



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 32MHz                                                                     |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                 |
| Peripherals                | Brown-out Detect/Reset, POR, PSMC, PWM, WDT                               |
| Number of I/O              | 24                                                                        |
| Program Memory Size        | 28KB (16K x 14)                                                           |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | 256 x 8                                                                   |
| RAM Size                   | 2K x 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 5.5V                                                               |
| Data Converters            | A/D 11x12b; D/A 1x8b, 3x5b                                                |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                        |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 28-SSOP (0.209", 5.30mm Width)                                            |
| Supplier Device Package    | 28-SSOP                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16f1788-e-ss |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### Pin Diagram – 40-Pin UQFN (5x5)



#### Pin Diagram – 44-Pin TQFP



### TABLE 3-5:PIC16(L)F1788/9 MEMORY MAP (BANKS 8-28)

|              | BANK 8                                     |              | BANK 9                                     |              | BANK 10                                    |              | BANK 11                                    |               | BANK 12                                    |              | BANK 13                                    |              | BANK 14                                    |              | BANK 15                                    |
|--------------|--------------------------------------------|--------------|--------------------------------------------|--------------|--------------------------------------------|--------------|--------------------------------------------|---------------|--------------------------------------------|--------------|--------------------------------------------|--------------|--------------------------------------------|--------------|--------------------------------------------|
| 400h<br>40Bh | Core Registers<br>(Table 3-2)              | 480h<br>48Bh | Core Registers<br>(Table 3-2)              | 500h<br>50Bh | Core Registers<br>(Table 3-2)              | 580h<br>58Bh | Core Registers<br>(Table 3-2)              | 600h<br>60Bh  | Core Registers<br>(Table 3-2)              | 680h<br>68Bh | Core Registers<br>(Table 3-2)              | 700h<br>70Bh | Core Registers<br>(Table 3-2)              | 780h<br>78Bh | Core Registers<br>(Table 3-2)              |
| 40Ch<br>41Fh | Unimplemented<br>Read as '0'               | 48Ch<br>49Fh | Unimplemented<br>Read as '0'               | 50Ch<br>51Fh | See Table 3-6                              | 58Ch<br>59Fh | See Table 3-7                              | 60Ch<br>61Fh  | Unimplemented<br>Read as '0'               | 68Ch<br>69Fh | Unimplemented<br>Read as '0'               | 70Ch<br>71Fh | Unimplemented<br>Read as '0'               | 78Ch<br>79Fh | Unimplemented<br>Read as '0'               |
| 420h         | General<br>Purpose<br>Register<br>80 Bytes | 4A0h         | General<br>Purpose<br>Register<br>80 Bytes | 520h         | General<br>Purpose<br>Register<br>80 Bytes | 5A0h         | General<br>Purpose<br>Register<br>80 Bytes | 620h          | General<br>Purpose<br>Register<br>80 Bytes | 6A0h         | General<br>Purpose<br>Register<br>80 Bytes | 720h         | General<br>Purpose<br>Register<br>80 Bytes | 7A0h<br>7EEb | General<br>Purpose<br>Register<br>80 Bytes |
| 470h         | Common RAM<br>(Accesses<br>70h – 7Fh)      | 4F0h         | Common RAM<br>(Accesses<br>70h – 7Fh)      | 570h         | Common RAM<br>(Accesses<br>70h – 7Fh)      | 5F0h         | Common RAM<br>(Accesses<br>70h – 7Fh)      | 670h          | Common RAM<br>(Accesses<br>70h – 7Fh)      | 6F0h         | Common RAM<br>(Accesses<br>70h – 7Fh)      | 770h         | Common RAM<br>(Accesses<br>70h – 7Fh)      | 7F0h         | Common RAM<br>(Accesses<br>70h – 7Fh)      |
| 47Fh         | BANK 16                                    | 4FFN         | BANK 17                                    | 57FN         | BANK 18                                    | 5FFh         | BANK 19                                    | 67Fh          | BANK 20                                    | 6FFh         | BANK 21                                    | 77Fh         | BANK 22                                    | 7FFh         | BANK 23                                    |
| 800h<br>80Bh | Core Registers<br>(Table 3-2)              | 880h<br>88Bh | Core Registers<br>(Table 3-2)              | 900h<br>90Bh | Core Registers<br>(Table 3-2)              | 980h<br>98Bh | Core Registers<br>(Table 3-2)              | A00h<br>A0Bh  | Core Registers<br>(Table 3-2)              | A80h<br>A8Bh | Core Registers<br>(Table 3-2)              | B00h<br>B0Bh | Core Registers<br>(Table 3-2)              | B80h<br>B8Bh | Core Registers<br>(Table 3-2)              |
| 80Ch<br>81Fh | Unimplemented<br>Read as '0'               | 88Ch<br>89Fh | Unimplemented<br>Read as '0'               | 90Ch<br>91Fh | Unimplemented<br>Read as '0'               | 98Ch<br>99Fh | Unimplemented<br>Read as '0'               | A0Ch<br>A1Fh  | Unimplemented<br>Read as '0'               | A8Ch<br>A9Fh | Unimplemented<br>Read as '0'               | B0Ch<br>B1Fh | Unimplemented<br>Read as '0'               | B8Ch<br>B9Fh | Unimplemented<br>Read as '0'               |
| 820h         | General<br>Purpose<br>Register             | 8A0h         | General<br>Purpose<br>Register             | 920h         | General<br>Purpose<br>Register             | 9A0h         | General<br>Purpose<br>Register             | A20h          | General<br>Purpose<br>Register             | AA0h         | General<br>Purpose<br>Register             | B20h         | General<br>Purpose<br>Register             | BA0h         | General<br>Purpose<br>Register             |
| 870h         | Common RAM<br>(Accesses                    | 8F0h         | Common RAM<br>(Accesses                    | 970h         | Common RAM<br>(Accesses<br>70b – 7Eb)      | 9F0h         | Common RAM<br>(Accesses                    | A0FII<br>A70h | Common RAM<br>(Accesses                    | AF0h         | Common RAM<br>(Accesses<br>70b – 7Eb)      | B70h         | Common RAM<br>(Accesses<br>70b – 7Eb)      | BF0h         | Common RAM<br>(Accesses                    |
| 87Fh         | 7011 – 7 F11)                              | 8FFh         | 7011 – 7711)                               | 97Fh         | 7011 – 7F11)                               | 9FFh         | 7011 – 7F11)                               | A7Fh          | 7011 – 7711)                               | AFFh         | 7011 – 7FII)                               | B7Fh         | 7011 – 7 FTI)                              | BFFh         | 7011 – 7111)                               |
| r            | BANK 24                                    |              | BANK 25                                    |              | BANK 26                                    |              | BANK 27                                    |               | BANK 28                                    |              | BANK 29                                    |              | BANK 30                                    |              | BANK 31                                    |
| C00h<br>C0Bh | Core Registers<br>(Table 3-2)              | C80h<br>C8Bh | Core Registers<br>(Table 3-2)              | D00h<br>D0Bh | Core Registers<br>(Table 3-2)              | D80h<br>D8Bh | Core Registers<br>(Table 3-2)              | E00h<br>E0Bh  | Core Registers<br>(Table 3-2)              | E80h<br>E8Bh | Core Registers<br>(Table 3-2)              | F00h<br>F0Bh | Core Registers<br>(Table 3-2)              | F80h<br>F8Bh | Core Registers<br>(Table 3-2)              |
| C0Ch<br>C1Fh | Unimplemented<br>Read as '0'               | C8Ch<br>C9Fh | Unimplemented<br>Read as '0'               | D0Ch         |                                            | D8Ch         |                                            | E0Ch          |                                            | E8Ch         |                                            | F0Ch         |                                            | F8Ch         |                                            |
| C20h         | General<br>Purpose<br>Pogieter             | CA0h<br>CBFh | General<br>Purpose<br>Register<br>32 Bytes |              | Unimplemented<br>Read as '0'               |              | Unimplemented<br>Read as '0'               |               | Unimplemented<br>Read as '0'               |              | See Figure 3-9                             |              | See Figure 3-10                            |              | See Figure 3-8                             |
| C6Fh         | 80 Bytes                                   | CC0h<br>CEFh | Unimplemented<br>Read as '0'               | D6Fh         |                                            | DEFh         |                                            | E6Fh          |                                            | EEFh         |                                            | F6Fh         |                                            | FEFh         |                                            |
| C70h<br>C7Fh | Common RAM<br>(Accesses<br>70h – 7Fh)      | CF0h<br>CFFh | Common RAM<br>(Accesses<br>70h – 7Fh)      | D70h<br>D7Fh | Common RAM<br>(Accesses<br>70h – 7Fh)      | DF0h<br>DFFh | Common RAM<br>(Accesses<br>70h – 7Fh)      | E70h<br>E7Fh  | Common RAM<br>(Accesses<br>70h – 7Fh)      | EF0h<br>EFFh | Common RAM<br>(Accesses<br>70h – 7Fh)      | F70h<br>F7Fh | Common RAM<br>(Accesses<br>70h – 7Fh)      | FF0h<br>FFFh | Common RAM<br>(Accesses<br>70h – 7Fh)      |

Legend: = U

= Unimplemented data memory locations, read as '0'

### 4.3 Code Protection

Code protection allows the device to be protected from unauthorized access. Program memory protection and data EEPROM protection are controlled independently. Internal access to the program memory and data EEPROM are unaffected by any code protection setting.

#### 4.3.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the  $\overline{CP}$  bit in Configuration Words. When  $\overline{CP} = 0$ , external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Writing the program memory is dependent upon the write protection setting. See **Section 4.4** "Write **Protection**" for more information.

#### 4.3.2 DATA EEPROM PROTECTION

The entire data EEPROM is protected from external reads and writes by the CPD bit. When CPD = 0, external reads and writes of data EEPROM are inhibited. The CPU can continue to read and write data EEPROM regardless of the protection bit settings.

#### 4.4 Write Protection

Write protection allows the device to be protected from unintended self-writes. Applications, such as bootloader software, can be protected while allowing other regions of the program memory to be modified.

The WRT<1:0> bits in Configuration Words define the size of the program memory block that is protected.

#### 4.5 User ID

Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See **Section 12.5 "User ID, Device ID and Configuration Word Access**" for more information on accessing these memory locations. For more information on checksum calculation, see the *"PIC16(L)F178X Memory Programming Specification"* (DS41457).

| U-0              | U-0                                  | U-0                        | R/W-0/0 | U-0                                                   | U-0 | U-0 | U-0   |  |  |  |
|------------------|--------------------------------------|----------------------------|---------|-------------------------------------------------------|-----|-----|-------|--|--|--|
| _                | —                                    | —                          | CCP3IF  | —                                                     | —   | _   | —     |  |  |  |
| bit 7            |                                      |                            |         |                                                       |     |     | bit 0 |  |  |  |
|                  |                                      |                            |         |                                                       |     |     |       |  |  |  |
| Legend:          |                                      |                            |         |                                                       |     |     |       |  |  |  |
| R = Readable     | bit                                  | W = Writable               | bit     | U = Unimplemented bit, read as '0'                    |     |     |       |  |  |  |
| u = Bit is uncha | anged                                | x = Bit is unkn            | iown    | -n/n = Value at POR and BOR/Value at all other Resets |     |     |       |  |  |  |
| '1' = Bit is set |                                      | '0' = Bit is clea          | ared    |                                                       |     |     |       |  |  |  |
|                  |                                      |                            |         |                                                       |     |     |       |  |  |  |
| bit 7-5          | Unimplemen                           | ted: Read as '             | )'      |                                                       |     |     |       |  |  |  |
| bit 4            | CCP3IF: CCF                          | 3 Interrupt Flag           | g bit   |                                                       |     |     |       |  |  |  |
|                  | 1 = Interrupt is<br>0 = Interrupt is | s pending<br>s not pending |         |                                                       |     |     |       |  |  |  |
| bit 3-0          | Unimplemen                           | ted: Read as 'd            | כי      |                                                       |     |     |       |  |  |  |

#### REGISTER 8-8: PIR3: PERIPHERAL INTERRUPT REQUEST REGISTER 3

| EXAMPLE 12-2: | DATA EEPROM WRITE |
|---------------|-------------------|
|---------------|-------------------|

| П |      |                  |                        |                               |
|---|------|------------------|------------------------|-------------------------------|
|   |      | BANKSEL<br>MOVLW | EEADRL<br>DATA EE ADDR | ;                             |
|   |      | MOVWF            | EEADRL                 | ;Data Memory Address to write |
|   |      | MOVLW            | DATA_EE_DATA           | ;                             |
|   |      | MOVWF            | EEDATL                 | ;Data Memory Value to write   |
|   |      | BCF              | EECON1, CFGS           | ;Deselect Configuration space |
|   |      | BCF              | EECON1, EEPGD          | ;Point to DATA memory         |
|   |      | BSF              | EECON1, WREN           | ;Enable writes                |
|   |      |                  |                        |                               |
|   |      | BCF              | INTCON, GIE            | ;Disable INTs.                |
|   |      | MOVLW            | 55h                    | i                             |
|   | e ed | MOVWF            | EECON2                 | ;Write 55h                    |
|   | huin | MOVLW            | 0AAh                   | ;                             |
|   | Sec  | MOVWF            | EECON2                 | ;Write AAh                    |
|   | ш о  | BSF              | EECON1, WR             | ;Set WR bit to begin write    |
|   |      | BSF              | INTCON, GIE            | ;Enable Interrupts            |
|   |      | BCF              | EECON1, WREN           | ;Disable writes               |
|   |      | BTFSC            | EECON1, WR             | ;Wait for write to complete   |
|   |      | GOTO             | \$-2                   | ;Done                         |
|   |      |                  |                        |                               |



|                              | Q1 Q2 Q3 Q4                                                            | ł              |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Flash ADDR                   | I     I     I     I     I     I     I       V     PC     V     PC + 1     V     EEADRH,EEADRL     V     PC + 3     V     PC + 4     V     PC + 5                       | <br>}<br>      |
| Flash Data                   | INSTR (PC) INSTR (PC + 1) EEDATH,EEDATL INSTR (PC + 3) INSTR (PC + 4)                                                                                                  |                |
|                              | INSTR(PC - 1) BSF PMCON1,RD INSTR(PC + 1) Forced NOP INSTR(PC + 3) INSTR(PC + 4)   executed here executed here executed here executed here executed here executed here | <br> <br>      |
| RD bit                       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                   | <br>           |
| EEDATH<br>EEDATL<br>Register | I I I I I   I I I I I   I I I I I                                                                                                                                      | <br> <br> <br> |

#### 18.1 Effects of Reset

A device Reset forces all registers to their Reset state. This disables the OPA module.

#### 18.2 OPA Module Performance

Common AC and DC performance specifications for the OPA module:

- Common Mode Voltage Range
- · Leakage Current
- · Input Offset Voltage
- Open Loop Gain
- · Gain Bandwidth Product

**Common mode voltage range** is the specified voltage range for the OPA+ and OPA- inputs, for which the OPA module will perform to within its specifications. The OPA module is designed to operate with input voltages between Vss and VDD. Behavior for Common mode voltages greater than VDD, or below Vss, are not guaranteed.

**Leakage current** is a measure of the small source or sink currents on the OPA+ and OPA- inputs. To minimize the effect of leakage currents, the effective impedances connected to the OPA+ and OPA- inputs should be kept as small as possible and equal.

**Input offset voltage** is a measure of the voltage difference between the OPA+ and OPA- inputs in a closed loop circuit with the OPA in its linear region. The offset voltage will appear as a DC offset in the output equal to the input offset voltage, multiplied by the gain of the circuit. The input offset voltage is also affected by the Common mode voltage. The OPA is factory calibrated to minimize the input offset voltage of the module.

**Open loop gain** is the ratio of the output voltage to the differential input voltage, (OPA+) - (OPA-). The gain is greatest at DC and falls off with frequency.

**Gain Bandwidth Product** or GBWP is the frequency at which the open loop gain falls off to 0 dB.

#### 18.3 OPAxCON Control Register

The OPAxCON register, shown in Register 18-1, controls the OPA module.

The OPA module is enabled by setting the OPAxEN bit of the OPAxCON register. When enabled, the OPA forces the output driver of OPAxOUT pin into tri-state to prevent contention between the driver and the OPA output.

Note: When the OPA module is enabled, the OPAxOUT pin is driven by the op amp output, not by the PORT digital driver. Refer to the Electrical specifications for the op amp output drive capability.

#### FIGURE 19-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM







### 26.0 PROGRAMMABLE SWITCH MODE CONTROL (PSMC)

The Programmable Switch Mode Controller (PSMC) is a high-performance Pulse Width Modulator (PWM) that can be configured to operate in one of several modes to support single or multiple phase applications.

A simplified block diagram indicating the relationship between inputs, outputs, and controls is shown in Figure 26-1.

This section begins with the fundamental aspects of the PSMC operation. A more detailed description of operation for each mode is located later in **Section 26.3 "Modes of Operation"** 

Modes of operation include:

- Single-phase
- Complementary Single-phase
- Push-Pull
- Push-Pull 4-Bridge
- · Complementary Push-Pull 4-Bridge
- Pulse Skipping
- Variable Frequency Fixed Duty Cycle
- Complementary Variable Frequency Fixed Duty Cycle
- · ECCP Compatible modes
  - Full-Bridge
  - Full-Bridge Reverse
- · 3-Phase 6-Step PWM

#### 26.3.11 VARIABLE FREQUENCY - FIXED DUTY CYCLE PWM WITH COMPLEMENTARY OUTPUTS

This mode is the same as the single output Fixed Duty Cycle mode except a complementary output with dead-band control is generated.

The rising edge and falling edge events are unused in this mode. Therefore, a different triggering mechanism is required for the dead-band counters.

A period events that generate a rising edge on PSMCxA use the rising edge dead-band counters.

A period events that generate a falling edge on PSMCxA use the falling edge dead-band counters.

#### 26.3.11.1 Mode Features

- · Dead-band control is available
- No steering control available
- · Fractional Frequency Adjust
  - Fine period adjustments are made with the PSMC Fractional Frequency Adjust (PSMCxFFA) register (Register 26-29)
- Primary PWM is output to the following pin:
  - PSMCxA
- Complementary PWM is output to the following pin:
  - PSMCxB

### 26.3.11.2 Waveform Generation

#### Period Event

When output is going inactive to active:

- · Complementary output is set inactive
- FFA counter is incremented by the 4-bit value in PSMCFFA register.
- · Dead-band rising is activated (if enabled)
- · Primary output is set active

When output is going active to inactive:

- · Primary output is set inactive
- FFA counter is incremented by the 4-bit value in PSMCFFA register
- Dead-band falling is activated (if enabled)
- · Complementary output is set active

## FIGURE 26-14: VARIABLE FREQUENCY – FIXED DUTY CYCLE PWM WITH COMPLEMENTARY OUTPUTS WAVEFORM

| PWM Period Number  | 1 | 2       | 3         | 4            | 5       | 6          | 7       | 8 | 9 | 10 |
|--------------------|---|---------|-----------|--------------|---------|------------|---------|---|---|----|
| period_event       | ] |         |           |              | <b></b> | ]          |         | ] | ] |    |
| Rising Edge Event  |   |         |           |              | Un      | used in th | is mode |   |   |    |
| Falling Edge Event |   |         |           |              | Un      | used in th | is mode |   |   |    |
| PSMCxA             |   |         |           |              |         |            |         |   |   |    |
|                    | - | ←Rising | g Edge De | →<br>ad Band | Falling | ) Edge De  | ad Band |   |   |    |
| PSMCxB             |   |         |           |              |         |            |         |   |   |    |

#### 26.5 Output Steering

Output steering allows for PWM signals generated by the PSMC module to be placed on different pins under software control. Synchronized steering will hold steering changes until the first period event after the PSMCxLD bit is set. Unsynchronized steering changes will take place immediately.

Output steering is available in the following modes:

- 3-phase PWM
- Single PWM
- Complementary PWM

#### 26.5.1 3-PHASE STEERING

3-phase steering is available in the 3-Phase Modulation mode only. For more details on 3-phase steering refer to **Section 26.3.12 "3-Phase PWM"**.

#### 26.5.2 SINGLE PWM STEERING

In Single PWM Steering mode, the single PWM signal can be routed to any combination of the PSMC output pins. Examples of unsynchronized single PWM steering are shown in Figure 26-16.



| PxSTRB                                                                                            |  |
|---------------------------------------------------------------------------------------------------|--|
| PxSTR <u>C</u>                                                                                    |  |
|                                                                                                   |  |
|                                                                                                   |  |
| PxSTRFPSMCxF<br>With synchronization disabled, it is possible to get glitches on the PWM outputs. |  |
|                                                                                                   |  |

| R/W-0/0                                 | R/W-0/0        | R/W-0/0           | R/W-0/0        | R/W-0/0          | R/W-0/0          | R/W-0/0     | R/W-0/0 |
|-----------------------------------------|----------------|-------------------|----------------|------------------|------------------|-------------|---------|
|                                         | PSMCxTMRL<7:0> |                   |                |                  |                  |             |         |
| bit 7                                   |                |                   |                |                  |                  |             | bit 0   |
|                                         |                |                   |                |                  |                  |             |         |
| Legend:                                 |                |                   |                |                  |                  |             |         |
| R = Readable bit W = Writable bit       |                | bit               | U = Unimpler   | nented bit, read | l as '0'         |             |         |
| u = Bit is unchanged x = Bit is unknown |                | nown              | -n/n = Value a | at POR and BO    | R/Value at all o | ther Resets |         |
| '1' = Bit is set                        |                | '0' = Bit is clea | ared           |                  |                  |             |         |

bit 7-0 **PSMCxTMRL<7:0>:** 16-bit PSMCx Time Base Counter Least Significant bits = PSMCxTMR<7:0>

#### REGISTER 26-20: PSMCxTMRH: PSMC TIME BASE COUNTER HIGH REGISTER

| R/W-0/0         | R/W-0/0                         | R/W-0/0          | R/W-0/0 | R/W-0/0                                               | R/W-0/0 | R/W-0/0 | R/W-1/1 |  |  |
|-----------------|---------------------------------|------------------|---------|-------------------------------------------------------|---------|---------|---------|--|--|
|                 |                                 |                  | PSMCxT  | MRH<7:0>                                              |         |         |         |  |  |
| bit 7           |                                 |                  |         |                                                       |         |         | bit 0   |  |  |
|                 |                                 |                  |         |                                                       |         |         |         |  |  |
| Legend:         |                                 |                  |         |                                                       |         |         |         |  |  |
| R = Readable    | bit                             | W = Writable bit |         | U = Unimplemented bit, read as '0'                    |         |         |         |  |  |
| u = Bit is unch | is unchanged x = Bit is unknown |                  |         | -n/n = Value at POR and BOR/Value at all other Resets |         |         |         |  |  |

bit 7-0 PSMCxTMRH<7:0>: 16-bit PSMCx Time Base Counter Most Significant bits

'0' = Bit is cleared

= PSMCxTMR<15:8>

'1' = Bit is set

#### 27.6.5 I<sup>2</sup>C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit of the SSPCON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSP- CON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPSTAT register will be set. The SSP1IF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
  - **2:** A bus collision during the Repeated Start condition occurs if:
    - SDA is sampled low when SCL goes from low-to-high.
    - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.





#### 28.3 **Register Definitions: EUSART Control**

#### R/W-0/0 R/W-/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R-1/1 R/W-0/0 TXEN<sup>(1)</sup> CSRC TX9 SYNC TRMT TX9D SENDB BRGH bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets '1' = Bit is set '0' = Bit is cleared bit 7 CSRC: Clock Source Select bit Asynchronous mode: Don't care Synchronous mode: 1 = Master mode (clock generated internally from BRG) 0 = Slave mode (clock from external source) bit 6 TX9: 9-bit Transmit Enable bit 1 = Selects 9-bit transmission 0 = Selects 8-bit transmission TXEN: Transmit Enable bit<sup>(1)</sup> bit 5 1 = Transmit enabled 0 = Transmit disabled bit 4 SYNC: EUSART Mode Select bit 1 = Synchronous mode 0 = Asynchronous mode bit 3 SENDB: Send Break Character bit Asynchronous mode: 1 = Send Sync Break on next transmission (cleared by hardware upon completion) 0 = Sync Break transmission completed Synchronous mode: Don't care bit 2 BRGH: High Baud Rate Select bit Asynchronous mode: 1 = High speed 0 = Low speed Synchronous mode: Unused in this mode TRMT: Transmit Shift Register Status bit bit 1 1 = TSR empty 0 = TSR full bit 0 TX9D: Ninth bit of Transmit Data Can be address/data bit or a parity bit.

#### **REGISTER 28-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER**

Note 1: SREN/CREN overrides TXEN in Sync mode.

| NOP              | No Operation  |
|------------------|---------------|
| Syntax:          | [label] NOP   |
| Operands:        | None          |
| Operation:       | No operation  |
| Status Affected: | None          |
| Description:     | No operation. |
| Words:           | 1             |
| Cycles:          | 1             |
| Example:         | NOP           |

| OPTION           | Load OPTION_REG Register<br>with W                   |
|------------------|------------------------------------------------------|
| Syntax:          | [label] OPTION                                       |
| Operands:        | None                                                 |
| Operation:       | $(W) \to OPTION\_REG$                                |
| Status Affected: | None                                                 |
| Description:     | Move data from W register to<br>OPTION_REG register. |

| RESET            | Software Reset                                                           |  |  |  |
|------------------|--------------------------------------------------------------------------|--|--|--|
| Syntax:          | [label] RESET                                                            |  |  |  |
| Operands:        | None                                                                     |  |  |  |
| Operation:       | Execute a device Reset. Resets the RI flag of the PCON register.         |  |  |  |
| Status Affected: | None                                                                     |  |  |  |
| Description:     | This instruction provides a way to execute a hardware Reset by software. |  |  |  |

| RETFIE           | Return from Interrupt                                                                                                                                                                                              |  |  |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Syntax:          | [label] RETFIE                                                                                                                                                                                                     |  |  |  |  |
| Operands:        | None                                                                                                                                                                                                               |  |  |  |  |
| Operation:       | $\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$                                                                                                                                                            |  |  |  |  |
| Status Affected: | None                                                                                                                                                                                                               |  |  |  |  |
| Description:     | Return from Interrupt. Stack is<br>POPed and Top-of-Stack (TOS) is<br>loaded in the PC. Interrupts are<br>enabled by setting Global<br>Interrupt Enable bit, GIE<br>(INTCON<7>). This is a 2-cycle<br>instruction. |  |  |  |  |
| Words:           | 1                                                                                                                                                                                                                  |  |  |  |  |
| Cycles:          | 2                                                                                                                                                                                                                  |  |  |  |  |
| Example:         | RETFIE                                                                                                                                                                                                             |  |  |  |  |
|                  | After Interrupt<br>PC = TOS<br>GIE = 1                                                                                                                                                                             |  |  |  |  |
| RETLW            | Return with literal in W                                                                                                                                                                                           |  |  |  |  |
| Syntax:          | [ <i>label</i> ] RETLW k                                                                                                                                                                                           |  |  |  |  |
| Operands:        | $0 \le k \le 255$                                                                                                                                                                                                  |  |  |  |  |
| Operation:       | $k \rightarrow (W);$<br>TOS $\rightarrow PC$                                                                                                                                                                       |  |  |  |  |
| Status Affected: | None                                                                                                                                                                                                               |  |  |  |  |
| Description:     | The W register is loaded with the<br>8-bit literal 'k'. The program<br>counter is loaded from the top of<br>the stack (the return address).<br>This is a 2-cycle instruction                                       |  |  |  |  |
| Words:           | 1                                                                                                                                                                                                                  |  |  |  |  |
| Cycles:          | 2                                                                                                                                                                                                                  |  |  |  |  |
| Example:         | CALL TABLE;W contains<br>table<br>;offset value                                                                                                                                                                    |  |  |  |  |
| TABLE            | <pre>. ;W now has table value<br/>ADDWF PC ;W = offset<br/>RETLW k1 ;Begin table<br/>RETLW k2 ;<br/>RETLW kn ; End of table<br/>Before Instruction<br/>W = 0x07</pre>                                              |  |  |  |  |

#### 31.4 Thermal Considerations

|              |           | , ,                                    | 1    |       |                                                          |
|--------------|-----------|----------------------------------------|------|-------|----------------------------------------------------------|
| Param<br>No. | Sym.      | Characteristic                         | Тур. | Units | Conditions                                               |
| TH01         | θJA       | Thermal Resistance Junction to Ambient | 60   | °C/W  | 28-pin SPDIP package                                     |
|              |           |                                        | 80   | °C/W  | 28-pin SOIC package                                      |
|              |           |                                        | 90   | °C/W  | 28-pin SSOP package                                      |
|              |           |                                        | 27.5 | °C/W  | 28-pin QFN 6x6mm package                                 |
|              |           |                                        | 47.2 | °C/W  | 40-pin DIP package                                       |
|              |           |                                        | 41   | °C/W  | 40-pin UQFN 5x5                                          |
|              |           |                                        | 46   | °C/W  | 44-pin TQFP package                                      |
|              |           |                                        | 24.4 | °C/W  | 44-pin QFN 8x8mm package                                 |
| TH02         | θJC       | Thermal Resistance Junction to Case    | 31.4 | °C/W  | 28-pin SPDIP package                                     |
|              |           |                                        | 24   | °C/W  | 28-pin SOIC package                                      |
|              |           |                                        | 24   | °C/W  | 28-pin SSOP package                                      |
|              |           |                                        | 24   | °C/W  | 28-pin QFN 6x6mm package                                 |
|              |           |                                        | 24.7 | °C/W  | 40-pin DIP package                                       |
|              |           |                                        | 5.5  | °C/W  | 40-pin UQFN 5x5                                          |
|              |           |                                        | 14.5 | °C/W  | 44-pin TQFP package                                      |
|              |           |                                        | 20   | °C/W  | 44-pin QFN 8x8mm package                                 |
| TH03         | Тјмах     | Maximum Junction Temperature           | 150  | °C    |                                                          |
| TH04         | PD        | Power Dissipation                      | _    | W     | PD = PINTERNAL + PI/O                                    |
| TH05         | PINTERNAL | Internal Power Dissipation             | _    | W     | PINTERNAL = IDD x VDD <sup>(1)</sup>                     |
| TH06         | Pi/o      | I/O Power Dissipation                  | _    | W     | $PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$ |
| TH07         | Pder      | Derated Power                          | _    | W     | Pder = PDmax (Τj - Τα)/θja <sup>(2)</sup>                |

Standard Operating Conditions (unless otherwise stated)

**Note 1:** IDD is current to run the chip alone without driving any load on the output pins.

**2:** TA = Ambient Temperature

3: T<sub>J</sub> = Junction Temperature

#### TABLE 31-8: PLL CLOCK TIMING SPECIFICATIONS

| Standard Operating Conditions (unless otherwise stated) |                     |                               |        |      |        |       |            |
|---------------------------------------------------------|---------------------|-------------------------------|--------|------|--------|-------|------------|
| Param<br>No.                                            | Sym.                | Characteristic                | Min.   | Тур† | Max.   | Units | Conditions |
| F10                                                     | Fosc                | Oscillator Frequency Range    | 4      | _    | 8      | MHz   |            |
| F11                                                     | Fsys                | On-Chip VCO System Frequency  | 16     | -    | 32     | MHz   |            |
| F12                                                     | TRC                 | PLL Start-up Time (Lock Time) |        |      | 2      | ms    |            |
| F13*                                                    | $\Delta \text{CLK}$ | CLKOUT Stability (Jitter)     | -0.25% | _    | +0.25% | %     |            |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.





### FIGURE 31-8: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING







Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1  $\mu$ F, TA = 25°C.



FIGURE 32-13: IDD Typical, EC Oscillator MP Mode, PIC16F1788/9 Only.



FIGURE 32-14: IDD Maximum, EC Oscillator MP Mode, PIC16F1788/9 Only.



FIGURE 32-15: IDD Typical, EC Oscillator HP Mode, PIC16LF1788/9 Only.



FIGURE 32-16: IDD Maximum, EC Oscillator HP Mode, PIC16LF1788/9 Only.



FIGURE 32-17: IDD Typical, EC Oscillator HP Mode, PIC16F1788/9 Only.



FIGURE 32-18: IDD Maximum, EC Oscillator HP Mode, PIC16F1788/9 Only.

#### 33.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM<sup>™</sup> and dsPICDEM<sup>™</sup> demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ<sup>®</sup> security ICs, CAN, IrDA<sup>®</sup>, PowerSmart battery management, SEEVAL<sup>®</sup> evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

### 33.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent<sup>®</sup> and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika<sup>®</sup>