

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 11x12b; D/A 1x8b, 3x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1788-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 4-1: CONFIG1: CONFIGURATION WORD 1 (CONTINUED)

- bit 2-0 FOSC<2:0>: Oscillator Selection bits
 - 111 = ECH: External Clock, High-Power mode (4-20 MHz): device clock supplied to CLKIN pin
 - 110 = ECM: External Clock, Medium-Power mode (0.5-4 MHz): device clock supplied to CLKIN pin
 - 101 = ECL: External Clock, Low-Power mode (0-0.5 MHz): device clock supplied to CLKIN pin
 - 100 = INTOSC oscillator: I/O function on CLKIN pin
 - 011 = EXTRC oscillator: External RC circuit connected to CLKIN pin
 - 010 = HS oscillator: High-speed crystal/resonator connected between OSC1 and OSC2 pins
 - 001 = XT oscillator: Crystal/resonator connected between OSC1 and OSC2 pins
 - 000 = LP oscillator: Low-power crystal connected between OSC1 and OSC2 pins
- **Note 1:** The entire data EEPROM will be erased when the code protection is turned off during an erase.Once the Data Code Protection bit is enabled, (CPD = 0), the Bulk Erase Program Memory Command (through ICSP) can disable the Data Code Protection (CPD =1). When a Bulk Erase Program Memory Command is executed, the entire Program Flash Memory, Data EEPROM and configuration memory will be erased.

9.3 Register Definitions: Voltage Regulator Control

REGISTER 9-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1
—		—	_	_	—	VREGPM	Reserved
bit 7							bit 0
Legend:							
R = Readable bi	+	M = M/ritable	hit		monted hit read	ae 'O'	

-		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Unimplemented: Read as '0'

bit 1 VREGPM: Voltage Regulator Power Mode Selection bit

- 1 = Low-Power Sleep mode enabled in Sleep⁽²⁾ Draws lowest current in Sleep, slower wake-up
- Normal-Power mode enabled in Sleep⁽²⁾
 Draws higher current in Sleep, faster wake-up
- bit 0 Reserved: Read as '1'. Maintain this bit set.

Note 1: "F" devices only.

2: See Section 31.0 "Electrical Specifications".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	RAIF	97		
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	164		
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	163		
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	163		
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	98		
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	C4IE	C3IE	CCP2IE	99		
PIE3	_	—	_	CCP3IE	—	—	_	—	100		
PIE4	PSMC4TIE	PSMC3TIE	PSMC2TIE	PSMC1TIE	PSMC4SIE	PSMC3SIE	PSMC2SIE	PSMC1SIE	101		
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	98		
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	C4IF	C3IF	CCP2IF	103		
PIR3	_	—	_	CCP3IF	—	—	_	—	104		
PIR4	PSMC4TIF	PSMC3TIF	PSMC2TIF	PSMC1TIF	PSMC4SIF	PSMC3SIF	PSMC2SIF	PSMC1SIF	105		
STATUS	_	—	_	TO	PD	Z	DC	С	31		
VREGCON	—	—	—	_	—	—	VREGPM	Reserved	110		
WDTCON	_	_			WDTPS<4:0>			SWDTEN	114		
Logondi		مناهمها امماهم	n road on 'o'		and making ad	In Davis Dav					

TABLE 9-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	SPLLEN		IRCF<3:0>			—	SCS<1:0>		86
STATUS	—	_	—	TO	PD	Z	DC	С	31
WDTCON				١	VDTPS<4:0	>		SWDTEN	114

TABLE 11-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 11-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	_	FCMEN	IESO	CLKOUTEN	BOREN<1:0>		CPD	58
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE	E<1:0>	FOSC<2:0>			00

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

13.1 Alternate Pin Function

The Alternate Pin Function Control (APFCON1 and APFCON2) registers are used to steer specific peripheral input and output functions between different pins. The APFCON1 and APFCON2 registers are shown in Register 13-1 and Register 13-2. For this device family, the following functions can be moved between different pins.

- C2OUT output
- CCP1 output
- SDO output
- · SCL/SCK output
- SDA/SDI output
- TX/RX output
- CCP2 output
- CCP3 output
- SS input

These bits have no effect on the values of any TRIS register. PORT and TRIS overrides will be routed to the correct pin. The unselected pin will be unaffected.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			AD<	11:4>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable t	oit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	own	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 17-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

bit 7-0 AD<11:4>: ADC Result Register bits Upper eight bits of 12-bit conversion result

REGISTER 17-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | AD< | 3:0> | | — | — | — | ADSIGN |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 AD<3:0>: ADC Result Register bits Lower four bits of 12-bit conversion result

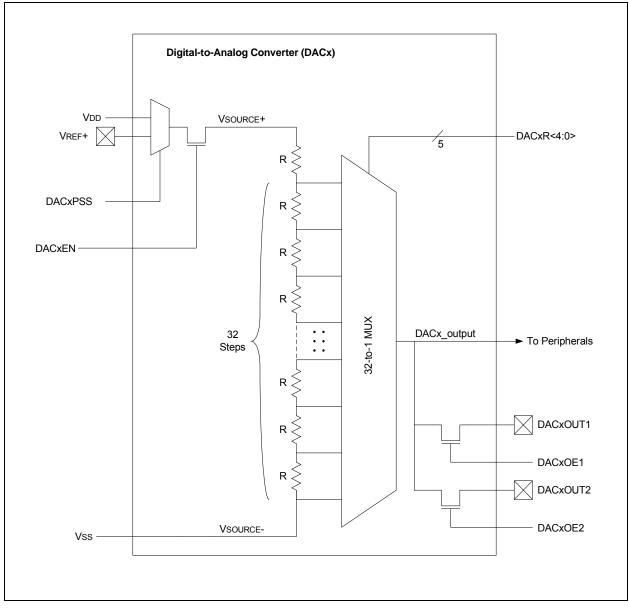
bit 3-1 Extended LSb bits: These are cleared to zero by DC conversion.

bit 0 ADSIGN: ADC Result Sign bit

18.4 Register Definitions: Op Amp Control

REGISTER 18-1: OPAxCON: OPERATIONAL AMPLIFIERS (OPAx) CONTROL REGISTERS

R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0			
OPAxEN	OPAxSP		—	_		OPAxCH<2:0>				
bit 7					·		bit 0			
Legend:										
R = Readable bit W = Writable bit				U = Unimpler	mented bit, read	l as '0'				
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets			
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condit	ion				
bit 7	OPAxEN: Op	Amp Enable b	it							
	1 = Op amp i									
	0 = Op amp i	s disabled and	consumes no	active power						
bit 6	OPAxSP: Op	Amp Speed/Po	ower Select bi	it						
		tor operates in	high GBWP m	node						
	0 = Reserved	I. Do not use.								
bit 5-3	Unimplemen	ted: Read as '	D'							
bit 2-0	OPAxCH<2:0>: Non-inverting Channel Selection bits									
	$111 = Non_{-in}$	verting input co	nnects to DA							


- 111 = Non-inverting input connects to DAC4_output
- 110 = Non-inverting input connects to DAC3_output
- 101 = Non-inverting input connects to DAC2_output
- 100 = Non-inverting input connects to DAC1_output
- 011 = Non-inverting input connects to FVR Buffer 2 output
- 010 = Reserved do not use
- 001 = Reserved do not use
- 000 = Non-inverting input connects to OPAxIN+ pin

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
ANSELA	ANSA7	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	137	
ANSELB	—	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	143	
DAC1CON0	DAC1EN	_	DAC10E1	DAC10E2	DAC1PS	SS<1:0>	_	192		
DAC1CON1		DAC1R<7:0>								
OPA1CON	OPA1EN	OPA1SP	—	_	_	—	OPA1P0	CH<1:0>	187	
OPA2CON	OPA2EN	OPA2SP	—	_	_	—	OPA2P0	CH<1:0>	187	
OPA3CON ⁽¹⁾	OPA3EN	OPA3SP	—	_	_	—	OPA3P0	CH<1:0>	187	
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	136	
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	142	
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	147	

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH OP AMPS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by op amps.

Note 1: PIC16(L)F1789 only

FIGURE 20-1: DIGITAL-TO-ANALOG CONVERTER BLOCK DIAGRAM

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0			
PxASE	PxASDEN	PxARSEN	—	—	_	_	PxASDOV			
bit 7	·	•					bit 0			
Legend:										
R = Readab		W = Writable		•	nented bit, read					
u = Bit is un	changed	x = Bit is unkr	Iown	-n/n = Value a	at POR and BOP	R/Value at all	other Resets			
'1' = Bit is se	et	'0' = Bit is clea	ared							
				(4)						
bit 7		M Auto-Shutdov								
	 1 = A shutdown event has occurred, PWM outputs are inactive and in their shutdown states 0 = PWM outputs are operating normally 									
			0	,						
bit 6		PxASDEN: PWM Auto-Shutdown Enable bit 1 = Auto-shutdown is enabled. If any of the sources in PSMCxASDS assert a logic '1', then the out-								
							1', then the out-			
		ll go into their au nutdown is disab		state and PSIV	ICXSIF liag will i	Je sel.				
bit 5		PWM Auto-Rest								
bit o		estarts automati			ndition is remove	ed				
		ASE bit must be					wn condition is			
	cleared	l.								
bit 4-1	Unimpleme	nted: Read as ')'							
bit 0	PxASDOV:	PWM Auto-Shut	down Overrid	e bit						
	PxASDEN =	<u>1:</u>								
		PxASDL[n] level			out causing a P	SMCxSIF inte	errupt			
	0 = Norma	PWM and auto	-shutdown ex	ecution						
	<u>PxASDEN =</u> No effect	0:								
	NU ellect									
	ASE bit may be	set in software.	When this oc	curs the function	onality is the san	ne as that cau	used by			
h	ardware.									

REGISTER 26-16: PSMCxASDC: PSMC AUTO-SHUTDOWN CONTROL REGISTER

REGISTER 26-21: PSMCxPHL: PSMC PHASE COUNT LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			PSMCx	PHL<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0

—

PSMCxPHL<7:0>: 16-bit Phase Count Least Significant bits = PSMCxPH<7:0>

REGISTER 26-22: PSMCxPHH: PSMC PHASE COUNT HIGH BYTE REGISTER

R/W-0/0 <t

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PSMCxPHH<7:0>:** 16-bit Phase Count Most Significant bits

= PSMCxPH<15:8>

27.2 SPI Mode Overview

The Serial Peripheral Interface (SPI) bus is a synchronous serial data communication bus that operates in Full-Duplex mode. Devices communicate in a master/slave environment where the master device initiates the communication. A slave device is controlled through a Chip Select known as Slave Select.

The SPI bus specifies four signal connections:

- Serial Clock (SCK)
- Serial Data Out (SDO)
- Serial Data In (SDI)
- Slave Select (SS)

Figure 27-1 shows the block diagram of the MSSP module when operating in SPI mode.

The SPI bus operates with a single master device and one or more slave devices. When multiple slave devices are used, an independent Slave Select connection is required from the master device to each slave device.

Figure 27-4 shows a typical connection between a master device and multiple slave devices.

The master selects only one slave at a time. Most slave devices have tri-state outputs so their output signal appears disconnected from the bus when they are not selected.

Transmissions involve two shift registers, eight bits in size, one in the master and one in the slave. With either the master or the slave device, data is always shifted out one bit at a time, with the Most Significant bit (MSb) shifted out first. At the same time, a new Least Significant bit (LSb) is shifted into the same register.

Figure 27-5 shows a typical connection between two processors configured as master and slave devices.

Data is shifted out of both shift registers on the programmed clock edge and latched on the opposite edge of the clock.

The master device transmits information out on its SDO output pin which is connected to, and received by, the slave's SDI input pin. The slave device transmits information out on its SDO output pin, which is connected to, and received by, the master's SDI input pin.

To begin communication, the master device first sends out the clock signal. Both the master and the slave devices should be configured for the same clock polarity.

The master device starts a transmission by sending out the MSb from its shift register. The slave device reads this bit from that same line and saves it into the LSb position of its shift register. During each SPI clock cycle, a full-duplex data transmission occurs. This means that while the master device is sending out the MSb from its shift register (on its SDO pin) and the slave device is reading this bit and saving it as the LSb of its shift register, that the slave device is also sending out the MSb from its shift register (on its SDO pin) and the master device is reading this bit and saving it as the LSb of its shift register.

After eight bits have been shifted out, the master and slave have exchanged register values.

If there is more data to exchange, the shift registers are loaded with new data and the process repeats itself.

Whether the data is meaningful or not (dummy data), depends on the application software. This leads to three scenarios for data transmission:

- Master sends useful data and slave sends dummy data.
- Master sends useful data and slave sends useful data.
- Master sends dummy data and slave sends useful data.

Transmissions may involve any number of clock cycles. When there is no more data to be transmitted, the master stops sending the clock signal and it deselects the slave.

Every slave device connected to the bus that has not been selected through its slave select line must disregard the clock and transmission signals and must not transmit out any data of its own.

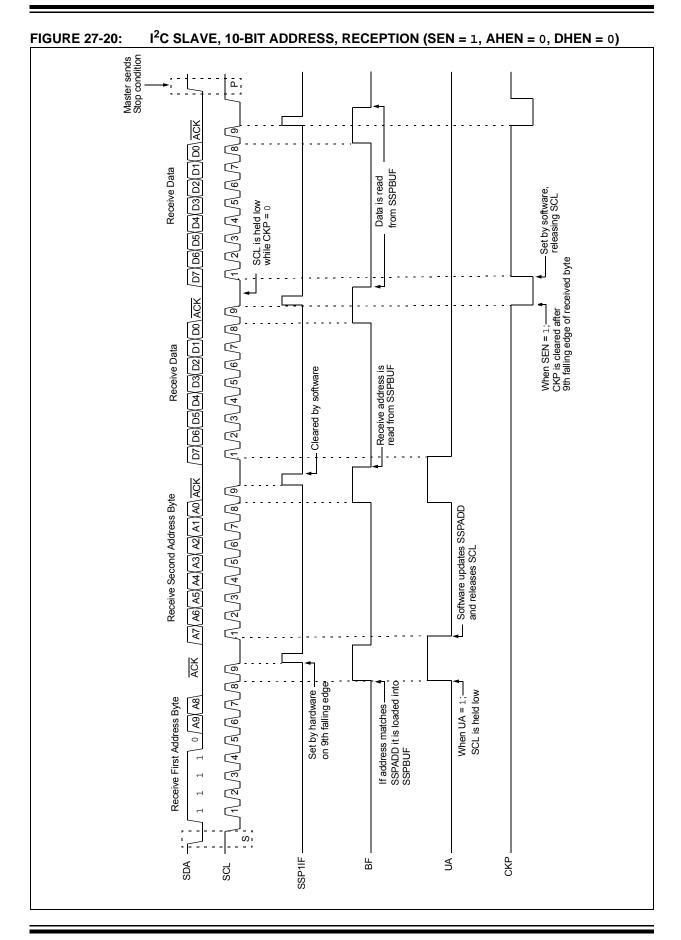
27.5.4 SLAVE MODE 10-BIT ADDRESS RECEPTION

This section describes a standard sequence of events for the MSSP module configured as an I^2C slave in 10-bit Addressing mode.

Figure 27-19 is used as a visual reference for this description.

This is a step by step process of what must be done by slave software to accomplish I^2C communication.

- 1. Bus starts Idle.
- Master sends Start condition; S bit of SSPSTAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- 3. Master sends matching high address with R/W bit clear; UA bit of the SSPSTAT register is set.
- 4. Slave sends ACK and SSP1IF is set.
- 5. Software clears the SSP1IF bit.
- 6. Software reads received address from SSPBUF clearing the BF flag.
- 7. Slave loads low address into SSPADD, releasing SCL.
- 8. Master sends matching low address byte to the slave; UA bit is set.


Note: Updates to the SSPADD register are not allowed until after the ACK sequence.

- 9. Slave sends ACK and SSP1IF is set.
- **Note:** If the low address does not match, SSP1IF and UA are still set so that the slave software can set SSPADD back to the high address. BF is not set because there is no match. CKP is unaffected.
- 10. Slave clears SSP1IF.
- 11. Slave reads the received matching address from SSPBUF clearing BF.
- 12. Slave loads high address into SSPADD.
- Master clocks a data byte to the slave and clocks out the slaves ACK on the 9th SCL pulse; SSP1IF is set.
- 14. If SEN bit of SSPCON2 is set, CKP is cleared by hardware and the clock is stretched.
- 15. Slave clears SSP1IF.
- 16. Slave reads the received byte from SSPBUF clearing BF.
- 17. If SEN is set the slave sets CKP to release the SCL.
- 18. Steps 13-17 repeat for each received byte.
- 19. Master sends Stop to end the transmission.

27.5.5 10-BIT ADDRESSING WITH ADDRESS OR DATA HOLD

Reception using 10-bit addressing with AHEN or DHEN set is the same as with 7-bit modes. The only difference is the need to update the SSPADD register using the UA bit. All functionality, specifically when the CKP bit is cleared and SCL line is held low are the same. Figure 27-20 can be used as a reference of a slave in 10-bit addressing with AHEN set.

Figure 27-21 shows a standard waveform for a slave transmitter in 10-bit Addressing mode.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0	R-0/0	R-0/0				
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D				
bit 7		•		·			bit (
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	l as '0'					
u = Bit is unc	hanged	x = Bit is unk	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets				
'1' = Bit is set	t	'0' = Bit is cle	ared								
bit 7	SPEN: Seria	al Port Enable b	it								
		ort enabled (co ort disabled (he		T and TX/CK p	ins as serial po	rt pins)					
bit 6	RX9: 9-bit R	eceive Enable	bit								
		9-bit reception 8-bit reception									
bit 5	SREN: Sing	le Receive Ena	ble bit								
	<u>Asynchronou</u>	Asynchronous mode:									
	Don't care <u>Synchronous</u>	Don't care <u>Synchronous mode – Master</u> :									
	1 = Enables	1 = Enables single receive									
		0 = Disables single receive									
		This bit is cleared after reception is complete. Synchronous mode – Slave									
	Synchronous mode – Slave Don't care										
bit 4		CREN: Continuous Receive Enable bit									
		Asynchronous mode:									
	-	1 = Enables receiver									
		0 = Disables receiver									
	-	Synchronous mode:									
	 1 = Enables continuous receive until enable bit CREN is cleared (CREN overrides SREN) 0 = Disables continuous receive 										
bit 3											
		ADDEN: Address Detect Enable bit Asynchronous mode 9-bit (RX9 = 1):									
	•	1 = Enables address detection, enable interrupt and load the receive buffer when RSR<8> is set									
		 Disables address detection, all bytes are received and ninth bit can be used as parity bit 									
		Asynchronous mode 8-bit (RX9 = 0):									
	Don't care										
bit 2		FERR: Framing Error bit									
	 1 = Framing error (can be updated by reading RCREG register and receive next valid byte) 0 = No framing error 										
bit 1	OERR: Over	rrun Error bit									
	1 = Overrun 0 = No over	n error (can be o run error	cleared by clea	iring bit CREN)						
bit 0	RX9D: Ninth	bit of Received	d Data								

REGISTER 28-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER

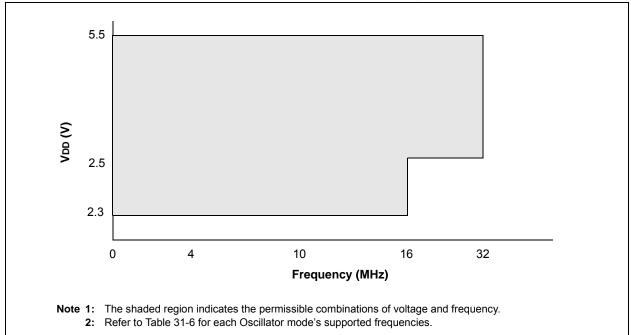
MOVIW	Move INDFn to W
Syntax:	[<i>label</i>] MOVIW ++FSRn [<i>label</i>] MOVIWFSRn [<i>label</i>] MOVIW FSRn++ [<i>label</i>] MOVIW FSRn [<i>label</i>] MOVIW k[FSRn]
Operands:	$\begin{array}{l} n \in [0,1] \\ mm \in [00,01,10,11] \\ \textbf{-32} \leq k \leq 31 \end{array}$
Operation:	$\label{eq:interm} \begin{array}{l} \text{INDFn} \rightarrow \text{W} \\ \text{Effective address is determined by} \\ \bullet \ \text{FSR} + 1 \ (\text{preincrement}) \\ \bullet \ \text{FSR} - 1 \ (\text{predecrement}) \\ \bullet \ \text{FSR} + k \ (\text{relative offset}) \\ \text{After the Move, the FSR value will} \\ \text{be either:} \\ \bullet \ \text{FSR} + 1 \ (\text{all increments}) \\ \bullet \ \text{FSR} - 1 \ (\text{all decrements}) \\ \bullet \ \text{Unchanged} \end{array}$
Status Affected:	Z

Mode	Syntax	mm
Preincrement	++FSRn	00
Predecrement	FSRn	01
Postincrement	FSRn++	10
Postdecrement	FSRn	11

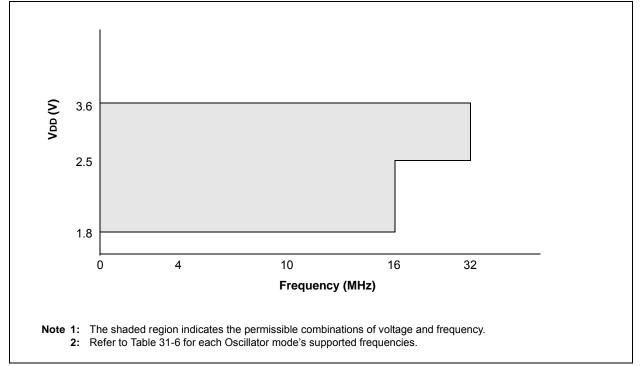
Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/ after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

Note: The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.


FSRn is limited to the range 0000h -FFFFh. Incrementing/ decrementing it beyond these bounds will cause it to wraparound.

MOVLB	Move literal to BSR
Syntax:	[<i>label</i>]MOVLB k
Operands:	$0 \leq k \leq 31$
Operation:	$k \rightarrow BSR$
Status Affected:	None
Description:	The 5-bit literal 'k' is loaded into the Bank Select Register (BSR).
MOVLP	Move literal to PCLATH
Syntax:	[<i>label</i>]MOVLP_k
Operands:	$0 \leq k \leq 127$
Operation:	$k \rightarrow PCLATH$
Status Affected:	None


MOVLW	Move literal to W
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \leq k \leq 255$
Operation:	$k \rightarrow (W)$
Status Affected:	None
Description:	The 8-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's.
Words:	1
Cycles:	1
Example:	MOVLW 0x5A
	After Instruction W = 0x5A

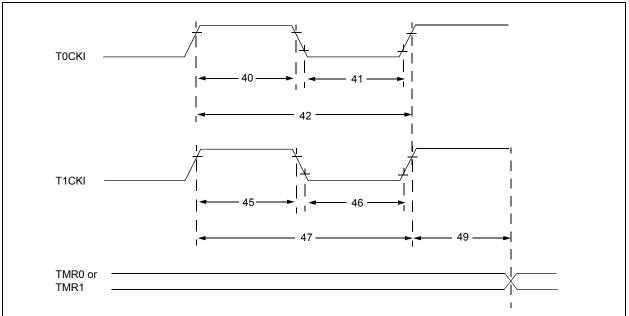
PCLATH register.

PIC16LF	1788/9	Standard Operating Conditions (unless otherwise stated)						
PIC16F1788/9								
Param	Device	N /1-10				Conditions		
No.	Characteristics Min. Typ† Max. Units VDD		Note					
D009	LDO Regulator	_	75		μA	_	High Power mode, normal operation	
		—	15	_	μA	—	Sleep VREGCON<1> = 0	
		_	0.3	—	μA	_	Sleep VREGCON<1> = 1	
D010			8	20	μA	1.8	Fosc = 32 kHz	
		—	12	24	μA	3.0	LP Oscillator mode (Note 4), -40°C \leq TA \leq +85°C	
D010			18	63	μA	2.3	Fosc = 32 kHz	
			20	74	μA	3.0	LP Oscillator mode (Note 4, 5),	
			22	79	μA	5.0	$-$ -40°C \leq TA \leq +85°C	
D012		_	160	650	μA	1.8	Fosc = 4 MHz	
		—	320	1000	μA	3.0	XT Oscillator mode	
D012		—	260	700	μA	2.3	Fosc = 4 MHz	
			330	1100	μA	3.0	XT Oscillator mode (Note 5)	
		_	380	1300	μA	5.0		

TABLE 31-2: SUPPLY VOLTAGE (IDD)^(1,2)

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

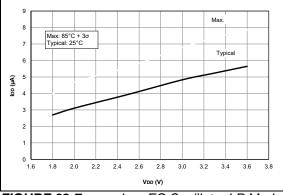

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: 0.1 μ F capacitor on VCAP.

6: 8 MHz crystal oscillator with 4x PLL enabled.

FIGURE 31-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS


TABLE 31-11:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
--------------	---

Standa	rd Operating	Conditions (u	Inless otherwis	e stated)					
Param No.	Sym.		Characteristi	Min.	Тур†	Max.	Units	Conditions	
40* TT0H		T0CKI High Pulse Width No Prescaler			0.5 Tcy + 20	_	_	ns	
		With Prescaler		With Prescaler	10			ns	
41*	T⊤0L	T0CKI Low F	Pulse Width	No Prescaler	0.5 Tcy + 20			ns	
				With Prescaler	10			ns	
42*	Тт0Р	T0CKI Period	t		Greater of: 20 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value (2, 4,, 256)
45*	T⊤1H	T1CKI High	Synchronous, No Prescaler		0.5 Tcy + 20	_		ns	
		Time	Synchronous, with Prescaler		15	—	_	ns	
			Asynchronous		30			ns	
46*	T⊤1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 Tcy + 20			ns	
			Synchronous, with Prescaler		15		_	ns	
			Asynchronous		30		_	ns	
47*	7* TT1P T1CKI Input Synchronous Period		Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	—		ns	
48	F⊤1		lator Input Freque abled by setting		32.4	32.768	33.1	kHz	
49*	TCKEZTMR1	Delay from E Increment	Delay from External Clock Edge to Timer			—	7 Tosc	—	Timers in Sync mode

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 µF, TA = 25°C.

FIGURE 32-7: IDD, EC Oscillator LP Mode, Fosc = 32 kHz, PIC16LF1788/9 Only.

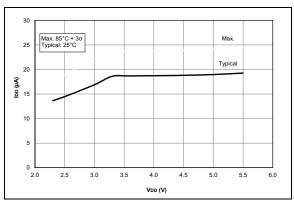


FIGURE 32-8: IDD, EC Oscillator LP Mode, Fosc = 32 kHz, PIC16F1788/9 Only.

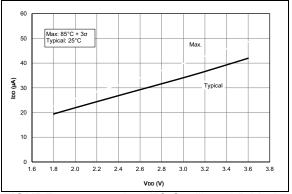


FIGURE 32-9: IDD, EC Oscillator LP Mode, Fosc = 500 kHz, PIC16LF1788/9 Only.

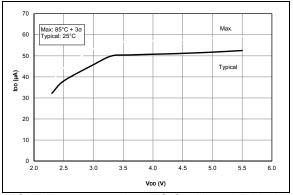


FIGURE 32-10: IDD, EC Oscillator LP Mode, Fosc = 500 kHz, PIC16F1788/9 Only.



FIGURE 32-11: IDD Typical, EC Oscillator MP Mode, PIC16LF1788/9 Only.

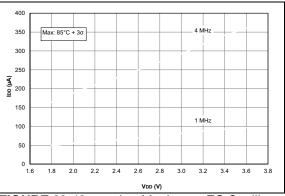


FIGURE 32-12: IDD Maximum, EC Oscillator MP Mode, PIC16LF1788/9 Only.

350

300

250

<u>ک</u> 200

<u></u> 150

100

50

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

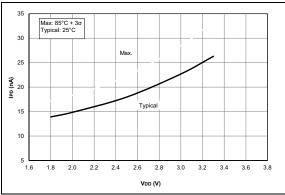


FIGURE 32-37: IPD, Fixed Voltage Reference (FVR), PIC16LF1788/9 Only.

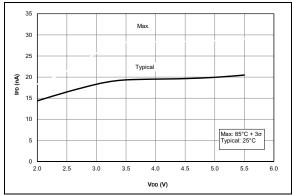


FIGURE 32-38: IPD, Fixed Voltage Reference (FVR), PIC16F1788/9 Only.

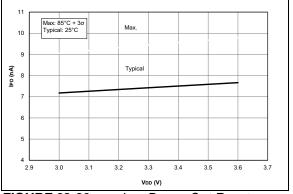


FIGURE 32-39: IPD, Brown-Out Reset (BOR), BORV = 1, PIC16LF1788/9 Only.

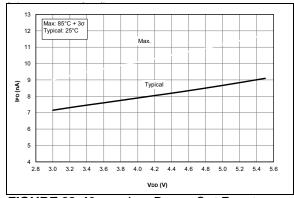


FIGURE 32-40: IPD, Brown-Out Reset (BOR), BORV = 1, PIC16F1788/9 Only.

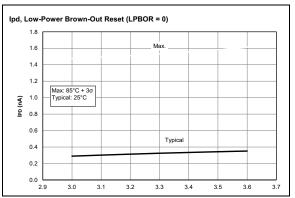
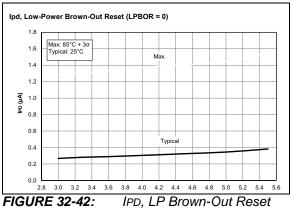



FIGURE 32-41: IPD, LP Brown-Out Reset (LPBOR = 0), PIC16LF1788/9 Only.

(LPBOR = 0), PIC16F1788/9 Only.

THE MICROCHIP WEBSITE

Microchip provides online support via our website site at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://microchip.com/support