8E			CE	
	0F			4F			8F			CF	
	10			50			90		GDI_O_IN	D0	RW
	11			51			91		GDI_E_IN	D1	RW
	12			52			92		GDI_O_OU	D2	RW
									GDI E OU	D2 D3	RW
	13			53			93		GDI_E_00		17.00
	14		l	54			94			D4	
	15			55			95			D5	L
	16			56			96			D6	
	17			57			97			D7	
	18			58			98			D8	
	19			59			99			D9	
	1A			5A			9A			DA	
	1B			5B			9B			DB	
	1C			5C			90			DC	
	1D			5D			9D		OSC_GO_EN	DD	RW
	1E			5E			9E		OSC_CR4	DE	RW
	1E 1F			5E 5F			9E 9F		OSC_CR4	DF	RW
DDDOOFN		DW/		-	DW						
DBB00FN	20	RW	CLK_CR0	60	RW		A0		OSC_CR0	EO	RW
DBB00IN	21	RW	CLK_CR1	61	RW		A1		OSC_CR1	E1	RW
DBB00OU	22	RW	ABF_CR0	62	RW		A2		OSC_CR2	E2	RW
	23		AMD_CR0	63	RW		A3		VLT_CR	E3	RW
DBB01FN	24	RW	CMP_GO_EN	64	RW		A4		VLT_CMP	E4	R
DBB01IN	25	RW		65			A5		ADC0_TR	E5	RW
DBB01OU	26	RW	AMD_CR1	66	RW		A6		ADC1_TR	E6	RW
	27		ALT_CR0	67	RW		A7			E7	
DCB02FN	28	RW		68			A8		IMO_TR	E8	W
DCB02IN	29	RW		69			A9		ILO_TR	E9	W
DCB020U	23 2A	RW		6A			AA		BDG_TR	EA	RW
DCB0200	2B		CLK_CR3	6B	RW		AB		ECO_TR	EB	W
DODOOFN				-					ECO_IK		vv
DCB03FN	2C	RW	TMP_DR0	6C	RW		AC			EC	
DCB03IN	2D	RW	TMP_DR1	6D	RW		AD			ED	
DCB03OU	2E	RW	TMP_DR2	6E	RW	l	AE			EE	L
	2F		TMP_DR3	6F	RW		AF			EF	
	30			70		RDI0RI	B0	RW		F0	
	31			71		RDI0SYN	B1	RW		F1	
	32		ACE00CR1	72	RW	RDI0IS	B2	RW		F2	
	33		ACE00CR2	73	RW	RDI0LT0	B3	RW		F3	1
	34			74		RDI0LT1	B4	RW		F4	t
	35			75		RDIOROO	B5	RW		F5	<u> </u>
	36		ACE01CR1	76	RW	RDI0RO1	B6	RW		F6	├
	30		ACE01CR1		RW		B7	1.1.1	CPU F	F0 F7	DI
			AUEUIUKZ	77	IT V V						RL
	38			78			B8			F8	└──
	39			79			B9			F9	
	3A			7A			BA		FLS_PR1	FA	RW
	3B			7B			BB			FB	
	3C			7C			BC			FC	Γ
	00										1
_	3D			7D			BD			FD	
				7D 7E			BD BE		CPU_SCR1	FD FE	#

DC General Purpose I/O Specifications

Table 11 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
R _{PD}	Pull-down resistor	4	5.6	8	kΩ	
V _{OH}	High output level	V _{DD} - 1.0	_	-	V	$I_{OH} = 10$ mA, $V_{DD} = 4.75$ to 5.25 V (8 total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])). 80 mA maximum combined I_{OH} budget.
V _{OL}	Low output level	_	-	0.75	V	$I_{OL} = 25 \text{ mA}, V_{DD} = 4.75 \text{ to } 5.25 \text{ V} (8 \text{ total loads, 4 on even port pins (for example, P0[2], P1[4]), 4 on odd port pins (for example, P0[3], P1[5])). 150 mA maximum combined I_{OL} budget.$
I _{ОН}	High level source current	10	-	-	mA	$V_{OH} = V_{DD}$ -1.0 V. See the limitations of the total current in the Note for V_{OH} .
I _{OL}	Low level sink current	25	-	-	mA	V_{OL} = 0.75 V. See the limitations of the total current in the Note for V_{OL} .
V _{IL}	Input low level	-	-	0.8	V	V _{DD} = 3.0 to 5.25.
V _{IH}	Input high level	2.1	-	-	V	V _{DD} = 3.0 to 5.25.
V _H	Input hysteresis	-	60	-	mV	
IIL	Input leakage (absolute value)	-	1	-	nA	Gross tested to 1 µA.
C _{IN}	Capacitive load on pins as input	-	3.5	10	pF	Package and pin dependent. Temp = 25 °C.
C _{OUT}	Capacitive load on pins as output	-	3.5	10	pF	Package and pin dependent. Temp = 25 °C.

Table 12 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 2.4 V to 3.0 V and -40 °C $\leq T_A \leq 85$ °C. Typical parameters are measured at 2.7 V at 25 °C and are for design guidance only.

Symbol	Description	Min	Тур	Max	Units	Notes
R _{PU}	Pull-up resistor	4	5.6	8	kΩ	
R _{PD}	Pull-down resistor	4	5.6	8	kΩ	
V _{OH}	High output level	V _{DD} - 0.4	_	-	V	I_{OH} = 2.5 mA (6.25 typical), V _{DD} = 2.4 to 3.0 V (16 mA maximum, 50 mA typical combined I _{OH} budget).
V _{OL}	Low output level	-	-	0.75	V	I_{OL} = 10 mA, V_{DD} = 2.4 to 3.0 V (90 mA maximum combined I_{OL} budget).
I _{ОН}	High level source current	2.5	-	-	mA	$V_{OH} = V_{DD}$ -0.4 V. See the limitations of the total current in the Note for V_{OH} .
I _{OL}	Low Level Sink Current	10	_	-	mA	$V_{OL} = 0.75$ V. See the limitations of the total current in the Note for VOL.
V _{IL}	Input low level	-	-	0.75	V	V _{DD} = 2.4 to 3.0.
V _{IH}	Input high level	2.0	Ι	-	V	V _{DD} = 2.4 to 3.0.
V _H	Input hysteresis	-	60	-	mV	
IIL	Input leakage (absolute value)	-	1	-	nA	Gross tested to 1 µA.
C _{IN}	Capacitive load on pins as input	-	3.5	10	pF	Package and pin dependent. Temp = $25 \degree C$.
C _{OUT}	Capacitive load on pins as output	-	3.5	10	pF	Package and pin dependent. Temp = $25 \degree C$.

Table 12. 2.7-V DC GPIO Specifications

DC Amplifier Specifications

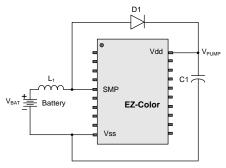

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 13. 5-V DC Amplifier Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
V _{OSOA}	Input offset voltage (absolute value)	_	2.5	15	mV	
TCV _{OSOA}	Average input offset voltage drift	-	10	-	μV/°C	
I _{EBOA}	Input leakage current (Port 0 analog pins)	_	200	-	pА	Gross tested to 1 µA.
C _{INOA}	Input capacitance (Port 0 analog pins)	_	4.5	9.5	pF	Package and pin dependent. Temp = 25 °C.
V _{CMOA}	Common mode voltage range	0.0	-	V _{DD} - 1	V	
G _{OLOA}	Open loop gain	80	-	-	dB	
I _{SOA}	Amplifier supply current	-	10	30	μΑ	

Figure 7. Basic Switch Mode Pump Circuit

DC POR and LVD Specifications

Table 18 lists guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 18. DC POR and LVD Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
N (V _{DD} value for PPOR trip		0.00	0.40		V_{DD} must be greater than or equal
V _{PPOR0}	PORLEV[1:0] = 00b		2.36	2.40	V V	to 2.5 V during startup, reset from
V _{PPOR1}	PORLEV[1:0] = 01b	_	2.82	2.95	V	the XRES pin, or reset from
V _{PPOR2}	PORLEV[1:0] = 10b		4.55	4.70	V	Watchdog.
.,	V _{DD} value for LVD trip	o 10	0.45	0 = 1[4]		
V _{LVD0}	VM[2:0] = 000b	2.40	2.45	2.51 ^[4]	V	
V _{LVD1}	VM[2:0] = 001b	2.85	2.92	2.99 ^[5]	V	
V _{LVD2}	VM[2:0] = 010b	2.95	3.02	3.09	V	
V _{LVD3}	VM[2:0] = 011b	3.06	3.13	3.20	V	
V _{LVD4}	VM[2:0] = 100b	4.37	4.48	4.55	V	
V _{LVD5}	VM[2:0] = 101b	4.50	4.64	4.75	V	
V _{LVD6}	VM[2:0] = 110b	4.62	4.73	4.83	V	
V _{LVD7}	VM[2:0] = 111b	4.71	4.81	4.95	V	
	V _{DD} value for PUMP trip			[6]		
V _{PUMP0}	VM[2:0] = 000b	2.45	2.55	2.62 ^[6]	V	
V _{PUMP1}	VM[2:0] = 001b	2.96	3.02	3.09	V	
V _{PUMP2}	VM[2:0] = 010b	3.03	3.10	3.16	V	
V _{PUMP3}	VM[2:0] = 011b	3.18	3.25	3.32 ^[7]	V	
V _{PUMP4}	VM[2:0] = 100b	4.54	4.64	4.74	V	
V _{PUMP5}	VM[2:0] = 101b	4.62	4.73	4.83	V	
V _{PUMP6}	VM[2:0] = 110b	4.71	4.82	4.92	V	
V _{PUMP7}	VM[2:0] = 111b	4.89	5.00	5.12	V	

Notes

- 4. Always greater than 50 mV above PPOR (PORLEV = 00) for falling supply.
- 5. Always greater than 50 mV above PPOR (PORLEV = 10) for falling supply.
- 6. Always greater than 50 mV above V_{LVD0} . 7. Always greater than 50 mV above V_{LVD0} .

AC Electrical Characteristics

AC Chip-Level Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and

-40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 21. 5-V and 3.3-V AC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO24}	IMO frequency for 24 MHz	23.4	24	24.6 ^[11,12]	MHz	Trimmed for 5 V or 3.3 V operation using factory trim values. Refer to Figure 6 on page 13. SLIMO mode = 0.
F _{IMO6}	IMO frequency for 6 MHz	5.5	6	6.5 ^[11,12]	MHz	Trimmed for 3.3 V operation using factory trim values. See Figure 6 on page 13. SLIMO mode = 1.
F _{CPU1}	CPU frequency (5 V nominal)	0.0937	24	24.6 ^[11]	MHz	12 MHz only for SLIMO mode = 0.
F _{CPU2}	CPU frequency (3.3 V nominal)	0.0937	12	12.3 ^[12]	MHz	SLIMO Mode = 0.
F _{BLK5}	Digital PSoC block frequency (5 V nominal)	0	48	49.2 ^[11,13]	MHz	Refer to the section AC Digital Block Specifications on page 26.
F _{BLK33}	Digital PSoC block frequency (3.3 V nominal)	0	24	24.6 ^[13]	MHz	
F _{32K1}	ILO frequency	15	32	64	kHz	
F _{32K_U}	ILO untrimmed frequency	5	_	100	kHz	After a reset and before the M8C starts to run, the ILO is not trimmed. See the system resets section of the PSoC Technical Reference Manual for details on this timing.
t _{XRST}	External reset pulse width	10	-	-	μs	
DC24M	24 MHz duty cycle	40	50	60	%	
DC _{ILO}	ILO duty cycle	20	50	80	%	
Step24M	24 MHz trim step size	-	50	-	kHz	
Fout48M	48 MHz output frequency	46.8	48.0	49.2 ^[11,12]	MHz	Trimmed. Using factory trim values.
F _{MAX}	Maximum frequency of signal on row input or row output.	_	-	12.3	MHz	
SR _{POWER_UP}	Power supply slew rate	-	-	250	V/ms	V _{DD} slew rate during power-up.
tpowerup	Time from end of POR to CPU executing code	-	16	100	ms	Power up from 0 V. See the system resets section of the PSoC Technical Reference Manual.
t _{jit_IMO}	24-MHz IMO cycle-to-cycle jitter (RMS) [14]	_	200	700	ps	
	24-MHz IMO long term N cycle-to-cycle jitter (RMS) ^[14]	-	300	900	ps	N = 32
	24-MHz IMO period jitter (RMS) [14]	-	100	400	ps	

Notes

Notes
11. 4.75 V < V_{DD} < 5.25 V.
12. 3.0 V < V_{DD} < 3.6 V.
13. See the individual user module datasheets for information on maximum frequencies for user modules.
14. Refer to the application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information on jitter specifications.

Table 22. 2.7-V AC Chip-Level Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{IMO12}	IMO frequency for 12 MHz	11.5	12	12.7 ^[15]	MHz	Trimmed for 2.7 V operation using factory trim values. See Figure 6 on page 13. SLIMO mode = 1.
F _{IMO6}	IMO frequency for 6 MHz	5.5	6	6.5 ^[15]	MHz	Trimmed for 2.7 V operation using factory trim values. See Figure 6 on page 13. SLIMO mode = 1.
F _{CPU1}	CPU frequency (2.7 V nominal)	0.093	3	3.15 ^[15]	MHz	24 MHz only for SLIMO mode = 0.
F _{BLK27}	Digital PSoC block frequency (2.7 V nominal)	0	12	12.5 ^[15]	MHz	Refer to the section AC Digital Block Specifications on page 26.
F _{32K1}	ILO frequency	8	32	96	kHz	
F _{32K_U}	ILO untrimmed frequency	5	-	100	kHz	After a reset and before the M8C starts to run, the ILO is not trimmed. See the system resets section of the PSoC Technical Reference Manual for details on this timing.
t _{XRST}	External reset pulse width	10	-	_	μs	
DC _{ILO}	ILO duty cycle	20	50	80	%	
F _{MAX}	Maximum frequency of signal on row input or row output	-	-	12.3	MHz	
SR _{POWER_UP}	Power supply slew rate	-	-	250	V/ms	V _{DD} slew rate during power up.
^t POWERUP	Time from end of POR to CPU executing code	– 16 100 ms		Power up from 0 V. See the system resets section of the PSoC Technical Reference Manual.		
t _{jit_IMO}	12-MHz IMO cycle-to-cycle jitter (RMS) ^[16]	-	400	1000	ps	
	12-MHz IMO long term N cycle-to-cycle jitter (RMS) ^[16]	-	600	1300	ps	N = 32
	12-MHz IMO period jitter (RMS) ^[16]	_	100	500	ps	

Notes 15. 2.4 V < V_{DD} < 3.0 V. 16. Refer to the application note, Understanding Datasheet Jitter Specifications for Cypress Timing Products – AN5054 for more information on jitter specifications.

AC GPIO Specifications

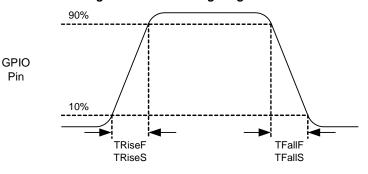

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and –40 °C \leq T_A \leq 85 °C, 3.0 V to 3.6 V and –40 °C \leq T_A \leq 85 °C, or 2.4 V to 3.0 V and –40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 23. 5-V and 3.3-V AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	12	MHz	Normal strong mode
TRiseF	Rise time, normal strong mode, Cload = 50 pF	3	-	18	ns	V _{DD} = 4.5 to 5.25 V, 10% - 90%
TFallF	Fall time, normal strong mode, Cload = 50 pF	2	-	18	ns	V _{DD} = 4.5 to 5.25 V, 10% - 90%
TRiseS	Rise time, slow strong mode, Cload = 50 pF	10	27	-	ns	V _{DD} = 3 to 5.25 V, 10% - 90%
TFallS	Fall time, slow strong mode, Cload = 50 pF	10	22	_	ns	V _{DD} = 3 to 5.25 V, 10% - 90%

Table 24. 2.7-V AC GPIO Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{GPIO}	GPIO operating frequency	0	-	3	MHz	Normal strong mode
TRiseF	Rise time, normal strong mode, Cload = 50 pF	6	-	50	ns	V _{DD} = 2.4 to 3.0 V, 10% - 90%
TFallF	Fall time, normal strong mode, Cload = 50 pF	6	-	50	ns	V _{DD} = 2.4 to 3.0 V, 10% - 90%
TRiseS	Rise time, slow strong mode, Cload = 50 pF	18	40	120	ns	V _{DD} = 2.4 to 3.0 V, 10% - 90%
TFallS	Fall time, slow strong mode, Cload = 50 pF	18	40	120	ns	V _{DD} = 2.4 to 3.0 V, 10% - 90%

Figure 8. GPIO Timing Diagram

Table 29. 2.7-V AC Digital Block Specifications

Function	Description	Min	Тур	Max	Units	Notes	
All Functions	Block input clock frequency			12.7	MHz	2.4 V < V _{DD} < 3.0 V.	
Timer	Capture pulse width	100 ^[18]	_	-	ns		
	Input clock frequency, with or without Capture	_	_	12.7	MHz		
Counter	Enable input pulse width	100	_	-	ns		
	Input clock frequency, no enable input	-	_	12.7	MHz		
	Input clock frequency, enable input	-	_	12.7	MHz		
Dead Band	Kill pulse width:			•	•		
	Asynchronous restart mode	20	_	-	ns		
	Synchronous restart mode	100	_	_	ns		
	Disable mode	100	_	-	ns		
	Input clock frequency	-	_	12.7	MHz		
CRCPRS (PRS Mode)	Input clock frequency	-	-	12.7	MHz		
CRCPRS (CRC Mode)	Input clock frequency	-	-	12.7	MHz		
SPIM	Input clock frequency	-	_	6.35	MHz	The SPI serial clock (SCLK) frequency is equal to the input clock frequency divided by 2.	
SPIS	Input Clock (SCLK) Frequency	-	_	4.1	MHz		
	Width of SS_ Negated between transmissions	100	_	-	ns		
Transmitter	Input clock frequency	-	-	12.7	MHz	The baud rate is equal to the input clock frequency divided by 8.	
Receiver	eceiver Input clock frequency		-	12.7	MHz	The baud rate is equal to the input clock frequency divided by 8.	

AC External Clock Specifications

The following tables list guaranteed maximum and minimum specifications for the voltage and temperature ranges: 4.75 V to 5.25 V and -40 °C \leq T_A \leq 85 °C, or 3.0 V to 3.6 V and -40 °C \leq T_A \leq 85 °C, respectively. Typical parameters are measured at 5 V, 3.3 V, or 2.7 V at 25 °C and are for design guidance only.

Table 30. 5-V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
FOSCEXT	Frequency	0.093	Ι	24.6	MHz	
-	High period	20.6	1	5300	ns	
-	Low period	20.6	-	-	ns	
_	Power up IMO to switch	150	-	-	μS	

Note 18. 100 ns minimum input pulse width is based on the input synchronizers running at 12 MHz (84 ns nominal period).

Table 31. 3.3-V AC External Clock Specifications

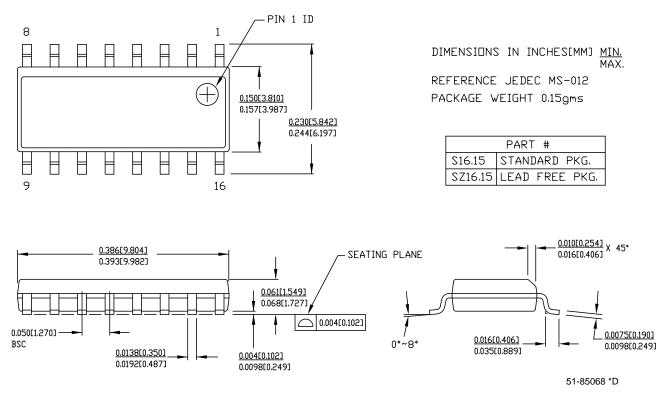

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency with CPU clock divide by 1	0.093	-	12.3	MHz	Maximum CPU frequency is 12 MHz at 3.3 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.
F _{OSCEXT}	Frequency with CPU clock divide by 2 or greater	0.186	_	24.6	MHz	If the frequency of the external clock is greater than 12 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider will ensure that the fifty percent duty cycle requirement is met.
-	High period with CPU clock divide by 1	41.7	_	5300	ns	
_	Low period with CPU clock divide by 1	41.7	_	_	ns	
-	Power up IMO to switch	150	_	_	μS	

Table 32. 2.7-V AC External Clock Specifications

Symbol	Description	Min	Тур	Max	Units	Notes
F _{OSCEXT}	Frequency with CPU clock divide by 1	0.093	-	6.06	MHz	Maximum CPU frequency is 3 MHz at 2.7 V. With the CPU clock divider set to 1, the external clock must adhere to the maximum frequency and duty cycle requirements.
F _{OSCEXT}	Frequency with CPU clock divide by 2 or greater	0.186	-	12.12	MHz	If the frequency of the external clock is greater than 3 MHz, the CPU clock divider must be set to 2 or greater. In this case, the CPU clock divider will ensure that the fifty percent duty cycle requirement is met.
-	High period with CPU clock divide by 1	83.4	_	5300	ns	
-	Low period with CPU clock divide by 1	83.4	_	_	ns	
-	Power up IMO to switch	150	_	_	μS	

Figure 11. 16-Pin (150-Mil) SOIC

Development Tool Selection

This section presents the development tools available for all current PSoC based devices including the CY8CLED02 EZ-Color family.

Software Tools

PSoC Designer

At the core of the PSoC development software suite is PSoC Designer, used to generate PSoC firmware applications. PSoC Designer is available free of charge at http://www.cypress.com and includes a free C compiler.

PSoC Programmer

Flexible enough to be used on the bench in development, yet suitable for factory programming, PSoC Programmer works either as a standalone programming application or it can operate directly from PSoC Designer. PSoC Programmer software is compatible with both PSoC ICE-Cube in-circuit emulator and PSoC MiniProg. PSoC programmer is available free of charge at http://www.cypress.com.

Hardware Tools

In-Circuit Emulator

A low cost, high functionality in-circuit emulator (ICE)) is available for development support. This hardware has the capability to program single devices.

The emulator consists of a base unit that connects to the PC by way of the USB port. The base unit is universal and will operate with all PSoC based devices. Emulation pods for each device family are available separately. The emulation pod takes the place of the device on the target board and performs full speed (24 MHz) operation.

I²C to USB Bridge

The I^2C to USB Bridge is a quick and easy link from any design or application's I^2C bus to a PC via USB for design testing, debugging and communication.

Evaluation Tools

All evaluation tools can be purchased from the Cypress Online Store.

CY3210-MiniProg1

The CY3210-MiniProg1 kit allows you to program PSoC based devices via the MiniProg1 programming unit. The MiniProg is a small, compact prototyping programmer that connects to the PC via a provided USB 2.0 cable. The kit includes:

- MiniProg programming unit
- MiniEval socket programming and evaluation board
- 28-Pin CY8C29466-24PXI PDIP PSoC device sample

- 28-Pin CY8C27443-24PXI PDIP PSoC device sample
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

CY3210-PSoCEval1

The CY3210-PSoCEval1 kit features an evaluation board and the MiniProg1 programming unit. The evaluation board includes an LCD module, potentiometer, LEDs, and plenty of breadboarding space to meet all of your evaluation needs. The kit includes:

- Evaluation board with LCD module
- MiniProg programming unit
- 28-Pin CY8C29466-24PXI PDIP PSoC device sample (2)
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

Device Programmers

All device programmers are sold at the Cypress Online Store.

CY3216 Modular Programmer

The CY3216 Modular Programmer kit features a modular programmer and the MiniProg1 programming unit. The modular programmer includes three programming module cards and supports multiple Cypress products. The kit includes:

- Modular programmer base
- Three programming module cards
- MiniProg Programming Unit
- PSoC Designer software CD
- Getting Started guide
- USB 2.0 cable

CY3207ISSP In-System Serial Programmer (ISSP)

The CY3207ISSP is a production programmer. It includes protection circuitry and an industrial case that is more robust than the MiniProg in a production-programming environment. **Note** CY3207ISSP needs special software and is not compatible with PSoC Programmer. The kit includes:

- CY3207 programmer unit
- PSoC ISSP software CD
- 110 ~ 240 V power supply, Euro-Plug adapter
- USB 2.0 cable

Document Conventions

Units of Measure

Table 41 lists the units of measure.

Table 41. Units of Measure

Symbol	Unit of Measure	Symbol	Unit of Measure
°C	degree Celsius	μs	microsecond
dB	decibels	μH	micro henry
kHz	kilohertz	ps	picosecond
kΩ	kilo ohm	mV	millivolt
mA	milliampere	V	volt
mH	millihenry	%	percent
MHz	megahertz	μV	microvolt
nA	nano ampere	W	watt
pА	pico ampere	mm	millimeter
pF	picofarad	ns	nanosecond
μA	microampere	mVpp	millivolts peak-to-peak
μF	microfarad	ms	millisecond

Numeric Conventions

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase 'h' (for example, '14h' or '3Ah'). Hexadecimal numbers may also be represented by a '0x' prefix, the C coding convention. Binary numbers have an appended lowercase 'b' (for example, 01010100b' or '01000011b'). Numbers not indicated by an 'h' or 'b' are decimals.

Glossary

active high	 A logic signal having its asserted state as the logic 1 state. A logic signal having the logic 1 state as the higher voltage of the two states.
analog blocks	The basic programmable opamp circuits. These are switched capacitor (SC) and continuous time (CT) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain stages, and much more.
analog-to-digital (ADC)	A device that changes an analog signal to a digital signal of corresponding magnitude. Typically, an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs the reverse operation.
Application programming interface (API)	A series of software routines that comprise an interface between a computer application and lower level services and functions (for example, user modules and libraries). APIs serve as building blocks for programmers that create software applications.
asynchronous	A signal whose data is acknowledged or acted upon immediately, irrespective of any clock signal.
bandgap reference	A stable voltage reference design that matches the positive temperature coefficient of VT with the negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) reference.
bandwidth	 The frequency range of a message or information processing system measured in hertz. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or loss); it is sometimes represented more specifically as, for example, full width at half maximum.

Glossary (continued)

bias	1. A systematic deviation of a value from a reference value.
	2. The amount by which the average of a set of values departs from a reference value.
	3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a reference level to operate the device.
block	1. A functional unit that performs a single function, such as an oscillator.
	A functional unit that may be configured to perform one of several functions, such as a digital PSoC block or an analog PSoC block.
buffer	 A storage area for data that is used to compensate for a speed difference, when transferring data from one device to another. Usually refers to an area reserved for IO operations, into which data is read, or from which data is written.
	A portion of memory set aside to store data, often before it is sent to an external device or as it is received from an external device.
	3. An amplifier used to lower the output impedance of a system.
bus	 A named connection of nets. Bundling nets together in a bus makes it easier to route nets with similar routing patterns.
	A set of signals performing a common function and carrying similar data. Typically represented using vector notation; for example, address[7:0].
	3. One or more conductors that serve as a common connection for a group of related devices.
clock	The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is sometimes used to synchronize different logic blocks.
comparator	An electronic circuit that produces an output voltage or current whenever two input levels simultaneously satisfy predetermined amplitude requirements.
compiler	A program that translates a high level language, such as C, into machine language.
configuration space	In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to '1'.
crystal oscillator	An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelectric crystal is less sensitive to ambient temperature than other circuit components.
cyclic redundancy check (CRC)	A calculation used to detect errors in data communications, typically performed using a linear feedback shift register. Similar calculations may be used for a variety of other purposes such as data compression.
data bus	A bi-directional set of signals used by a computer to convey information from a memory location to the central processing unit and vice versa. More generally, a set of signals used to convey data between digital functions.
debugger	A hardware and software system that allows you to analyze the operation of the system under development. A debugger usually allows the developer to step through the firmware one step at a time, set break points, and analyze memory.
dead band	A period of time when neither of two or more signals are in their active state or in transition.
digital blocks	The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC generator, pseudo-random number generator, or SPI.

Glossary (continued)

digital-to-analog (DAC)	A device that changes a digital signal to an analog signal of corresponding magnitude. The analog-to-digital (ADC) converter performs the reverse operation.
duty cycle	The relationship of a clock period high time to its low time, expressed as a percent.
emulator	Duplicates (provides an emulation of) the functions of one system with a different system, so that the second system appears to behave like the first system.
External Reset (XRES)	An active high signal that is driven into the PSoC device. It causes all operation of the CPU and blocks to stop and return to a pre-defined state.
Flash	An electrically programmable and erasable, non-volatile technology that provides you the programmability and data storage of EPROMs, plus in-system erasability. Non-volatile means that the data is retained when power is OFF.
Flash block	The smallest amount of flash ROM space that may be programmed at one time and the smallest amount of flash space that may be protected. A flash block holds 64 bytes.
frequency	The number of cycles or events per unit of time, for a periodic function.
gain	The ratio of output current, voltage, or power to input current, voltage, or power, respectively. Gain is usually expressed in dB.
I ² C	A two-wire serial computer bus by Philips Semiconductors (now NXP Semiconductors). I ² C is an Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The original system was created in the early 1980s as a battery control interface, but it was later used as a simple internal bus system for building control electronics. I ² C uses only two bi-directional pins, clock and data, both running at +5 V and pulled high with resistors. The bus operates at 100 kbits/second in standard mode and 400 kbits/second in fast mode.
ICE	The in-circuit emulator that allows you to test the project in a hardware environment, while viewing the debugging device activity in a software environment (PSoC Designer).
input/output (I/O)	A device that introduces data into or extracts data from a system.
interrupt	A suspension of a process, such as the execution of a computer program, caused by an event external to that process, and performed in such a way that the process can be resumed.
interrupt service routine (ISR)	A block of code that normal code execution is diverted to when the M8C receives a hardware interrupt. Many interrupt sources may each exist with its own priority and individual ISR code block. Each ISR code block ends with the RETI instruction, returning the device to the point in the program where it left normal program execution.
jitter	1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption that occurs on serial data streams.
	The abrupt and unwanted variations of one or more signal characteristics, such as the interval between successive pulses, the amplitude of successive cycles, or the frequency or phase of successive cycles.
low-voltage detect (LVD)	A circuit that senses V_{DD} and provides an interrupt to the system when V_{DD} falls lower than a selected threshold.
M8C	An 8-bit Harvard-architecture microprocessor. The microprocessor coordinates all activity inside

a PSoC by interfacing to the flash, SRAM, and register space.

Document History Page

Document Title: CY8CLED02 EZ-Color TM HB LED Controller Document Number: 001-13704					
Revision	ECN #	Submission Date	Origin of Change	Description of Change	
**	1383443	See ECN	SFVTMP3/AESA	New document	
*A	2732564	07/09/2009	CGX	Converted from Preliminary to Final	
*В	2794355	10/28/2009	XBM	Added "Contents" on page 2 Updated "Development Tools" on page 6. Corrected FCPU1 and FCPU2 parameters in Table 21, "5-V and 3.3-V AC Chip-Level Specifications," on page 22 and Table 22, "2.7-V AC Chip-Level Specifications," on page 23	
*C	2850593	01/14/2010	FRE	Updated DC GPIO, AC Chip-Level, and AC Programming Specifications as follows: Modified FIMO6 and TWRITE specifications. Replaced TRAMP (time) specification with SRPOWER_UP (slew rate) specification. Added note to Flash Endurance specification. Added IOH, IOL, DCILO, F32K_U, TPOWERUP, TERASEALL, TPROGRAM_HOT, and TPROGRAM_COLD specifications. Corrected the Pod Kit part numbers. Updated Development Tool Selection. Updated copyright and Sales, Solutions, and Legal Information URLs. Updated 24-Pin QFN package diagram.	
*D	2903043	04/01/2010	NJF	Updated Cypress website links Added T _{BAKETEMP} and T _{BAKETIME} parameters Updated package diagrams Removed sections "Third Party Tools" and "Build a PSoC Emulator"	
*E	3111554	12/15/10	NJF	Added DC I ² C Specifications table. Added $F_{32K \ U}$ max limit. Added Tjit_IMO specification, removed existing jitter specifications. Updated Units of Measure, Acronyms, Glossary, and References sections. Updated solder reflow specifications. No specific changes were made to AC Digital Block Specifications table and I ² C Timing Diagram. They were updated for clearer understanding.	
*F	3283843	07/13/11	DIVA	Updated Getting Started, Development Tools, and Designing with PSoC Designer. Removed obsolete kits. Removed reference to obsolete spec AN2012.	
*G	3403622	10/12/11	МККU	Removed the following pruned parts from the Ordering Information and Accessories (Emulation and Programming) sections. CY8CLED02-8SXI CY8CLED02-8SXIT	