E·XFL

NXP USA Inc. - MK51DX256CLL7 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	57
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 35x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk51dx256cll7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Symbol	Description	Min.	Max.	Unit
I _{DD}	Digital supply current	—	185	mA
V _{DIO}	Digital input voltage (except RESET, EXTAL, and XTAL)	-0.3	5.5	V
V _{AIO}	Analog ¹ , RESET, EXTAL, and XTAL input voltage	-0.3	V _{DD} + 0.3	V
I _D	Maximum current single pin limit (applies to all digital pins)	-25	25	mA
V _{DDA}	Analog supply voltage	V _{DD} – 0.3	V _{DD} + 0.3	V
V _{USB_DP}	USB_DP input voltage	-0.3	3.63	V
V _{USB_DM}	USB_DM input voltage	-0.3	3.63	V
VREGIN	USB regulator input	-0.3	6.0	V
V _{BAT}	RTC battery supply voltage	-0.3	3.8	V

1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5 General

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + $(V_{IH} - V_{IL})/2$.

All digital I/O switching characteristics assume:

- 1. output pins
 - have C_L=30pF loads,
 - are configured for fast slew rate (PORTx_PCRn[SRE]=0), and
 - are configured for high drive strength (PORTx_PCRn[DSE]=1)
- 2. input pins
 - have their passive filter disabled (PORTx_PCRn[PFE]=0)

5.2 Nonswitching electrical specifications

General

5.2.3 Voltage and current operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{OH}	Output high voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -9mA	V _{DD} – 0.5	_	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OH} = -3mA	V _{DD} – 0.5	_	V	
	Output high voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OH} = -2mA	V _{DD} – 0.5	_	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OH}} = -0.6 \text{mA}$	V _{DD} – 0.5	_	V	
I _{OHT}	Output high current total for all ports	_	100	mA	
V _{OL}	Output low voltage — high drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 9mA	—	0.5	V	
	• 1.71 V \leq V _{DD} \leq 2.7 V, I _{OL} = 3mA	—	0.5	V	
	Output low voltage — low drive strength				
	• 2.7 V \leq V _{DD} \leq 3.6 V, I _{OL} = 2mA	—	0.5	V	
	• $1.71 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}, \text{ I}_{\text{OL}} = 0.6 \text{mA}$	—	0.5	V	
I _{OLT}	Output low current total for all ports	_	100	mA	
I _{IN}	Input leakage current (per pin) for full temperature range except TRI0_DM, TRI0_DP, TRI1_DM, TRI1_DP	_	1	μA	1
I _{IN}	Input leakage current (per pin) at 25°C except TRI0_DM, TRI0_DP, TRI1_DM, TRI1_DP	_	0.025	μΑ	1
I _{ILKG_A}	Input leakage current (per pin) for TRI0_DM, TRI0_DP, TRI1_DM, TRI1_DP	_	5	nA	1
I _{OZ}	Hi-Z (off-state) leakage current (per pin)		1	μA	
R _{PU}	Internal pullup resistors	20	50	kΩ	2
R _{PD}	Internal pulldown resistors	20	50	kΩ	3

 Table 4. Voltage and current operating behaviors

1. Measured at VDD=3.6V

2. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{SS}

3. Measured at V_{DD} supply voltage = V_{DD} min and Vinput = V_{DD}

5.2.4 Power mode transition operating behaviors

All specifications except t_{POR} , and VLLSx \rightarrow RUN recovery times in the following table assume this clock configuration:

- CPU and system clocks = 72 MHz
- Bus clock = 36 MHz
- Flash clock = 24 MHz

General

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{DD_VLPW}	Very-low-power wait mode current at 3.0 V — all peripheral clocks disabled	_	0.61	_	mA	8
I _{DD_STOP}	Stop mode current at 3.0 V					
	 @ -40 to 25°C 	—	0.35	0.567	mA	
	• @ 70°C	—	0.384	0.793	mA	
	• @ 105°C	—	0.628	1.2	mA	
I _{DD_VLPS}	Very-low-power stop mode current at 3.0 V					
	• @ –40 to 25°C	—	5.9	32.7	μA	
	• @ 70°C	—	26.1	59.8	μA	
	• @ 105°C	—	98.1	188	μA	
I _{DD_LLS}	Low leakage stop mode current at 3.0 V					9
	● @ -40 to 25°C	—	2.6	8.6	μA	
	• @ 70°C	—	10.3	29.1	μA	
	• @ 105°C	—	42.5	92.5	μA	
I _{DD_VLLS3}	Very low-leakage stop mode 3 current at 3.0 V					9
	● @ -40 to 25°C	—	1.9	5.8	μA	
	• @ 70°C	—	6.9	12.1	μA	
	• @ 105°C	—	28.1	41.9	μA	
I _{DD_VLLS2}	Very low-leakage stop mode 2 current at 3.0 V					
	 ● -40 to 25°C 	—	1.59	5.5	μA	
	• @ 70°C	—	4.3	9.5	μA	
	• @ 105°C	—	17.5	34	μA	
I _{DD_VLLS1}	Very low-leakage stop mode 1 current at 3.0 V					
	 @ -40 to 25°C 	—	1.47	5.4	μA	
	• @ 70°C	—	2.97	8.1	μA	
	• @ 105°C	—	12.41	32	μA	
I _{DD_VBAT}	Average current with RTC and 32kHz disabled at 3.0 V					
	• @ -40 to 25°C		0.19	0.22	uА	
	• @ 70°C		0.49	0.64	uA	
	• @ 105°C	_	2.2	3.2	μΑ	

Table 6. Power consumption operating behaviors (continued)

Table continues on the next page ...

rempheral operating requirements and behaviors

6.1.2 JTAG electricals

Table 12. JTAG limited voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	25	
	Serial Wire Debug	0	50	
J2	TCLK cycle period	1/J1	—	ns
J3	TCLK clock pulse width			
	Boundary Scan	50	_	ns
	JTAG and CJTAG	20	_	ns
	Serial Wire Debug	10	_	ns
J4	TCLK rise and fall times	_	3	ns
J5	Boundary scan input data setup time to TCLK rise	20		ns
J6	Boundary scan input data hold time after TCLK rise	0		ns
J7	TCLK low to boundary scan output data valid		25	ns
J8	TCLK low to boundary scan output high-Z		25	ns
J9	TMS, TDI input data setup time to TCLK rise	8		ns
J10	TMS, TDI input data hold time after TCLK rise	1		ns
J11	TCLK low to TDO data valid		17	ns
J12	TCLK low to TDO high-Z	_	17	ns
J13	TRST assert time	100	_	ns
J14	TRST setup time (negation) to TCLK high	8		ns

Table 13. JTAG full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	20	
	Serial Wire Debug	0	40	
J2	TCLK cycle period	1/J1	—	ns
J3	TCLK clock pulse width			
	Boundary Scan	50	—	ns
	JTAG and CJTAG	25	—	ns
	Serial Wire Debug	12.5	—	ns
J4	TCLK rise and fall times	—	3	ns

Table continues on the next page...

6.3.1 MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}	Internal reference factory trimmed at	frequency (slow clock) — nominal VDD and 25 °C	_	32.768	—	kHz	
f _{ints_t}	Internal reference trimmed	31.25	_	39.0625	kHz		
Δ _{fdco_res_t}	Resolution of trimr frequency at fixed using SCTRIM and	ned average DCO output voltage and temperature — d SCFTRIM	—	± 0.3	± 0.6	%f _{dco}	1
Δf _{dco_res_t}	Resolution of trimr frequency at fixed using SCTRIM onl	ned average DCO output voltage and temperature — y	_	± 0.2	± 0.5	%f _{dco}	1
Δf _{dco_t}	Total deviation of t frequency over vo	rimmed average DCO output tage and temperature	_	+0.5/-0.7	_	%f _{dco}	1
Δf _{dco_t}	Total deviation of t frequency over fixe range of 0–70°C	_	± 0.3	± 0.3	%f _{dco}	1	
f _{intf_ft}	Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25°C		_	4	_	MHz	
f _{intf_t}	Internal reference trimmed at nomina	3	_	5	MHz		
f _{loc_low}	Loss of external cl RANGE = 00	(3/5) x f _{ints_t}	_		kHz		
f _{loc_high}	Loss of external clock minimum frequency — RANGE = 01, 10, or 11		(16/5) x f _{ints_t}	_		kHz	
		FI	ĹĹ				•
f _{fll_ref}	FLL reference free	luency range	31.25		39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS=00) 640 × f _{fll_ref}	20	20.97	25	MHz	2, 3
		Mid range (DRS=01) 1280 × f _{fll_ref}	40	41.94	50	MHz	
		Mid-high range (DRS=10) 1920 × f _{fll ref}	60	62.91	75	MHz	
		High range (DRS=11) 2560 × f _{fll ref}	80	83.89	100	MHz	-
f _{dco_t_DMX32}	DCO output frequency	Low range (DRS=00) 732 × f _{fll ref}	_	23.99	_	MHz	4, 5
		Mid range (DRS=01) $1464 \times f_{fill ref}$	—	47.97	—	MHz	-
		Mid-high range (DRS=10) $2197 \times f_{fll}$ ref	-	71.99	—	MHz	
		High range (DRS=11) 2929 × f_{fil_ref}	_	95.98		MHz	

Table 14. MCG specifications

Table continues on the next page...

rempheral operating requirements and behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
J _{cyc_fll}	FLL period jitter	_	180	_	ps	
	 f_{VCO} = 48 MHz f_{VCO} = 98 MHz 	_	150	_		
t _{fll_acquire}	FLL target frequency acquisition time	—	—	1	ms	6
	PI	LL				
f _{vco}	VCO operating frequency	48.0	_	100	MHz	
I _{pll}	PLL operating current • PLL @ 96 MHz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = 2 MHz, VDIV multiplier = 48)	_	1060	_	μA	7
I _{pll}	PLL operating current • PLL @ 48 MHz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = 2 MHz, VDIV multiplier = 24)	_	600	_	μA	7
f _{pll_ref}	PLL reference frequency range	2.0	—	4.0	MHz	
J _{cyc_pll}	PLL period jitter (RMS)					8
	• f _{vco} = 48 MHz	_	120	—	ps	
	• f _{vco} = 100 MHz	_	50	—	ps	
J _{acc_pll}	PLL accumulated jitter over 1µs (RMS)					8
	• f _{vco} = 48 MHz	_	1350	_	ps	
	• f _{vco} = 100 MHz	_	600	—	ps	
D _{lock}	Lock entry frequency tolerance	± 1.49	_	± 2.98	%	
D _{unl}	Lock exit frequency tolerance	± 4.47	—	± 5.97	%	
t _{pll_lock}	Lock detector detection time	_	_	150 × 10 ⁻⁶ + 1075(1/ f _{pll_ref})	S	9

 Table 14.
 MCG specifications (continued)

1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).

- 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco t}) over voltage and temperature should be considered.
- 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

6.3.2 Oscillator electrical specifications

This section provides the electrical characteristics of the module.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	_	3.6	V	
IDDOSC	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	—	500	_	nA	
	• 4 MHz	—	200	_	μA	
	• 8 MHz (RANGE=01)	—	300	_	μA	
	• 16 MHz	—	950	_	μA	
	• 24 MHz	—	1.2	_	mA	
	• 32 MHz	—	1.5	_	mA	
I _{DDOSC}	Supply current — high gain mode (HGO=1)					1
	• 32 kHz	—	25	_	μA	
	• 4 MHz	—	400	_	μA	
	• 8 MHz (RANGE=01)	—	500	_	μA	
	• 16 MHz	—	2.5	_	mA	
	• 24 MHz	—	3	_	mA	
	• 32 MHz	—	4	_	mA	
C _x	EXTAL load capacitance		_	_		2, 3
Cy	XTAL load capacitance	_	_	_		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	—	—	_	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10	_	MΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)	—		_	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	—	1		MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	_			kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200		kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_	_		kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	

6.3.2.1 Oscillator DC electrical specifications Table 15. Oscillator DC electrical specifications

Table continues on the next page...

6.4.1.1 Flash timing specifications — program and erase

The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
t _{hvpgm4}	Longword Program high-voltage time	—	7.5	18	μs	
t _{hversscr}	Sector Erase high-voltage time	_	13	113	ms	1
t _{hversblk32k}	Erase Block high-voltage time for 32 KB	_	52	452	ms	1
t _{hversblk256k}	Erase Block high-voltage time for 256 KB	—	104	904	ms	1

Table 19. NVM program/erase timing specifications

1. Maximum time based on expectations at cycling end-of-life.

6.4.1.2 Flash timing specifications — commands Table 20. Flash command timing specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Read 1s Block execution time					
t _{rd1blk32k}	• 32 KB data flash	_	—	0.5	ms	
t _{rd1blk256k}	256 KB program flash	_	_	1.7	ms	
t _{rd1sec1k}	Read 1s Section execution time (data flash sector)		_	60	μs	1
t _{rd1sec2k}	Read 1s Section execution time (program flash sector)	_	_	60	μs	1
t _{pgmchk}	Program Check execution time	_	_	45	μs	1
t _{rdrsrc}	Read Resource execution time			30	μs	1
t _{pgm4}	Program Longword execution time		65	145	μs	
	Erase Flash Block execution time					2
t _{ersblk32k}	32 KB data flash	_	55	465	ms	
t _{ersblk256k}	• 256 KB program flash	_	122	985	ms	
t _{ersscr}	Erase Flash Sector execution time	—	14	114	ms	2
	Program Section execution time					
t _{pgmsec512p}	 512 B program flash 	_	2.4	_	ms	
t _{pgmsec512d}	• 512 B data flash	_	4.7	_	ms	
t _{pgmsec1kp}	 1 KB program flash 	_	4.7	_	ms	
t _{pgmsec1kd}	 1 KB data flash 	_	9.3		ms	
t _{rd1all}	Read 1s All Blocks execution time	—	—	1.8	ms	
t _{rdonce}	Read Once execution time	—	—	25	μs	1
t _{pgmonce}	Program Once execution time		65		μs	
t _{ersall}	Erase All Blocks execution time		175	1500	ms	2

Table continues on the next page...

Figure 11. EzPort Timing Diagram

6.5 Security and integrity modules

There are no specifications necessary for the device's security and integrity modules.

6.6 Analog

6.6.1 ADC electrical specifications

The 16-bit accuracy specifications listed in Table 24 and Table 25 are achievable on the differential pins ADCx_DP0, ADCx_DM0.

The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are not direct device pins. Accuracy specifications for these pins are defined in Table 26 and Table 27.

All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.

rempheral operating requirements and behaviors

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
EQ	Quantization	16-bit modes	—	-1 to 0	—	LSB ⁴	
	error	• ≤13-bit modes	_	_	±0.5		
ENOB	Effective number	16-bit differential mode					6
	of bits	• Avg = 32	12.8	14.5	—	bits	
		• Avg = 4	11.9	13.8	_	bits	
		16-bit single-ended mode					
		• Avg = 32	10.0	12.0		bito	
		• Avg = 4	11.4	10.9		bito	
	Signal-to-poise		11.4	13.1		DIIS	
SINAD	plus distortion		6.02	2 × ENOB +	1.76	dB	
THD	Total harmonic	16-bit differential mode					7
	distortion	• Avg = 32	_	-94	_	dB	
		16-bit single-ended mode		-85		dB	
		• Avg = 32		-00			
SFDR	Spurious free	16-bit differential mode					7
	dynamic range	• Avg = 32	82	95	_	dB	
		16-bit single-ended mode	70	00		dD	
		• Avg = 32	10	90		UB	
E _{IL}	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	-	1.715	_	mV/°C	
V _{TEMP25}	Temp sensor voltage	25 °C	_	719		mV	

Table 25. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

- 1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$
- Typical values assume V_{DDA} = 3.0 V, Temp = 25°C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power). For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^{N}$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{PP,DIFF}	Maximum differential input signal swing		$\left(\frac{\min(V)}{V}\right)$	$\left(\frac{(\min(V_{x}V_{\text{DDA}}-V_{x})-0.2)\times 4}{\text{Gain}}\right)$		V	6
			where V ₂	$\kappa = V_{\text{REFPG}}$	_A × 0.583		
SNR	Signal-to-noise	• Gain=1	80	90		dB	16-bit
	Tallo	• Gain=64	52	66	—	dB	mode, Average=32
THD	Total harmonic	• Gain=1	85	100	—	dB	16-bit
	distortion	• Gain=64	49	95		dB	differential mode, Average=32, f _{in} =100Hz
SFDR	Spurious free	Gain=1	85	105	—	dB	16-bit
	dynamic range	• Gain=64	53	88	_	dB	differential mode, Average=32, f _{in} =100Hz
ENOB	Effective number	Gain=1, Average=4	11.6	13.4		bits	16-bit
	of bits	Gain=64, Average=4	7.2	9.6	_	bits	differential mode.f _{in} =100Hz
		 Gain=1, Average=32 	12.8	14.5	—	bits	
		Gain=2, Average=32	11.0	14.3	_	bits	
		• Gain=4, Average=32	7.9	13.8	_	bits	
		Gain=8, Average=32	7.3	13.1	_	bits	
		Gain=16, Average=32	6.8	12.5	_	bits	
		Gain=32, Average=32	6.8	11.5	_	bits	
		Gain=64, Average=32	7.5	10.6		bits	
SINAD	Signal-to-noise plus distortion ratio	See ENOB	6.02	× ENOB +	1.76	dB	

Table 27. 16-bit ADC with PGA characteristics (continued)

- 1. Typical values assume V_{DDA} =3.0V, Temp=25°C, f_{ADCK}=6MHz unless otherwise stated.
- 2. This current is a PGA module adder, in addition to ADC conversion currents.
- Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong function of input common mode voltage (V_{CM}) and the PGA gain.
- 4. Gain = 2^{PGAG}
- 5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.
- 6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the PGA reference voltage and gain setting.

6.6.2 CMP and 6-bit DAC electrical specifications

Table 28. Comparator and 6-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{DD}	Supply voltage	1.71		3.6	V

Table continues on the next page...

NP

rempheral operating requirements and behaviors

Figure 15. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0)

Symbol	Description	Min.	Тур.	Max.	Unit
I _{BIAS}	Typical input bias current across the following temp range (0–50°C)	_	±500	_	рА
I _{BIAS}	Typical input bias current across the following temp range (-40–105°C)	_	±4	_	nA
V _{CML}	Input common mode voltage low	0	—	—	V
V _{CMH}	Input common mode voltage high	—	—	VDD	V
R _{IN}	Input resistance	—	500	—	MΩ
C _{IN}	Input capacitance	—	17 ¹	—	pF
X _{IN}	AC input impedance (f _{IN} =100kHz)	—	50	—	MΩ
CMRR	Input common mode rejection ratio	60	_	—	dB
PSRR	Power supply rejection ratio	60	—	—	dB
SR	Slew rate (ΔV_{IN} =500mV), low-power mode	0.1	—	—	V/µs
SR	Slew rate (ΔV_{IN} =500mV), high-speed mode	1.5	4	—	V/µs
GBW	Unity gain bandwidth, low-power mode	0.15	—	—	MHz
GBW	Unity gain bandwidth, high-speed mode	1	—	—	MHz
A _V	DC open-loop voltage gain	80	90	—	dB
CL(max)	Load capacitance driving capability	—	100	—	pF
R _{OUT}	Output resistance @ 100 kHz, high speed mode	—	1500	—	Ω
V _{OUT}	Output voltage range	0.12	_	VDD - 0.12	V
I _{OUT}	Output load current	—	±0.5	—	mA
GM	Gain margin	—	20	—	dB
PM	Phase margin	45	56	—	deg
T _{settle}	Settling time ² (Buffer mode, low-power mode) (To<0.1%, V _{in} =1.65V)	_	5.7	_	μs
T _{settle}	Settling time ² (Buffer mode, high-speed mode) (To<0.1%, V _{in} =1.65V)	—	3.0	—	μs
Vn	Voltage noise density (noise floor) 1kHz	—	350	—	nV/√Hz
Vn	Voltage noise density (noise floor) 10kHz	_	90	_	nV/√Hz

Table 31. Op-amp electrical specifications (continued)

1. The input capacitance is dependant on the package type used.

2. Settling time is measured from the time the Op-amp is enabled until the output settles to within 0.1% of final value. This time includes Op-amp startup time, output slew, and settle time.

6.6.5 Transimpedance amplifier electrical specifications — full range Table 32. TRIAMP full range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
V _{IN}	Input voltage range	-0.1	V _{DDA} -1.4	V	
CL	Output load capacitance	—	100	pf	

rempheral operating	requirements	and behaviors
---------------------	--------------	---------------

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
I _{SUPPLY}	Supply current (I _{OUT} =0mA, CL=0) — Low-power mode	_	60	80	μA	
I _{SUPPLY}	Supply current (I _{OUT} =0mA, CL=0) — High-speed mode	_	280	450	μA	
V _{OS}	Input offset voltage	—	±3	±5	mV	
α _{VOS}	Input offset voltage temperature coefficient	—	4.8	—	µV/C	
I _{OS}	Input offset current	—	±0.3	±5	nA	
I _{BIAS}	Input bias current	—	±0.3	±5	nA	
R _{IN}	Input resistance	500	—	—	MΩ	
C _{IN}	Input capacitance	—	17	—	pF	
R _{OUT}	Output AC impedance		_	1500	Ω	@ 100kHz,High speedmode
X _{IN}	AC input impedance (f _{IN} =100kHz)	—	159	—	kΩ	
CMRR	Input common mode rejection ratio	60	—	—	dB	
PSRR	Power supply rejection ratio	60	—	—	dB	
SR	Slew rate (ΔV_{IN} =100mV) — Low-power mode	0.1	—	—	V/µs	
SR	Slew rate (ΔV_{IN} =100mV) — High speed mode	1	—	—	V/µs	
GBW	Unity gain bandwidth — Low-power mode 50pF	0.15	—	—	MHz	
GBW	Unity gain bandwidth — High speed mode 50pF	1	_	—	MHz	
A _V	DC open-loop voltage gain	80	_	—	dB	
VOUT	Output voltage range	0.15	—	V _{DD} -0.15	V	
I _{OUT}	Output load current	—	±0.5	—	mA	
GM	Gain margin	—	20	—	dB	
PM	Phase margin	50	60	—	deg	
Vn	Voltage noise density (noise floor) 1kHz	—	280	—	nV/√Hz	
Vn	Voltage noise density (noise floor) 10kHz	—	100	—	nV/√Hz	

Table 33. TRIAMP full range operating behaviors

6.6.6 Transimpedance amplifier electrical specifications — limited range

Table 34. TRIAMP limited range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	2.4	3.3	V	
V _{IN}	Input voltage range	0.1	V _{DDA} -1.4	V	
T _A	Temperature	0	50	С	
CL	Output load capacitance	—	100	pf	

Table 46. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	40	—	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	80	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	15	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	-1.0	-	ns
S7	I2S_TX_BCLK to I2S_TXD valid	—	15	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	—	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	20.5	_	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns

Figure 23. I2S/SAI timing — master modes

Table 47.I2S/SAI slave mode timing in Normal Run, Wait and Stop modes
(full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	80	_	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period

Table continues on the next page...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{IREG}	V _{IREG}					3
Δ_{RTRIM}	V _{IREG} TRIM resolution	—	—	3.0	% V _{IREG}	
—	V _{IREG} ripple					
I _{VIREG}	V _{IREG} current adder — RVEN = 1	—	1		μΑ	4
I _{RBIAS}	RBIAS current adder	_	10	_	μA	
	 LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF) 	_	1	_	μΑ	
	 LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF) 					
R _{RBIAS}	RBIAS resistor values					
	 LADJ = 10 or 11 — High load (LCD glass capacitance ≤ 8000 pF) 	_	0.28	_	MΩ	
	 LADJ = 00 or 01 — Low load (LCD glass capacitance ≤ 2000 pF) 	_	2.98	_	ΜΩ	
VLL2	VLL2 voltage					
VLL3	VLL3 voltage					

Table 51. LCD electricals (continued)

1. The actual value used could vary with tolerance.

2. For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller chapter within the device's reference manual.

3. V_{IREG} maximum should never be externally driven to any level other than V_{DD} - 0.15 V

4. 2000 pF load LCD, 32 Hz frame frequency

7 Dimensions

7.1 Obtaining package dimensions

Package dimensions are provided in package drawings.

To find a package drawing, go to www.freescale.com and perform a keyword search for the drawing's document number:

If you want the drawing for this package	Then use this document number
100-pin LQFP	98ASS23308W
121-pin MAPBGA	98ASA00344D

8 Pinout

8.1 K51 Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

121 Map	100 LQFP	Pin Name	Default	ALT0	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
BGA												
E4	1	PTE0	ADC1_SE4a	ADC1_SE4a	PTE0	SPI1_PCS1	UART1_TX			I2C1_SDA	RTC_CLKOUT	
E3	2	PTE1/ LLWU_P0	ADC1_SE5a	ADC1_SE5a	PTE1/ LLWU_P0	SPI1_SOUT	UART1_RX			I2C1_SCL	SPI1_SIN	
E2	3	PTE2/ LLWU_P1	ADC1_SE6a	ADC1_SE6a	PTE2/ LLWU_P1	SPI1_SCK	UART1_CTS_ b					
F4	4	PTE3	ADC1_SE7a	ADC1_SE7a	PTE3	SPI1_SIN	UART1_RTS_ b				SPI1_SOUT	
E7	-	VDD	VDD	VDD								
F7	-	VSS	VSS	VSS								
H7	5	PTE4/ LLWU_P2	DISABLED		PTE4/ LLWU_P2	SPI1_PCS0	UART3_TX					
G4	6	PTE5	DISABLED		PTE5	SPI1_PCS2	UART3_RX					
E6	7	VDD	VDD	VDD								
G7	8	VSS	VSS	VSS								
L6	Ι	VSS	VSS	VSS								
F1	9	USB0_DP	USB0_DP	USB0_DP								
F2	10	USB0_DM	USB0_DM	USB0_DM								
G1	11	VOUT33	VOUT33	VOUT33								
G2	12	VREGIN	VREGIN	VREGIN								
H1	13	ADC0_DP1/ OP0_DP0	ADC0_DP1/ OP0_DP0	ADC0_DP1/ OP0_DP0								
H2	14	ADC0_DM1/ OP0_DM0	ADC0_DM1/ OP0_DM0	ADC0_DM1/ OP0_DM0								
J1	15	ADC1_DP1/ OP1_DP0/ OP1_DM1	ADC1_DP1/ OP1_DP0/ OP1_DM1	ADC1_DP1/ OP1_DP0/ OP1_DM1								
J2	16	ADC1_DM1/ OP1_DM0	ADC1_DM1/ OP1_DM0	ADC1_DM1/ OP1_DM0								
K1	17	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DP/ ADC0_DP0/ ADC1_DP3	PGA0_DP/ ADC0_DP0/ ADC1_DP3								
K2	18	PGA0_DM/ ADC0_DM0/ ADC1_DM3	PGA0_DM/ ADC0_DM0/ ADC1_DM3	PGA0_DM/ ADC0_DM0/ ADC1_DM3								

121 Map Bga	100 LQFP	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
K6	38	VBAT	VBAT	VBAT								
J6	39	PTA0	JTAG_TCLK/ SWD_CLK/ EZP_CLK	TSI0_CH1	PTA0	UART0_CTS_ b/ UART0_COL_ b	FTM0_CH5				JTAG_TCLK/ SWD_CLK	EZP_CLK
H8	40	PTA1	JTAG_TDI/ EZP_DI	TSI0_CH2	PTA1	UART0_RX	FTM0_CH6				JTAG_TDI	EZP_DI
J7	41	PTA2	JTAG_TDO/ TRACE_SWO/ EZP_DO	TSI0_CH3	PTA2	UART0_TX	FTM0_CH7				JTAG_TDO/ TRACE_SWO	EZP_DO
H9	42	PTA3	JTAG_TMS/ SWD_DIO	TSI0_CH4	PTA3	UARTO_RTS_ b	FTM0_CH0				JTAG_TMS/ SWD_DIO	
J8	43	PTA4/ LLWU_P3	NMI_b/ EZP_CS_b	TSI0_CH5	PTA4/ LLWU_P3		FTM0_CH1				NMI_b	EZP_CS_b
E5	_	VDD	VDD	VDD								
G3	_	VSS	VSS	VSS								
K8	44	PTA12	CMP2_IN0	CMP2_IN0	PTA12		FTM1_CH0			I2S0_TXD0	FTM1_QD_ PHA	
L8	45	PTA13/ LLWU_P4	CMP2_IN1	CMP2_IN1	PTA13/ LLWU_P4		FTM1_CH1			I2S0_TX_FS	FTM1_QD_ PHB	
K9	46	PTA14	DISABLED		PTA14	SPI0_PCS0	UART0_TX			I2S0_RX_ BCLK	12S0_TXD1	
L9	47	PTA15	DISABLED		PTA15	SPI0_SCK	UARTO_RX			I2S0_RXD0		
L10	48	VDD	VDD	VDD								
K10	49	VSS	VSS	VSS								
L11	50	PTA18	EXTALO	EXTAL0	PTA18		FTM0_FLT2	FTM_CLKIN0				
K11	51	PTA19	XTAL0	XTAL0	PTA19		FTM1_FLT0	FTM_CLKIN1		LPTMR0_ ALT1		
J11	52	RESET_b	RESET_b	RESET_b								
G11	53	PTB0/ LLWU_P5	LCD_P0/ ADC0_SE8/ ADC1_SE8/ TSI0_CH0	LCD_P0/ ADC0_SE8/ ADC1_SE8/ TSI0_CH0	PTB0/ LLWU_P5	I2C0_SCL	FTM1_CH0			FTM1_QD_ PHA	LCD_P0	
G10	54	PTB1	LCD_P1/ ADC0_SE9/ ADC1_SE9/ TSI0_CH6	LCD_P1/ ADC0_SE9/ ADC1_SE9/ TSI0_CH6	PTB1	I2CO_SDA	FTM1_CH1			FTM1_QD_ PHB	LCD_P1	
G9	55	PTB2	LCD_P2/ ADC0_SE12/ TSI0_CH7	LCD_P2/ ADC0_SE12/ TSI0_CH7	PTB2	I2C0_SCL	UARTO_RTS_ b			FTM0_FLT3	LCD_P2	
G8	56	PTB3	LCD_P3/ ADC0_SE13/ TSI0_CH8	LCD_P3/ ADC0_SE13/ TSI0_CH8	PTB3	I2C0_SDA	UARTO_CTS_ b/ UARTO_COL_ b			FTM0_FLT0	LCD_P3	
E11	57	PTB7	LCD_P7/ ADC1_SE13	LCD_P7/ ADC1_SE13	PTB7						LCD_P7	
D11	58	PTB8	LCD_P8	LCD_P8	PTB8		UART3_RTS_ b				LCD_P8	

121 Map Bga	100 LQFP	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
B5	-	NC	NC	NC								
B1	-	NC	NC	NC								
C2	-	NC	NC	NC								
C1	-	NC	NC	NC								
D2	-	NC	NC	NC								
D1	-	NC	NC	NC								
E1	_	NC	NC	NC								

8.2 K51 Pinouts

The below figure shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

Pinout

Figure 27. K51 100 LQFP Pinout Diagram