

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 11x12b; D/A 1x8b, 3x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1788-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description	
RE1/AN6/PSMC3B	RE1	TTL/ST	CMOS	General purpose I/O.	
	AN6	AN		ADC Channel 6 input.	
	PSMC3B	_	CMOS	PSMC3 output B.	
RE2/AN7/PSMC3A	RE2	TTL/ST	CMOS	General purpose I/O.	
	AN7	AN	—	ADC Channel 7 input.	
	PSMC3A	_	CMOS	PSMC3 output A.	
RE3/MCLR/VPP	RE3	TTL/ST	_	General purpose input.	
	MCLR	ST	_	Master Clear with internal pull-up.	
	Vpp	HV	_	Programming voltage.	
VDD	Vdd	Power		Positive supply.	
Vss	Vss	Power		Ground reference.	

TABLE 1-3: PIC16(L)F1789 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output CMOS = CMOS compatible input or output

OD = Open-Drain = Schmitt Trigger input with I^2C TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C HV = High Voltage XTAL = Crystal levels

Note 1: Pin functions can be assigned to one of two locations via software. See Register 13-1.

2: All pins have interrupt-on-change functionality.

3.3.5 CORE FUNCTION REGISTERS SUMMARY

The Core Function registers listed in Table 3-11 can be addressed from any Bank.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 0-31											
x00h or x80h	INDF0	Addressing (not a phys	this location ical register)		xxxx xxxx	uuuu uuuu					
x01h or x81h	INDF1	Addressing (not a phys	this location ical register)	uses conte	nts of FSR1H	/FSR1L to a	ddress data i	memory		xxxx xxxx	uuuu uuuu
x02h or x82h	PCL	Program C	ounter (PC)	Least Signifi	cant Byte					0000 0000	0000 0000
x03h or x83h	STATUS	—	_		ТО	PD	Z	DC	С	1 1000	q quuu
x04h or x84h	FSR0L	Indirect Data Memory Address 0 Low Pointer									uuuu uuuu
x05h or x85h	FSR0H	Indirect Da	Indirect Data Memory Address 0 High Pointer								0000 0000
x06h or x86h	FSR1L	Indirect Da	ta Memory A	ddress 1 Lo	w Pointer					0000 0000	uuuu uuuu
x07h or x87h	FSR1H	Indirect Da	ta Memory A	ddress 1 Hig	gh Pointer					0000 0000	0000 0000
x08h or x88h	BSR	—	_		BSR4	BSR3	BSR2	BSR1	BSR0	0 0000	0 0000
x09h or x89h	WREG	Working Re	egister							0000 0000	uuuu uuuu
x0Ahor x8Ah	PCLATH	_	Write Buffer	for the upp	er 7 bits of the	e Program Co	ounter			-000 0000	-000 0000
x0Bhor x8Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000

TABLE 3-11: CORE FUNCTION REGISTERS SUMMARY

Legend:x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved.Shaded locations are unimplemented, read as '0'.

9.0 POWER-DOWN MODE (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction.

Upon entering Sleep mode, the following conditions exist:

- 1. WDT will be cleared but keeps running, if enabled for operation during Sleep.
- 2. PD bit of the STATUS register is cleared.
- 3. $\overline{\text{TO}}$ bit of the STATUS register is set.
- 4. CPU clock is disabled.
- 5. 31 kHz LFINTOSC is unaffected and peripherals that operate from it may continue operation in Sleep.
- 6. Timer1 and peripherals that operate from Timer1 continue operation in Sleep when the Timer1 clock source selected is:
 - LFINTOSC
 - T1CKI
 - Timer1 oscillator
- 7. ADC is unaffected, if the dedicated FRC oscillator is selected.
- I/O ports maintain the status they had before SLEEP was executed (driving high, low or high-impedance).
- 9. Resets other than WDT are not affected by Sleep mode.

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- I/O pins should not be floating
- External circuitry sinking current from I/O pins
- · Internal circuitry sourcing current from I/O pins
- · Current draw from pins with internal weak pull-ups
- Modules using 31 kHz LFINTOSC
- Modules using Timer1 oscillator

I/O pins that are high-impedance inputs should be pulled to VDD or Vss externally to avoid switching currents caused by floating inputs.

Examples of internal circuitry that might be sourcing current include modules such as the DAC and FVR modules. See Section 19.0 "8-Bit Digital-to-Analog Converter (DAC) Module" and Section 15.0 "Fixed Voltage Reference (FVR)" for more information on these modules.

9.1 Wake-up from Sleep

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled
- 2. BOR Reset, if enabled
- 3. POR Reset
- 4. Watchdog Timer, if enabled
- 5. Any external interrupt
- 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information)

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to **Section 5.12 "Determining the Cause of a Reset**".

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

10.0 LOW DROPOUT (LDO) VOLTAGE REGULATOR

The "F" devices have an internal Low Dropout Regulator (LDO) which provide operation above 3.6V. The LDO regulates a voltage for the internal device logic while permitting the VDD and I/O pins to operate at a higher voltage. There is no user enable/disable control available for the LDO, it is always active. The "LF" devices operate at a maximum VDD of 3.6V and does not incorporate an LDO.

A device I/O pin may be configured as the LDO voltage output, identified as the VCAP pin. Although not required, an external low-ESR capacitor may be connected to the VCAP pin for additional regulator stability.

The $\overline{\text{VCAPEN}}$ bit of Configuration Words determines if which pin is assigned as the VCAP pin. Refer to Table 10-1.

VCAPEN	Pin
1	No VCAP
0	RA6

TABLE 10-1: VCAPEN SELECT BIT

On power-up, the external capacitor will load the LDO voltage regulator. To prevent erroneous operation, the device is held in Reset while a constant current source charges the external capacitor. After the cap is fully charged, the device is released from Reset. For more information on the constant current rate, refer to the LDO Regulator Characteristics Table in **Section 31.0 "Electrical Specifications"**.

TABLE 10-2: SUMMARY OF CONFIGURATION WORD WITH LDO

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8			LVP	DEBUG	LPBOR	BORV	STVREN	PLLEN	
CONFIG2	7:0	_		VCAPEN ⁽¹⁾	_			WRT	<1:0>	60

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by LDO.

Note 1: "F" devices only.

EXAMPLE 12-3: FLASH PROGRAM MEMORY READ

```
* This code block will read 1 word of program
* memory at the memory address:
   PROG_ADDR_HI : PROG_ADDR_LO
   data will be returned in the variables;
*
   PROG_DATA_HI, PROG_DATA_LO
   MOVLW PROG_ADDR_LO ; Select Bank for EEPROM registers
MOVWF EEADRL ; Store LSB of address
MOVLW PROG_ADDR_HI ;
MOVWL EEADRH ;
             EECON1,CFGS ; Do not select Configuration Space
EECON1,EEPGD ; Select Program Memory
   BCF
            EECON1,CFGS
   BSF
              INTCON,GIE ; Disable interrupts
   BCF
   BSF
              EECON1,RD
                                 ; Initiate read
   NOP
                                  ; Executed (Figure 12-1)
   NOP
                                 ; Ignored (Figure 12-1)
   BSF
              INTCON, GIE
                                ; Restore interrupts
             EEDATL,W
   MOVF
                               ; Get LSB of word
   MOVWF
              PROG_DATA_LO  ; Store in user location
              EEDATH,W ; Get MSB of word
PROG_DATA_HI ; Store in user location
   MOVE
   MOVWF
```

19.6 Register Definitions: DAC Control

REGISTER 19-1: DAC1CON0: VOLTAGE REFERENCE CONTROL REGISTER 0

R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
DAC1EN	—	DAC10E1	DAC10E2	DAC1F	PSS<1:0>	—	DAC1NSS
bit 7		•					bit 0
Legend:							
R = Readable b	it	W = Writable b	oit	U = Unimplem	nented bit, read a	is '0'	
u = Bit is uncha	nged	x = Bit is unkno	own	-n/n = Value a	t POR and BOR	Value at all oth	ier Resets
'1' = Bit is set		'0' = Bit is clea	red				
bit 7	DAC1EN: DAC 1 = DAC1 is e	C1 Enable bit enabled lisabled					
bit 6		ed: Read as '0'					
bit 5	DAC10E1: DA 1 = DAC1 volt 0 = DAC1 volt	AC1 Voltage Ou tage level is als tage level is dis	tput 1 Enable t o an output on connected fron	oit the DAC1OUT n the DAC1OU	1 pin T1 pin		
bit 4	DAC1OE2: DA 1 = DAC1 volt 0 = DAC1 volt	AC1 Voltage Ou tage level is als tage level is dis	tput 2 Enable t o an output on connected fron	oit the DAC1OUT n the DAC1OU	2 pin T2 pin		
bit 3-2 DAC1PSS<1:0>: DAC1 Positive Source Select bits 11 = Reserved, do not use 10 = FVR Buffer2 output 01 = VREF+ pin 00 = VDD							
bit 1	Unimplement	ed: Read as '0'					
bit 0	DAC1NSS: DAC1 Negative Source Select bits 1 = VREF- pin 0 = Vss						

REGISTER 19-2: DAC1CON1: VOLTAGE REFERENCE CONTROL REGISTER 1

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
DAC1R<7:0>											
bit 7							bit 0				
Legend:											
R = Readable bit		W = Writable bit	t	U = Unimplem	nented bit, read a	as '0'					

bit 7-0 DAC1R<7:0>: DAC1 Voltage Output Select bits

x = Bit is unknown

'0' = Bit is cleared

TABLE 19-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	CDAFVR<1:0>		R<1:0>	167
DAC1CON0	DAC1EN	—	DAC10E1	DAC10E2	DAC1PSS<1:0>		—	DAC1NSS	192
DAC1CON1		DAC1R<7:0>							

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

u = Bit is unchanged

'1' = Bit is set

-n/n = Value at POR and BOR/Value at all other Resets

21.3 Comparator Hysteresis

A selectable amount of separation voltage can be added to the input pins of each comparator to provide a hysteresis function to the overall operation. Hysteresis is enabled by setting the CxHYS bit of the CMxCON0 register.

See **Section 30.0 "Electrical Specifications"** for more information.

21.4 Timer1 Gate Operation

The output resulting from a comparator operation can be used as a source for gate control of Timer1. See **Section 23.6 "Timer1 Gate"** for more information. This feature is useful for timing the duration or interval of an analog event.

It is recommended that the comparator output be synchronized to Timer1. This ensures that Timer1 does not increment while a change in the comparator is occurring.

21.4.1 COMPARATOR OUTPUT SYNCHRONIZATION

The output from a comparator can be synchronized with Timer1 by setting the CxSYNC bit of the CMx-CON0 register.

Once enabled, the comparator output is latched on the falling edge of the Timer1 source clock. If a prescaler is used with Timer1, the comparator output is latched after the prescaling function. To prevent a race condition, the comparator output is latched on the falling edge of the Timer1 clock source and Timer1 increments on the rising edge of its clock source. See the Comparator Block Diagram (Figure 21-2) and the Timer1 Block Diagram (Figure 23-1) for more information.

21.5 Comparator Interrupt

An interrupt can be generated upon a change in the output value of the comparator for each comparator, a rising edge detector and a falling edge detector are present.

When either edge detector is triggered and its associated enable bit is set (CxINTP and/or CxINTN bits of the CMxCON1 register), the Corresponding Interrupt Flag bit (CxIF bit of the PIR2 register) will be set.

To enable the interrupt, you must set the following bits:

- CxON, CxPOL and CxSP bits of the CMxCON0 register
- CxIE bit of the PIE2 register
- CxINTP bit of the CMxCON1 register (for a rising edge detection)
- CxINTN bit of the CMxCON1 register (for a falling edge detection)
- · PEIE and GIE bits of the INTCON register

The associated interrupt flag bit, CxIF bit of the PIR2 register, must be cleared in software. If another edge is detected while this flag is being cleared, the flag will still be set at the end of the sequence.

21.6 Comparator Positive Input Selection

Configuring the CxPCH<2:0> bits of the CMxCON1 register directs an internal voltage reference or an analog pin to the non-inverting input of the comparator:

- CxIN+ analog pin
- DAC output
- FVR (Fixed Voltage Reference)
- · Vss (Ground)

See Section 15.0 "Fixed Voltage Reference (FVR)" for more information on the Fixed Voltage Reference module.

See Section 19.0 "8-Bit Digital-to-Analog Converter (DAC) Module" for more information on the DAC input signal.

Any time the comparator is disabled (CxON = 0), all comparator inputs are disabled.

Note: Although a comparator is disabled, an interrupt can be generated by changing the output polarity with the CxPOL bit of the CMxCON0 register, or by switching the comparator on or off with the CxON bit of the CMxCON0 register.

U-0	U-0	U-0	U-0	R-0/0	R-0/0	R-0/0	R-0/0
—	_	_	_	MC4OUT	MC3OUT	MC2OUT	MC10UT
bit 7							bit 0

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	Unimplemented: Read as '0'	
---------	----------------------------	--

- bit 2 MC3OUT: Mirror Copy of C3OUT bit
- bit 1 MC2OUT: Mirror Copy of C2OUT bit
- bit 0 MC10UT: Mirror Copy of C10UT bit

TABLE 21-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	ANSA7	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	137
ANSELB	_	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	143
CM1CON0	C10N	C10UT	C10E	C1POL	C1ZLF	C1SP	C1HYS	C1SYNC	203
CM2CON0	C2ON	C2OUT	C2OE	C2POL	C2ZLF	C2SP	C2HYS	C2SYNC	203
CM1CON1	C1NTP	C1INTN		C1PCH<2:0>	>		C1NCH<2:0>	>	204
CM2CON1	C2NTP	C2INTN		C2PCH<2:0>	>	C2NCH<2:0>			204
CM3CON0	C3ON	C3OUT	C3OE	C3POL	C3ZLF	C3SP	C3HYS	C3SYNC	203
CM3CON1	C3INTP	C3INTN		C3PCH<2:0>	>		204		
CMOUT	_	_	—	—	MC4OUT	MC3OUT	MC2OUT	MC10UT	205
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	R<1:0> ADFVR<1:0>			167
DAC1CON0	DAC1EN	_	DAC10E1	DAC10E2	DAC1PS	SS<1:0>	<1:0> — [192
DAC1CON1				DAC1F	R<7:0>				192
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	C4IE	C3IE	CCP2IE	99
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	C4IF	C3IF	CCP2IF	103
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	137
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	143
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	147

Note 1: — = unimplemented location, read as '0'. Shaded cells are unused by the comparator module.

23.7 Timer1 Interrupt

The Timer1 register pair (TMR1H:TMR1L) increments to FFFFh and rolls over to 0000h. When Timer1 rolls over, the Timer1 interrupt flag bit of the PIR1 register is set. To enable the interrupt on rollover, you must set these bits:

- TMR1ON bit of the T1CON register
- TMR1IE bit of the PIE1 register
- PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt is cleared by clearing the TMR1IF bit in the Interrupt Service Routine.

Note: The TMR1H:TMR1L register pair and the TMR1IF bit should be cleared before enabling interrupts.

23.8 Timer1 Operation During Sleep

Timer1 can only operate during Sleep when setup in Asynchronous Counter mode. In this mode, an external crystal or clock source can be used to increment the counter. To set up the timer to wake the device:

- TMR1ON bit of the T1CON register must be set
- TMR1IE bit of the PIE1 register must be set
- PEIE bit of the INTCON register must be set
- T1SYNC bit of the T1CON register must be set
- TMR1CS bits of the T1CON register must be configured
- T1OSCEN bit of the T1CON register must be configured

The device will wake-up on an overflow and execute the next instructions. If the GIE bit of the INTCON register is set, the device will call the Interrupt Service Routine.

Timer1 oscillator will continue to operate in Sleep regardless of the T1SYNC bit setting.

23.9 CCP Capture/Compare Time Base

The CCP modules use the TMR1H:TMR1L register pair as the time base when operating in Capture or Compare mode.

In Capture mode, the value in the TMR1H:TMR1L register pair is copied into the CCPR1H:CCPR1L register pair on a configured event.

In Compare mode, an event is triggered when the value CCPR1H:CCPR1L register pair matches the value in the TMR1H:TMR1L register pair. This event can be a Auto-conversion Trigger.

For more information, see Section 25.0 "Capture/Compare/PWM Modules".

23.10 CCP Auto-Conversion Trigger

When any of the CCP's are configured to trigger a auto-conversion, the trigger will clear the TMR1H:TMR1L register pair. This auto-conversion does not cause a Timer1 interrupt. The CCP module may still be configured to generate a CCP interrupt.

In this mode of operation, the CCPR1H:CCPR1L register pair becomes the period register for Timer1.

Timer1 should be synchronized and Fosc/4 should be selected as the clock source in order to utilize the Auto-conversion Trigger. Asynchronous operation of Timer1 can cause a Auto-conversion Trigger to be missed.

In the event that a write to TMR1H or TMR1L coincides with a Auto-conversion Trigger from the CCP, the write will take precedence.

For more information, see Section 25.2.4 "Auto-Conversion Trigger".

FIGURE 23-2: TIMER1 INCREMENTING EDGE

26.2.1.4 16-bit Duty Cycle Register

The PSMCxDC Duty Cycle register is used to determine a synchronous falling edge event referenced to the 16-bit PSMCxTMR digital counter. A match between the PSMCxTMR and PSMCxDC register values will generate a falling edge event.

The match will generate a duty cycle match interrupt, thereby setting the PxTDCIF bit of the PSMC Time Base Interrupt Control (PSMCxINT) register (Register 26-34).

The 16-bit duty cycle value is accessible to software as two 8-bit registers:

- PSMC Duty Cycle Count Low Byte (PSMCxDCL) register (Register 26-23)
- PSMC Duty Cycle Count High Byte (PSMCxDCH) register (Register 26-24)

The 16-bit duty cycle value is double-buffered before it is presented to the 16-bit time base for comparison. The buffered registers are updated on the first period event Reset after the PSMCxLD bit of the PSMCxCON register is set.

When the period, phase, and duty cycle are all determined from the time base, the effective PWM duty cycle can be expressed as shown in Equation 26-2.

EQUATION 26-2: PWM DUTY CYCLE

 $DUTYCYCLE = \frac{PSMCxDC[15:0] - PSMCxPH[15:0]}{(PSMCxPR[15:0] + 1)}$

26.2.2 0% DUTY CYCLE OPERATION USING TIME BASE

To configure the PWM for 0% duty cycle set PSMCxDC<15:0> = PSMCxPH<15:0>. This will trigger a falling edge event simultaneous with the rising edge event and prevent the PWM from being asserted.

26.2.3 100% DUTY CYCLE OPERATION USING TIME BASE

To configure the PWM for 100% duty cycle set PSMCxDC<15:0> PSMCxPR<15:0>.

This will prevent a falling edge event from occurring as the PSMCxDC<15:0> value and the time base value PSMCxTMR<15:0> will never be equal.

26.2.4 TIME BASE INTERRUPT GENERATION

The Time Base section can generate four unique interrupts:

- Time Base Counter Overflow Interrupt
- Time Base Phase Register Match Interrupt
- Time Base Duty Cycle Register Match Interrupt
- Time Base Period Register Match Interrupt

Each interrupt has an interrupt flag bit and an interrupt enable bit. The interrupt flag bit is set anytime a given event occurs, regardless of the status of the enable bit.

Time base interrupt enables and flags are located in the PSMC Time Base Interrupt Control (PSMCxINT) register (Register 26-34).

PSMC time base interrupts also require that the PSMCxTIE bit in the PIE4 register and the PEIE and GIE bits in the INTCON register be set in order to generate an interrupt. The PSMCxTIF interrupt flag in the PIR4 register will only be set by a time base interrupt when one or more of the enable bits in the PSMCxINT register is set.

The interrupt flag bits need to be cleared in software. However, all PMSCx time base interrupt flags, except PSMCxTIF, are cleared when the PSMCxEN bit is cleared.

Interrupt bits that are set by software will generate an interrupt provided that the corresponding interrupt is enabled.

Note:	Interrupt	flags	in	both	the	PIE4	and		
	PSMCxIN	IT regi	iste	rs mu	st be	cleare	ed to		
	clear the interrupt. The PSMCxINT flags								
	must be c	leared	firs	st.					

26.2.5 PSMC TIME BASE CLOCK SOURCES

There are three clock sources available to the module:

- Internal 64 MHz clock
- Fosc system clock
- · External clock input pin

The clock source is selected with the PxCSRC<1:0> bits of the PSMCx Clock Control (PSMCxCLK) register (Register 26-7).

When the Internal 64 MHz clock is selected as the source, the HFINTOSC continues to operate and clock the PSMC circuitry in Sleep. However, the system clock to other peripherals and the CPU is suppressed.

Note: When the 64 MHz clock is selected, the clock continues to operate in Sleep, even when the PSMC is disabled (PSMCxEN = 0). Select a clock other than the 64 MHz clock to minimize power consumption when the PSMC is not enabled.

The Internal 64 MHz clock utilizes the system clock 4x PLL. When the system clock source is external and the PSMC is using the Internal 64 MHz clock, the 4x PLL should not be used for the system clock.

26.3.2 COMPLEMENTARY PWM

The complementary PWM uses the same events as the single PWM, but two waveforms are generated instead of only one.

The two waveforms are opposite in polarity to each other. The two waveforms may also have dead-band control as well.

26.3.2.1 Mode Features and Controls

- Dead-band control available
- PWM primary output can be steered to the following pins:
 - PSMCxA
 - PSMCxC
 - PSMCxE
- PWM complementary output can be steered to the following pins:
 - PSMCxB
 - PSMCxD
 - PSMCxE

26.3.2.2 Waveform Generation

Rising Edge Event

- · Complementary output is set inactive
- Optional rising edge dead band is activated
- Primary output is set active

Falling Edge Event

- · Primary output is set inactive
- Optional falling edge dead band is activated
- · Complementary output is set active

Code for setting up the PSMC generate the complementary single-phase waveform shown in Figure 26-5, and given in Example 26-2.

EXAMPLE 26-2: COMPLEMENTARY SINGLE-PHASE SETUP

	Complomor	tary Single phage DWM DSMC getup									
΄.	Fully synchronous operation										
΄.	Period = 10 us										
΄.	Period =										
;	Duty cycl	e = 50%									
i	Deadband	= 93./5 +15.6/-0 ns									
	BANKSEL	PSMCICON									
	MOVLW	0x02 ; set period									
	MOVWF	PSMC1PRH									
	MOVLW	0x7F									
	MOVWF	PSMC1PRL									
	MOVLW	0x01 ; set duty cycle									
	MOVWF	PSMC1DCH									
	MOVLW	0x3F									
	MOVWF	PSMC1DCL									
	CLRF	PSMC1PHH ; no phase offset									
	CLRF	PSMC1PHL									
	MOVLW	0x01 ; PSMC clock=64 MHz									
	MOVWF	PSMC1CLK									
;	output or	A, normal polarity									
	MOVLW	B'00000011'; A and B enables									
	MOVWF	PSMC10EN									
	MOVWF	PSMC1STR0									
	CLRF	PSMC1POL									
;	set time	base as source for all events									
	BSF	PSMC1PRS, P1PRST									
	BSF	PSMC1PHS, P1PHST									
	BSF	PSMC1DCS, P1DCST									
;	set risir	ng and falling dead-band times									
	MOVLW	D'6'									
	MOVWF	PSMC1DBR									
	MOVWF	PSMC1DBF									
;	enable PS	SMC in Complementary Single Mode									
;	this also	loads steering and time buffers									
;	and enabl	es rising and falling deadbands.									
	MOVLW	B'11110001'									
	MOVWF	PSMC1CON									
	BANKSEL	TRISC									
	BCF	TRISC, 0 ; enable pin drivers									

FIGURE 26-5: COMPLEMENTARY PWM WAVEFORM – PSMCXSTR0 = 03H

BCF

TRISC, 1

REGISTER 26-21: PSMCxPHL: PSMC PHASE COUNT LOW BYTE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
			PSMCx	PHL<7:0>				
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'		
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-0

PSMCxPHL<7:0>: 16-bit Phase Count Least Significant bits = PSMCxPH<7:0>

REGISTER 26-22: PSMCxPHH: PSMC PHASE COUNT HIGH BYTE REGISTER

PSMCxPHH<7:0>								
bit 0								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PSMCxPHH<7:0>:** 16-bit Phase Count Most Significant bits

= PSMCxPH<15:8>

27.2.1 SPI MODE REGISTERS

The MSSP module has five registers for SPI mode operation. These are:

- MSSP STATUS register (SSPSTAT)
- MSSP Control register 1 (SSPCON1)
- MSSP Control register 3 (SSPCON3)
- MSSP Data Buffer register (SSPBUF)
- MSSP Address register (SSPADD)
- MSSP Shift register (SSPSR) (Not directly accessible)

SSPCON1 and SSPSTAT are the control and STATUS registers in SPI mode operation. The SSPCON1 register is readable and writable. The lower six bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write.

In one SPI master mode, SSPADD can be loaded with a value used in the Baud Rate Generator. More information on the Baud Rate Generator is available in **Section 27.7 "Baud Rate Generator**".

SSPSR is the shift register used for shifting data in and out. SSPBUF provides indirect access to the SSPSR register. SSPBUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSPSR and SSPBUF together create a buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSP1IF interrupt is set.

During transmission, the SSPBUF is not buffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

27.5.2 SLAVE RECEPTION

When the R/\overline{W} bit of a matching received address byte is clear, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and acknowledged.

When the overflow condition exists for a received address, then not Acknowledge is given. An overflow condition is defined as either bit BF of the SSPSTAT register is set, or bit SSPOV of the SSPCON1 register is set. The BOEN bit of the SSPCON3 register modifies this operation. For more information see Register 27-4.

An MSSP interrupt is generated for each transferred data byte. Flag bit, SSP1IF, must be cleared by software.

When the SEN bit of the SSPCON2 register is set, SCL will be held low (clock stretch) following each received byte. The clock must be released by setting the CKP bit of the SSPCON1 register, except sometimes in 10-bit mode. See **Section 27.2.3 "SPI Master Mode"** for more detail.

27.5.2.1 7-bit Addressing Reception

This section describes a standard sequence of events for the MSSP module configured as an I^2C Slave in 7-bit Addressing mode. All decisions made by hardware or software and their effect on reception. Figure 27-13 and Figure 27-14 is used as a visual reference for this description.

This is a step by step process of what typically must be done to accomplish I^2C communication.

- 1. Start bit detected.
- 2. S bit of SSPSTAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- 3. Matching address with R/\overline{W} bit clear is received.
- 4. The slave pulls SDA low sending an ACK to the master, and sets SSP1IF bit.
- 5. Software clears the SSP1IF bit.
- 6. Software reads received address from SSPBUF clearing the BF flag.
- 7. If SEN = 1; Slave software sets CKP bit to release the SCL line.
- 8. The master clocks out a data byte.
- 9. Slave drives SDA low sending an ACK to the master, and sets SSP1IF bit.
- 10. Software clears SSP1IF.
- 11. Software reads the received byte from SSPBUF clearing BF.
- 12. Steps 8-12 are repeated for all received bytes from the master.
- 13. Master sends Stop condition, setting P bit of SSPSTAT, and the bus goes idle.

27.5.2.2 7-bit Reception with AHEN and DHEN

Slave device reception with AHEN and DHEN set operate the same as without these options with extra interrupts and clock stretching added after the 8th falling edge of SCL. These additional interrupts allow the slave software to decide whether it wants to ACK the receive address or data byte, rather than the hardware. This functionality adds support for PMBus[™] that was not present on previous versions of this module.

This list describes the steps that need to be taken by slave software to use these options for I^2C communication. Figure 27-15 displays a module using both address and data holding. Figure 27-16 includes the operation with the SEN bit of the SSPCON2 register set.

- 1. S bit of SSPSTAT is set; SSP1IF is set if interrupt on Start detect is enabled.
- Matching address with R/W bit clear is clocked in. SSP1IF is set and CKP cleared after the 8th falling edge of SCL.
- 3. Slave clears the SSP1IF.
- Slave can look at the ACKTIM bit of the SSPCON3 register to determine if the SSP1IF was after or before the ACK.
- 5. Slave reads the address value from SSPBUF, clearing the BF flag.
- 6. Slave sets ACK value clocked out to the master by setting ACKDT.
- 7. Slave releases the clock by setting CKP.
- 8. SSP1IF is set after an ACK, not after a NACK.
- 9. If SEN = 1 the slave hardware will stretch the clock after the ACK.

10. Slave clears SSP1IF.

Note: SSP1IF is still set after the 9th falling edge of SCL even if there is no clock stretching and BF has been cleared. Only if NACK is sent to master is SSP1IF not set

- 11. SSP1IF set and CKP cleared after 8th falling edge of SCL for a received data byte.
- 12. Slave looks at ACKTIM bit of SSPCON3 to determine the source of the interrupt.
- 13. Slave reads the received data from SSPBUF clearing BF.
- 14. Steps 7-14 are the same for each received data byte.
- 15. Communication is ended by either the slave sending an ACK = 1, or the master sending a Stop condition. If a Stop is sent and Interrupt on Stop Detect is disabled, the slave will only know by polling the P bit of the SSTSTAT register.

PIC16(L)F1788/9

28.1.2 EUSART ASYNCHRONOUS RECEIVER

The Asynchronous mode is typically used in RS-232 systems. The receiver block diagram is shown in Figure 28-2. The data is received on the RX/DT pin and drives the data recovery block. The data recovery block is actually a high-speed shifter operating at 16 times the baud rate, whereas the serial Receive Shift Register (RSR) operates at the bit rate. When all eight or nine bits of the character have been shifted in, they are immediately transferred to a two character First-In-First-Out (FIFO) memory. The FIFO buffering allows reception of two complete characters and the start of a third character before software must start servicing the EUSART receiver. The FIFO and RSR registers are not directly accessible by software. Access to the received data is via the RCREG register.

28.1.2.1 Enabling the Receiver

The EUSART receiver is enabled for asynchronous operation by configuring the following three control bits:

- CREN = 1
- SYNC = 0
- SPEN = 1

All other EUSART control bits are assumed to be in their default state.

Setting the CREN bit of the RCSTA register enables the receiver circuitry of the EUSART. Clearing the SYNC bit of the TXSTA register configures the EUSART for asynchronous operation. Setting the SPEN bit of the RCSTA register enables the EUSART. The programmer must set the corresponding TRIS bit to configure the RX/DT I/O pin as an input.

Note: If the RX/DT function is on an analog pin, the corresponding ANSEL bit must be cleared for the receiver to function.

28.1.2.2 Receiving Data

The receiver data recovery circuit initiates character reception on the falling edge of the first bit. The first bit, also known as the Start bit, is always a zero. The data recovery circuit counts one-half bit time to the center of the Start bit and verifies that the bit is still a zero. If it is not a zero then the data recovery circuit aborts character reception, without generating an error, and resumes looking for the falling edge of the Start bit. If the Start bit zero verification succeeds then the data recovery circuit counts a full bit time to the center of the next bit. The bit is then sampled by a majority detect circuit and the resulting '0' or '1' is shifted into the RSR. This repeats until all data bits have been sampled and shifted into the RSR. One final bit time is measured and the level sampled. This is the Stop bit, which is always a '1'. If the data recovery circuit samples a '0' in the Stop bit position then a framing error is set for this character, otherwise the framing error is cleared for this character. See Section 28.1.2.4 "Receive Framing Error" for more information on framing errors.

Immediately after all data bits and the Stop bit have been received, the character in the RSR is transferred to the EUSART receive FIFO and the RCIF interrupt flag bit of the PIR1 register is set. The top character in the FIFO is transferred out of the FIFO by reading the RCREG register.

Note:	If the receive FIFO is overrun, no additional									
	characters will be received until the overrun									
	condition is cleared. See Section 28.1.2.5									
	"Receive Overrun Error" for more									
	information on overrun errors.									

28.1.2.3 Receive Interrupts

The RCIF interrupt flag bit of the PIR1 register is set whenever the EUSART receiver is enabled and there is an unread character in the receive FIFO. The RCIF interrupt flag bit is read-only, it cannot be set or cleared by software.

RCIF interrupts are enabled by setting all of the following bits:

- RCIE, Interrupt Enable bit of the PIE1 register
- PEIE, Peripheral Interrupt Enable bit of the INTCON register
- GIE, Global Interrupt Enable bit of the INTCON register

The RCIF interrupt flag bit will be set when there is an unread character in the FIFO, regardless of the state of interrupt enable bits.

PIC16LF1	Standard Operating Conditions (unless otherwise stated)								
PIC16F17	88/9								
Param Device		Min	Typt	Мах		Conditions			
No.	Characteristics	aracteristics		Vdd	Note				
D014		—	125	550	μA	1.8	Fosc = 4 MHz		
		_	280	1100	μA	3.0	EC Oscillator mode Medium-Power mode		
D014			220	650	μA	2.3	Fosc = 4 MHz		
			290	1000	μA	3.0	EC Oscillator mode (Note 5)		
			350	1200	μA	5.0	Medium-Power mode		
D015		—	2.1	6.2	mA	3.0	Fosc = 32 MHz		
			2.5	7.5	mA	3.6	EC Oscillator High-Power mode		
D015			2.1	6.5	mA	3.0	Fosc = 32 MHz		
			2.2	7.5	mA	5.0	EC Oscillator High-Power mode (Note 5)		
D017			130	180 μA		1.8	Fosc = 500 kHz		
			150	250	μA	3.0	MFINTOSC mode		
D017			150	250	μA	2.3	Fosc = 500 kHz		
			170	330	μA	3.0	MFINTOSC mode (Note 5)		
			220	430	μA	5.0			
D019			0.8	2.2	mA	1.8	Fosc = 16 MHz		
			1.2	3.7	mA	3.0	HFINTOSC mode		
D019			1.0	2.3	mA	2.3	Fosc = 16 MHz		
			1.3	3.9	mA	3.0	HFINTOSC mode (Note 5)		
		—	1.4	4.1	mA	5.0			
D020			2.1	6.2	mA	3.0	Fosc = 32 MHz		
		—	2.5	7.5	mA	3.6	HFINTOSC mode		
D020			2.1	6.5	mA	3.0	Fosc = 32 MHz		
		—	2.2	7.5	mA	5.0	HFINTOSC mode		
D022		—	2.1	6.2	mA	3.0	Fosc = 32 MHz		
		—	2.5	7.5	mA	3.6	HS Oscillator mode (Note 6)		
D022			2.1	6.5	mA	3.0	Fosc = 32 MHz		
		—	2.2	7.5	mA	5.0	HS Oscillator mode (Note 5, 6)		

TABLE 31-2: SUPPLY VOLTAGE (IDD)^(1,2) (CONTINUED)

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: 0.1 μ F capacitor on VCAP.

6: 8 MHz crystal oscillator with 4x PLL enabled.

PIC16(L)F1788/9

FIGURE 31-11: CAPTURE/COMPARE/PWM TIMINGS (CCP)

TABLE 31-12: CAPTURE/COMPARE/PWM REQUIREMENTS (CCP)

Standa	rd Oper							
Param No.	Sym.	Characteristic		Min.	Тур†	Max.	Units	Conditions
CC01*	TccL	CCPx Input Low Time	No Prescaler	0.5Tcy + 20	—	—	ns	
			With Prescaler	20			ns	
CC02*	TccH	CCPx Input High Time	No Prescaler	0.5Tcy + 20			ns	
			With Prescaler	20			ns	
CC03*	TccP	CCPx Input Period		<u>3Tcy + 40</u> N	—	—	ns	N = prescale value (1, 4 or 16)

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC16(L)F1788/9

Note: Unless otherwise noted, VIN = 5V, FOSC = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

Temperature, VDD = 1.8V, PIC16LF1788/9 Only.

Temperature, VDD = 1.8V, PIC16LF1788/9 Only.

FIGURE 32-57: LFINTOSC Frequency, PIC16LF1788/9 Only.

FIGURE 32-58: LFINTOSC Frequency, PIC16F1788/9 Only.

FIGURE 32-59: WDT Time-Out Period, PIC16F1788/9 Only.

PIC16LF1788/9 Only.