



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | PIC                                                                       |
| Core Size                  | 8-Bit                                                                     |
| Speed                      | 32MHz                                                                     |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                 |
| Peripherals                | Brown-out Detect/Reset, POR, PSMC, PWM, WDT                               |
| Number of I/O              | 24                                                                        |
| Program Memory Size        | 28KB (16K x 14)                                                           |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | 256 x 8                                                                   |
| RAM Size                   | 2K x 8                                                                    |
| Voltage - Supply (Vcc/Vdd) | 2.3V ~ 5.5V                                                               |
| Data Converters            | A/D 11x12b; D/A 1x8b, 3x5b                                                |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 28-SSOP (0.209", 5.30mm Width)                                            |
| Supplier Device Package    | 28-SSOP                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16f1788-i-ss |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### Pin Diagram – 44-Pin QFN



### **PIN ALLOCATION TABLE**

| TAB | BLE 1: 28-PIN ALLOCATION TABLE (PIC16(L)F1788) |             |      |                                                           |                                      |                         |                                              |                |                                              |                     |                                        |                                          |            |         |                        |
|-----|------------------------------------------------|-------------|------|-----------------------------------------------------------|--------------------------------------|-------------------------|----------------------------------------------|----------------|----------------------------------------------|---------------------|----------------------------------------|------------------------------------------|------------|---------|------------------------|
| 0/1 | 28-Pin SPDIP,<br>SOIC, SSOP                    | 28-Pin QFN, | ADC  | Reference                                                 | Comparator                           | Operation<br>Amplifiers | 8-bit/<br>5-bit DAC                          | Timers         | PSMC                                         | ссь                 | EUSART                                 | MSSP                                     | Interrupt  | dn-lluq | Basic                  |
| RA0 | 2                                              | 27          | AN0  | —                                                         | C1IN0-<br>C2IN0-<br>C3IN0-<br>C4IN0- | —                       | —                                            | _              | —                                            | _                   | _                                      | <u>SS</u> (1)                            | IOC        | Y       | _                      |
| RA1 | 3                                              | 28          | AN1  | _                                                         | C1IN1-<br>C2IN1-<br>C3IN1-<br>C4IN1- | OPA1OUT                 | _                                            | _              | _                                            |                     |                                        |                                          | IOC        | Y       | _                      |
| RA2 | 4                                              | 1           | AN2  | VREF-<br>DAC1VREF-                                        | C1IN0+<br>C2IN0+<br>C3IN0+<br>C4IN0+ |                         | DAC1OUT1                                     | _              | _                                            | _                   | _                                      | _                                        | IOC        | Y       | _                      |
| RA3 | 5                                              | 2           | AN3  | VREF+<br>DAC1VREF+<br>DAC2VREF+<br>DAC3VREF+<br>DAC4VREF+ | C1IN1+                               | _                       | _                                            | _              | _                                            | _                   | _                                      | _                                        | IOC        | Y       | _                      |
| RA4 | 6                                              | 3           | —    | —                                                         | C10UT                                | OPA1IN+                 | DAC4OUT1                                     | TOCKI          | -                                            | —                   | —                                      | —                                        | IOC        | Υ       | —                      |
| RA5 | 7                                              | 4           | AN4  | _                                                         | C2OUT                                | OPA1IN-                 | DAC2OUT1                                     | _              | -                                            | -                   | _                                      | SS                                       | IOC        | Υ       | _                      |
| RA6 | 10                                             | 7           | _    | -                                                         | C2OUT <sup>(1)</sup>                 | _                       | -                                            | —              | -                                            | _                   | _                                      | _                                        | IOC        | Y       | VCAP<br>OSC2<br>CLKOUT |
| RA7 | 9                                              | 6           | _    | _                                                         | _                                    | _                       | _                                            | _              | PSMC1CLK<br>PSMC2CLK<br>PSMC3CLK<br>PSMC4CLK | _                   | _                                      | _                                        | IOC        | Y       | CLKIN<br>OSC1          |
| RB0 | 21                                             | 18          | AN12 | _                                                         | C2IN1+                               | _                       | _                                            | —              | PSMC1IN<br>PSMC2IN<br>PSMC3IN<br>PSMC4IN     | CCP1 <sup>(1)</sup> | _                                      | —                                        | INT<br>IOC | Y       | —                      |
| RB1 | 22                                             | 19          | AN10 | _                                                         | C1IN3-<br>C2IN3-<br>C3IN3-<br>C4IN3- | OPA2OUT                 | _                                            | —              | _                                            |                     |                                        | —                                        | IOC        | Y       | _                      |
| RB2 | 23                                             | 20          | AN8  | —                                                         | _                                    | OPA2IN-                 | DAC3OUT1                                     | _              | —                                            |                     |                                        | —                                        | IOC        | Υ       | CLKR                   |
| RB3 | 24                                             | 21          | AN9  | _                                                         | C1IN2-<br>C2IN2-<br>C3IN2-           | OPA2IN+                 | _                                            | —              | _                                            | CCP2 <sup>(1)</sup> | _                                      | _                                        | IOC        | Y       | _                      |
| RB4 | 25                                             | 22          | AN11 | —                                                         | C3IN1+                               | —                       | -                                            | _              | —                                            | -                   |                                        | SS <sup>(1)</sup>                        | IOC        | Υ       | -                      |
| RB5 | 26                                             | 23          | AN13 | _                                                         | C4IN2-<br>C3OUT                      | _                       | _                                            | T1G            | _                                            | CCP3 <sup>(1)</sup> |                                        | SDO <sup>(1)</sup>                       | IOC        | Y       | -                      |
| RB6 | 27                                             | 24          |      | _                                                         | C4IN1+                               | _                       | _                                            | _              | _                                            | _                   | CK <sup>(1)</sup>                      | SDA <sup>(1)</sup>                       | IOC        | Y       | ICSPCLK                |
| RB7 | 28                                             | 25          |      | —                                                         | —                                    | —                       | DAC1OUT2<br>DAC2OUT2<br>DAC3OUT2<br>DAC4OUT2 | _              | —                                            |                     | RX <sup>(1)</sup><br>DT <sup>(1)</sup> | SCK <sup>(1)</sup><br>SCL <sup>(1)</sup> | IOC        | Y       | ICSPDAT                |
| RC0 | 11                                             | 8           | -    | -                                                         | —                                    | —                       | —                                            | T1CKI<br>T1OSO | PSMC1A                                       | —                   | -                                      | —                                        | IOC        | Y       | —                      |
| RC1 | 12                                             | 9           | _    | —                                                         | —                                    | —                       | —                                            | T10SI          | PSMC1B                                       | CCP2                | _                                      |                                          | IOC        | Y       | —                      |
| RC2 | 13                                             | 10          | _    | _                                                         | —                                    | —                       | —                                            | —              | PSMC1C<br>PSMC3B                             | CCP1                | _                                      | -                                        | 100        | Y       | —                      |
| RC3 | 14                                             | 11          | _    | _                                                         | _                                    | _                       | _                                            | _              | PSMC1D<br>PSMC4A                             | _                   | _                                      | SCK<br>SCL                               |            | Y       | _                      |
| RC4 | 15                                             | 12          | _    | _                                                         | —                                    | —                       | _                                            | _              | PSMC1E<br>PSMC4B                             | —                   | _                                      | SDI<br>SDA                               |            | Y       | _                      |
| RC5 | 16                                             | 13          |      | _                                                         | _                                    | _                       | _                                            | _              | PSMC1F<br>PSMC3A                             |                     |                                        | 500                                      | IUC        | Y       | _                      |

| TARI F 1. | 28-PIN ALLOCATION TABLE (PIC16(L)E1788) |
|-----------|-----------------------------------------|
| IADLL I.  | 20-FIN ALLOCATION TABLE (FIGTOLE) 17001 |

Note 1: Alternate pin function selected with the APFCON1 (Register 13-1) and APFCON2 (Register 13-2) registers.

#### **TABLE 1-3:** PIC16(L)F1789 PINOUT DESCRIPTION (CONTINUED)

| Name                           | Function       | Input<br>Type    | Output<br>Type | Description                                  |
|--------------------------------|----------------|------------------|----------------|----------------------------------------------|
| RC4/PSMC1E/SDI/SDA             | RC4            | TTL/ST           | CMOS           | General purpose I/O.                         |
|                                | PSMC1E         | —                | CMOS           | PSMC1 output E.                              |
|                                | SDI            | ST               | _              | SPI data input.                              |
|                                | SDA            | l <sup>2</sup> C | OD             | I <sup>2</sup> C data input/output.          |
| RC5/PSMC1F/SDO                 | RC5            | TTL/ST           | CMOS           | General purpose I/O.                         |
|                                | PSMC1F         | _                | CMOS           | PSMC1 output F.                              |
|                                | SDO            |                  | CMOS           | SPI data output.                             |
| RC6/PSMC2A/TX/CK               | RC6            | TTL/ST           | CMOS           | General purpose I/O.                         |
|                                | PSMC2A         | _                | CMOS           | PSMC2 output A.                              |
|                                | ТΧ             |                  | CMOS           | EUSART asynchronous transmit.                |
|                                | СК             | ST               | CMOS           | EUSART synchronous clock.                    |
| RC7/PSMC2B/RX/DT               | RC7            | TTL/ST           | CMOS           | General purpose I/O.                         |
|                                | PSMC2B         | —                | CMOS           | PSMC2 output B.                              |
|                                | RX             | ST               | _              | EUSART asynchronous input.                   |
|                                | DT             | ST               | CMOS           | EUSART synchronous data.                     |
| RD0/OPA3IN+                    | RD0            | TTL/ST           | CMOS           | General purpose I/O.                         |
|                                | OPA3IN+        | AN               | —              | Operational Amplifier 3 non-inverting input. |
| RD1/AN21/C1IN4-/C2IN4-/        | RD1            | TTL/ST           | CMOS           | General purpose I/O.                         |
| C3IN4-/C4IN4-/OPA3OUT          | AN21           | AN               |                | ADC Channel 21 input.                        |
|                                | C1IN4-         | AN               | _              | Comparator C4 negative input.                |
|                                | C2IN4-         | AN               | _              | Comparator C4 negative input.                |
|                                | C3IN4-         | AN               | _              | Comparator C4 negative input.                |
|                                | C4IN4-         | AN               | _              | Comparator C4 negative input.                |
|                                | <b>OPA3OUT</b> | _                | AN             | Operational Amplifier 3 output.              |
| RD2/OPA3IN-/DAC4OUT1           | RD2            | TTL/ST           | CMOS           | General purpose I/O.                         |
|                                | OPA3IN-        | AN               | _              | Operational Amplifier 3 inverting input.     |
|                                | DAC4OUT1       | _                | AN             | Digital-to-Analog Converter output.          |
| RD3/PSMC4A                     | RD3            | TTL/ST           | CMOS           | General purpose I/O.                         |
|                                | PSMC4A         | _                | CMOS           | PSMC4 output A.                              |
| RD4/PSMC3F                     | RD4            | TTL/ST           | CMOS           | General purpose I/O.                         |
|                                | PSMC3F         | _                | CMOS           | PSMC3 output F.                              |
| RD5/PSMC3E                     | RD5            | TTL/ST           | CMOS           | General purpose I/O.                         |
|                                | PSMC3E         | _                | CMOS           | PSMC3 output E.                              |
| RD6/C3OUT/PSMC3D               | RD6            | TTL/ST           | CMOS           | General purpose I/O.                         |
|                                | C3OUT          | _                | CMOS           | Comparator C3 output.                        |
|                                | PSMC3D         | _                | CMOS           | PSMC3 output D.                              |
| RD7/C4OUT/PSMC3C               | RD7            | TTL/ST           | CMOS           | General purpose I/O.                         |
|                                | C4OUT          | _                | CMOS           | Comparator C4 output.                        |
|                                | PSMC3C         | _                | CMOS           | PSMC3 output C.                              |
|                                | RE0            | TTL/ST           | _              | General purpose input.                       |
|                                | AN5            | AN               | _              | ADC Channel 5 input.                         |
|                                | CCP3           | ST               | CMOS           | Capture/Compare/PWM3.                        |
|                                | PSMC4B         |                  | CMOS           | PSMC4 output B.                              |
| Legend: AN = Analog input or o |                |                  | compatil       | OD = Open-Drain                              |

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels  $I^2C$  = Schmitt Trigger input with  $I^2C$ 

HV = High Voltage XTAL = Crystal

levels Note 1: Pin functions can be assigned to one of two locations via software. See Register 13-1.

2: All pins have interrupt-on-change functionality.

## EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

| constants   |                              |
|-------------|------------------------------|
| DW          | DATA0 ;First constant        |
| DW          | DATA1 ;Second constant       |
| DW          | DATA2                        |
| DW          | DATA3                        |
| my_function | 1                            |
| ; LOTS      | G OF CODE                    |
| MOVLW       | DATA_INDEX                   |
| ADDLW       | LOW constants                |
| MOVWF       | FSR1L                        |
| MOVLW       | HIGH constants ;MSb is set   |
| automatical | lly                          |
| MOVWF       | FSR1H                        |
| BTFSC       | STATUS,C ; carry from ADDLW? |
| INCF        | FSR1H,f ;yes                 |
| MOVIW       | 0[FSR1]                      |
| ;THE PROGRA | AM MEMORY IS IN W            |

| TABLE 3-12. | SPECIAL | FUNCTION REGISTER SUMMARY |
|-------------|---------|---------------------------|
|             |         |                           |

| Addr               | Name                 | Bit 7                                                                       | Bit 6                                                                      | Bit 5            | Bit 4            | Bit 3                   | Bit 2                 | Bit 1                 | Bit 0                 | Value on<br>POR, BOR | Value on<br>all other<br>Resets |
|--------------------|----------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------|------------------|-------------------------|-----------------------|-----------------------|-----------------------|----------------------|---------------------------------|
| Banl               | <b>( 0</b>           |                                                                             |                                                                            |                  |                  |                         |                       |                       |                       |                      |                                 |
| 00Ch               | PORTA                | PORTA Data L                                                                | ORTA Data Latch when written: PORTA pins when read                         |                  |                  |                         |                       |                       |                       |                      |                                 |
| 00Dh               | PORTB                | PORTB Data L                                                                | PORTB Data Latch when written: PORTB pins when read                        |                  |                  |                         |                       |                       |                       |                      |                                 |
| 00Eh               | PORTC                | PORTC Data I                                                                | _atch when w                                                               | ritten: PORTC    | oins when read   |                         |                       |                       |                       | xxxx xxxx            | uuuu uuuu                       |
| 00Fh               | PORTD <sup>(3)</sup> | PORTD Data I                                                                | _atch when w                                                               | ritten: PORTD    | oins when read   |                         |                       |                       |                       | XXXX XXXX            | uuuu uuuu                       |
| 010h               | PORTE                | _                                                                           | _                                                                          | -                | -                | RE3                     | RE2 <sup>(3)</sup>    | RE1 <sup>(3)</sup>    | RE0 <sup>(3)</sup>    | xxxx                 | uuuu                            |
| 011h               | PIR1                 | TMR1GIF                                                                     | ADIF                                                                       | RCIF             | TXIF             | SSP1IF                  | CCP1IF                | TMR2IF                | TMR1IF                | 0000 0000            | 0000 0000                       |
| 012h               | PIR2                 | OSFIF                                                                       | C2IF                                                                       | C1IF             | EEIF             | BCL1IF                  | C4IF                  | C3IF                  | CCP2IF                | 0000 0-00            | 0000 0-00                       |
| 13h                | PIR3                 | _                                                                           | —                                                                          |                  | CCP3IF           |                         |                       |                       |                       | 0                    | 0000 0000                       |
| 014h               | PIR4                 | PSMC4TIF                                                                    | PSMC3TIF                                                                   | PSMC2TIF         | PSMC1TIF         | PSMC4SIF                | PSMC3SIF              | PSMC2SIF              | PSMC1SIF              | 0000 0000            | 0000 0000                       |
| 015h               | TMR0                 | Timer0 Module                                                               | e Register                                                                 |                  |                  |                         |                       |                       |                       | xxxx xxxx            | uuuu uuuu                       |
| 016h               | TMR1L                | Holding Regist                                                              | ter for the Lea                                                            | st Significant B | yte of the 16-bi | t TMR1 Regist           | er                    |                       |                       | xxxx xxxx            | uuuu uuuu                       |
| 017h               | TMR1H                | Holding Regist                                                              | ter for the Mos                                                            | st Significant B | te of the 16-bit | TMR1 Registe            | er                    |                       |                       | xxxx xxxx            | uuuu uuuu                       |
| 018h               | T1CON                | TMR1CS1                                                                     | TMR1CS0                                                                    | T1CKPS1          | T1CKPS0          | T1OSCEN                 | T1SYNC                | _                     | TMR10N                | 0000 00-0            | uuuu uu-u                       |
| 019h               | T1GCON               | TMR1GE                                                                      | T1GPOL                                                                     | T1GTM            | T1GSPM           | T <u>1GGO</u> /<br>DONE | T1GVAL                | T1GSS                 | S<1:0>                | 0000 0x00            | uuuu uxuu                       |
| 016h               | TMR2                 | Holding Register for the Least Significant Byte of the 16-bit TMR2 Register |                                                                            |                  |                  |                         |                       |                       |                       | xxxx xxxx            | uuuu uuuu                       |
| 017h               | PR2                  | Holding Regist                                                              | Holding Register for the Most Significant Byte of the 16-bit TMR2 Register |                  |                  |                         |                       |                       |                       | xxxx xxxx            | uuuu uuuu                       |
| 018h               | T2CON                | _                                                                           |                                                                            | T2OUT            | PS<3:0>          |                         | TMR2ON                | T2CKP                 | S<1:0>                | -000 0000            | -000 0000                       |
| 01Dh<br>to<br>01Fh | _                    | Unimplemented                                                               |                                                                            |                  |                  |                         |                       |                       |                       |                      | -                               |
| Ban                | k 1                  |                                                                             |                                                                            |                  |                  |                         |                       |                       |                       |                      |                                 |
| 08Ch               | TRISA                | PORTA Data D                                                                | Direction Regi                                                             | ster             |                  |                         |                       |                       |                       | 1111 1111            | 1111 1111                       |
| 08Dh               | TRISB                | PORTB Data                                                                  | Direction Regi                                                             | ster             |                  |                         |                       |                       |                       | 1111 1111            | 1111 1111                       |
| 08Eh               | TRISC                | PORTC Data I                                                                | Direction Regi                                                             | ster             |                  |                         |                       |                       |                       | 1111 1111            | 1111 1111                       |
| 08Fh               | TRISD <sup>(3)</sup> | PORTD Data I                                                                | Direction Regi                                                             | ster             |                  |                         |                       |                       |                       | 1111 1111            | 1111 1111                       |
| 090h               | TRISE                | _                                                                           | _                                                                          | _                | _                | _(2)                    | TRISE2 <sup>(3)</sup> | TRISE1 <sup>(3)</sup> | TRISE0 <sup>(3)</sup> | 1111                 | 1111                            |
| 091h               | PIE1                 | TMR1GIE                                                                     | ADIE                                                                       | RCIE             | TXIE             | SSP1IE                  | CCP1IE                | TMR2IE                | TMR1IE                | 0000 0000            | 0000 0000                       |
| 092h               | PIE2                 | OSFIE                                                                       | C2IE                                                                       | C1IE             | EEIE             | BCL1IE                  | C4IE                  | C3IE                  | CCP2IE                | 0000 0-00            | 0000 0-00                       |
| 093h               | PIE3                 | _                                                                           | _                                                                          | _                | CCP3IE           | _                       | _                     |                       | _                     | 0                    | 0000 0000                       |
| 094h               | PIE4                 | PSMC4TIE                                                                    | PSMC3TIE                                                                   | PSMC2TIE         | PSMC1TIE         | PSMC4SIE                | PSMC3SIE              | PSMC2SIE              | PSMC1SIE              | 0000 0000            | 0000 0000                       |
| 095h               | OPTION_REG           | WPUEN                                                                       | INTEDG                                                                     | TMR0CS           | TMR0SE           | PSA                     |                       | PS<2:0>               |                       | 1111 1111            | 1111 1111                       |
| 096h               | PCON                 | STKOVF                                                                      | STKUNF                                                                     | _                | RWDT             | RMCLR                   | RI                    | POR                   | BOR                   | 00-1 11qq            | qq-q qquu                       |
| 097h               | WDTCON               | _                                                                           |                                                                            |                  | ١                | WDTPS<4:0>              |                       |                       | SWDTEN                | 01 0110              | 01 0110                         |
| 098h               | OSCTUNE              | _                                                                           | _                                                                          |                  |                  | TUN<                    | 5:0>                  |                       |                       | 00 0000              | 00 0000                         |
| 099h               | OSCCON               | SPLLEN                                                                      |                                                                            | IRCF             | <3:0>            |                         | _                     | SCS                   | <1:0>                 | 0011 1-00            | 0011 1-00                       |
| 09Ah               | OSCSTAT              | T10SCR                                                                      | PLLR                                                                       | OSTS             | HFIOFR           | HFIOFL                  | MFIOFR                | LFIOFR                | HFIOFS                | 00q000               | dddd0d                          |
| 09Bh               | ADRESL               | A/D Result Re                                                               | gister Low                                                                 |                  |                  |                         |                       |                       |                       | xxxx xxxx            | uuuu uuuu                       |
| 09Ch               | ADRESH               | A/D Result Re                                                               | gister High                                                                |                  |                  |                         |                       |                       |                       | xxxx xxxx            | uuuu uuuu                       |
| 09Dh               | ADCON0               | ADRMD                                                                       |                                                                            |                  | CHS<4:0>         |                         |                       | GO/DONE               | ADON                  | 0000 0000            | 0000 0000                       |
| 09Eh               | ADCON1               | ADFM                                                                        |                                                                            | ADCS<2:0>        |                  | _                       | ADNREF                | ADPRE                 | F<1:0>                | 0000 -000            | 0000 -000                       |
| 09Fh               | ADCON2               | TRIGSEL<3:0> CHSN<3:0> C                                                    |                                                                            |                  |                  |                         |                       |                       | 000000                | 000000               |                                 |

 x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, read as '0', r = reserved.
 Shaded locations are unimplemented, read as '0'.
 These registers can be addressed from any bank.
 Unimplemented, read as '1'.
 PIC16(L)F1789 only. Legend:

Note

1: 2:

3:

PIC16F1788/9 only. 4:

## 4.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Words, Code Protection and Device ID.

### 4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h and Configuration Word 2 at 8008h.

Note: The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

#### 6.2.2.7 Internal Oscillator Clock Switch Timing

When switching between the HFINTOSC, MFINTOSC and the LFINTOSC, the new oscillator may already be shut down to save power (see Figure 6-7). If this is the case, there is a delay after the IRCF<3:0> bits of the OSCCON register are modified before the frequency selection takes place. The OSCSTAT register will reflect the current active status of the HFINTOSC, MFINTOSC and LFINTOSC oscillators. The sequence of a frequency selection is as follows:

- 1. IRCF<3:0> bits of the OSCCON register are modified.
- 2. If the new clock is shut down, a clock start-up delay is started.
- 3. Clock switch circuitry waits for a falling edge of the current clock.
- 4. The current clock is held low and the clock switch circuitry waits for a rising edge in the new clock.
- 5. The new clock is now active.
- 6. The OSCSTAT register is updated as required.
- 7. Clock switch is complete.

See Figure 6-7 for more details.

If the internal oscillator speed is switched between two clocks of the same source, there is no start-up delay before the new frequency is selected. Clock switching time delays are shown in Table 6-1.

Start-up delay specifications are located in the oscillator tables of **Section 31.0** "**Electrical Specifications**".

#### 13.6 Register Definitions: PORTB

#### REGISTER 13-11: PORTB: PORTB REGISTER

| R/W-x/u                                 | R/W-x/u | R/W-x/u           | R/W-x/u | R/W-x/u                                               | R/W-x/u | R/W-x/u | R/W-x/u |  |
|-----------------------------------------|---------|-------------------|---------|-------------------------------------------------------|---------|---------|---------|--|
| RB7                                     | RB6     | RB5               | RB4     | RB3                                                   | RB2     | RB1     | RB0     |  |
| bit 7                                   |         |                   |         |                                                       |         |         | bit 0   |  |
|                                         |         |                   |         |                                                       |         |         |         |  |
| Legend:                                 |         |                   |         |                                                       |         |         |         |  |
| R = Readable b                          | bit     | W = Writable      | bit     | U = Unimplemented bit, read as '0'                    |         |         |         |  |
| u = Bit is unchanged x = Bit is unknown |         |                   |         | -n/n = Value at POR and BOR/Value at all other Resets |         |         |         |  |
| '1' = Bit is set                        |         | '0' = Bit is clea | ared    |                                                       |         |         |         |  |

bit 7-0 **RB<7:0>**: PORTB General Purpose I/O Pin bits<sup>(1)</sup> 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

#### REGISTER 13-12: TRISB: PORTB TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISB7  | TRISB6  | TRISB5  | TRISB4  | TRISB3  | TRISB2  | TRISB1  | TRISB0  |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0

TRISB<7:0>: PORTB Tri-State Control bits

1 = PORTB pin configured as an input (tri-stated)

0 = PORTB pin configured as an output

#### REGISTER 13-13: LATB: PORTB DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATB7   | LATB6   | LATB5   | LATB4   | LATB3   | LATB2   | LATB1   | LATB0   |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:              |                      |                                                       |
|----------------------|----------------------|-------------------------------------------------------|
| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

bit 7-0 LATB<7:0>: PORTB Output Latch Value bits<sup>(1)</sup>

**Note 1:** Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

**Note 1:** Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

| R/W-0/0                               | R/W-0/0                                                                                                                                                                                                                                                                                                  | R/W-0/0         | R/W-0/0 | U-0                                | R/W-0/0       | R/W-0/0        | R/W-0/0      |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------|------------------------------------|---------------|----------------|--------------|--|
| ADFM                                  | ADCS<2:0>                                                                                                                                                                                                                                                                                                |                 |         | _                                  | ADNREF        | ADPRE          | F<1:0>       |  |
| bit 7                                 |                                                                                                                                                                                                                                                                                                          |                 |         |                                    |               |                | bit 0        |  |
|                                       |                                                                                                                                                                                                                                                                                                          |                 |         |                                    |               |                |              |  |
| Legend:                               |                                                                                                                                                                                                                                                                                                          |                 |         |                                    |               |                |              |  |
| R = Readable                          | e bit                                                                                                                                                                                                                                                                                                    | W = Writable b  | bit     | U = Unimplemented bit, read as '0' |               |                |              |  |
| u = Bit is unchanged x                |                                                                                                                                                                                                                                                                                                          | x = Bit is unkn | own     | -n/n = Value                       | at POR and BO | R/Value at all | other Resets |  |
| '1' = Bit is set '0' = Bit is cleared |                                                                                                                                                                                                                                                                                                          | ired            |         |                                    |               |                |              |  |
| bit 7                                 | <ul> <li>ADFM: ADC Result Format Select bit (see Figure 17-3)</li> <li>1 = 2's complement format.</li> <li>0 = Sign-magnitude result format.</li> </ul>                                                                                                                                                  |                 |         |                                    |               |                |              |  |
| bit 6-4                               | 111 = FRC (clock supplied from a dedicated FRC oscillator)<br>110 = Fosc/64<br>101 = Fosc/16<br>100 = Fosc/4<br>011 = FRC (clock supplied from a dedicated FRC oscillator)<br>010 = Fosc/32<br>001 = Fosc/8<br>000 = Fosc/2                                                                              |                 |         |                                    |               |                |              |  |
| bit 3                                 | Unimplemented: Read as '0'                                                                                                                                                                                                                                                                               |                 |         |                                    |               |                |              |  |
| bit 2                                 | ADNREF: ADC Negative Voltage Reference Configuration bit<br>1 = VREF- is connected to external VREF- pin <sup>(1)</sup><br>0 = VREF- is connected to Vss                                                                                                                                                 |                 |         |                                    |               |                |              |  |
| bit 1-0                               | <ul> <li>0 = VREF- is connected to VSS</li> <li>ADPREF&lt;1:0&gt;: ADC Positive Voltage Reference Configuration bits</li> <li>11 = VREF+ is connected internally to FVR Buffer 1</li> <li>10 = Reserved</li> <li>01 = VREF+ is connected to VREF+ pin</li> <li>00 = VREF+ is connected to VDD</li> </ul> |                 |         |                                    |               |                |              |  |

**Note 1:** When selecting the FVR or VREF+ pin as the source of the positive reference, be aware that a minimum voltage specification exists. See **Section 31.0 "Electrical Specifications"** for details.

## REGISTER 17-2: ADCON1: ADC CONTROL REGISTER 1

| U-0   | U-0 | U-0 | U-0 | R-0/0  | R-0/0  | R-0/0  | R-0/0  |
|-------|-----|-----|-----|--------|--------|--------|--------|
| —     | _   | _   | _   | MC4OUT | MC3OUT | MC2OUT | MC10UT |
| bit 7 |     |     |     |        |        |        | bit 0  |

### Legend:

| R = Readable bit     | W = Writable bit     | U = Unimplemented bit, read as '0'                    |
|----------------------|----------------------|-------------------------------------------------------|
| u = Bit is unchanged | x = Bit is unknown   | -n/n = Value at POR and BOR/Value at all other Resets |
| '1' = Bit is set     | '0' = Bit is cleared |                                                       |

| bit 7-4 | Unimplemented: Read as '0' |  |
|---------|----------------------------|--|
|---------|----------------------------|--|

- bit 2 MC3OUT: Mirror Copy of C3OUT bit
- bit 1 MC2OUT: Mirror Copy of C2OUT bit
- bit 0 MC10UT: Mirror Copy of C10UT bit

#### TABLE 21-3: SUMMARY OF REGISTERS ASSOCIATED WITH COMPARATOR MODULE

| Name     | Bit 7  | Bit 6  | Bit 5   | Bit 4      | Bit 3    | Bit 2   | Bit 1      | Bit 0    | Register<br>on Page |
|----------|--------|--------|---------|------------|----------|---------|------------|----------|---------------------|
| ANSELA   | ANSA7  | _      | ANSA5   | ANSA4      | ANSA3    | ANSA2   | ANSA1      | ANSA0    | 137                 |
| ANSELB   | _      | ANSB6  | ANSB5   | ANSB4      | ANSB3    | ANSB2   | ANSB1      | ANSB0    | 143                 |
| CM1CON0  | C10N   | C10UT  | C10E    | C1POL      | C1ZLF    | C1SP    | C1HYS      | C1SYNC   | 203                 |
| CM2CON0  | C2ON   | C2OUT  | C2OE    | C2POL      | C2ZLF    | C2SP    | C2HYS      | C2SYNC   | 203                 |
| CM1CON1  | C1NTP  | C1INTN |         | C1PCH<2:0> | <b>`</b> |         | C1NCH<2:0> | >        | 204                 |
| CM2CON1  | C2NTP  | C2INTN |         | C2PCH<2:0> | <b>,</b> |         | C2NCH<2:0> | <b>,</b> | 204                 |
| CM3CON0  | C3ON   | C3OUT  | C3OE    | C3POL      | C3ZLF    | C3SP    | C3HYS      | C3SYNC   | 203                 |
| CM3CON1  | C3INTP | C3INTN |         | C3PCH<2:0> | <b>,</b> |         | C3NCH<2:0> | <b>,</b> | 204                 |
| CMOUT    | _      | _      | —       | —          | MC4OUT   | MC3OUT  | MC2OUT     | MC10UT   | 205                 |
| FVRCON   | FVREN  | FVRRDY | TSEN    | TSRNG      | CDAFV    | R<1:0>  | ADFVI      | R<1:0>   | 167                 |
| DAC1CON0 | DAC1EN | _      | DAC10E1 | DAC10E2    | DAC1PS   | SS<1:0> | _          | DAC1NSS  | 192                 |
| DAC1CON1 |        |        |         | DAC1F      | <7:0>    |         |            |          | 192                 |
| INTCON   | GIE    | PEIE   | TMR0IE  | INTE       | IOCIE    | TMR0IF  | INTF       | IOCIF    | 97                  |
| PIE2     | OSFIE  | C2IE   | C1IE    | EEIE       | BCL1IE   | C4IE    | C3IE       | CCP2IE   | 99                  |
| PIR2     | OSFIF  | C2IF   | C1IF    | EEIF       | BCL1IF   | C4IF    | C3IF       | CCP2IF   | 103                 |
| TRISA    | TRISA7 | TRISA6 | TRISA5  | TRISA4     | TRISA3   | TRISA2  | TRISA1     | TRISA0   | 137                 |
| TRISB    | TRISB7 | TRISB6 | TRISB5  | TRISB4     | TRISB3   | TRISB2  | TRISB1     | TRISB0   | 143                 |
| TRISC    | TRISC7 | TRISC6 | TRISC5  | TRISC4     | TRISC3   | TRISC2  | TRISC1     | TRISC0   | 147                 |

Note 1: — = unimplemented location, read as '0'. Shaded cells are unused by the comparator module.

## 24.5 Register Definitions: Timer2 Control

### REGISTER 24-1: T2CON: TIMER2 CONTROL REGISTER

| T2OUTI<br>W = Writable<br>x = Bit is unkr<br>'0' = Bit is clea<br>nented: Read as '<br>\$<3:0>: Timer2 Ou<br>16 Postscaler<br>15 Postscaler<br>15 Postscaler<br>14 Postscaler<br>13 Postscaler<br>12 Postscaler<br>11 Postscaler<br>11 Postscaler | PS<3:0><br>bit<br>nown<br>ared<br>0'<br>utput Postscale                                                     | U = Unimpler<br>-n/n = Value<br>er Select bits                                                                           | TMR2ON<br>mented bit, read<br>at POR and BO                                                                                       | T2CKF<br>I as '0'<br>R/Value at all                                                                                               | PS<1:0><br>bit 0                                                                                                                  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|
| W = Writable<br>x = Bit is unkr<br>'0' = Bit is clea<br>nented: Read as '<br>5<3:0>: Timer2 Ou<br>16 Postscaler<br>15 Postscaler<br>14 Postscaler<br>13 Postscaler<br>12 Postscaler<br>11 Postscaler<br>11 Postscaler                             | bit<br>nown<br>ared<br>0'<br>utput Postscale                                                                | U = Unimpler<br>-n/n = Value<br>er Select bits                                                                           | mented bit, read<br>at POR and BO                                                                                                 | l as '0'<br>R/Value at all                                                                                                        | bit 0                                                                                                                             |  |  |
| W = Writable<br>x = Bit is unkr<br>'0' = Bit is clea<br>nented: Read as '<br>3<3:0>: Timer2 Ou<br>16 Postscaler<br>15 Postscaler<br>14 Postscaler<br>13 Postscaler<br>12 Postscaler<br>11 Postscaler                                              | bit<br>nown<br>ared<br>0'<br>utput Postscale                                                                | U = Unimpler<br>-n/n = Value<br>er Select bits                                                                           | mented bit, read<br>at POR and BO                                                                                                 | l as '0'<br>R/Value at all                                                                                                        | other Resets                                                                                                                      |  |  |
| W = Writable<br>x = Bit is unkr<br>'0' = Bit is clea<br>nented: Read as '<br>S<3:0>: Timer2 Ou<br>16 Postscaler<br>15 Postscaler<br>14 Postscaler<br>13 Postscaler<br>12 Postscaler<br>11 Postscaler<br>11 Postscaler                             | bit<br>nown<br>ared<br>0'<br>utput Postscale                                                                | U = Unimpler<br>-n/n = Value                                                                                             | mented bit, read<br>at POR and BO                                                                                                 | l as '0'<br>R/Value at all                                                                                                        | other Resets                                                                                                                      |  |  |
| W = Writable<br>x = Bit is unkr<br>'0' = Bit is clea<br>nented: Read as '<br>\$<3:0>: Timer2 Ou<br>16 Postscaler<br>15 Postscaler<br>14 Postscaler<br>13 Postscaler<br>12 Postscaler<br>11 Postscaler                                             | bit<br>nown<br>ared<br>0'<br>utput Postscale                                                                | U = Unimplei<br>-n/n = Value                                                                                             | mented bit, read<br>at POR and BO                                                                                                 | I as '0'<br>R/Value at all                                                                                                        | other Resets                                                                                                                      |  |  |
| x = Bit is unkr<br>'0' = Bit is cle<br>nented: Read as '<br>3<3:0>: Timer2 Ou<br>16 Postscaler<br>15 Postscaler<br>14 Postscaler<br>13 Postscaler<br>12 Postscaler<br>11 Postscaler<br>11 Postscaler                                              | nown<br>ared<br>0'<br>utput Postscale                                                                       | -n/n = Value                                                                                                             | at POR and BO                                                                                                                     | R/Value at all                                                                                                                    | other Resets                                                                                                                      |  |  |
| '0' = Bit is cle<br>nented: Read as '<br>\$<3:0>: Timer2 Ou<br>16 Postscaler<br>15 Postscaler<br>14 Postscaler<br>13 Postscaler<br>12 Postscaler<br>11 Postscaler<br>11 Postscaler                                                                | ared<br><sup>0'</sup><br>utput Postscale                                                                    | er Select bits                                                                                                           |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| nented: Read as '<br><b>3&lt;3:0&gt;:</b> Timer2 Ou<br>16 Postscaler<br>15 Postscaler<br>14 Postscaler<br>13 Postscaler<br>12 Postscaler<br>11 Postscaler<br>11 Postscaler                                                                        | o'<br>utput Postscale                                                                                       | er Select bits                                                                                                           |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| nented: Read as '<br>S<3:0>: Timer2 Ou<br>16 Postscaler<br>15 Postscaler<br>14 Postscaler<br>13 Postscaler<br>12 Postscaler<br>11 Postscaler                                                                                                      | o'<br>itput Postscale                                                                                       | er Select bits                                                                                                           |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| S<3:0>: Timer2 Ou<br>16 Postscaler<br>15 Postscaler<br>14 Postscaler<br>13 Postscaler<br>12 Postscaler<br>11 Postscaler                                                                                                                           | utput Postscal∉                                                                                             | er Select bits                                                                                                           |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| 16 Postscaler<br>15 Postscaler<br>14 Postscaler<br>13 Postscaler<br>12 Postscaler<br>11 Postscaler                                                                                                                                                |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| 15 Postscaler<br>14 Postscaler<br>13 Postscaler<br>12 Postscaler<br>11 Postscaler                                                                                                                                                                 |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| 14 Postscaler<br>13 Postscaler<br>12 Postscaler<br>11 Postscaler                                                                                                                                                                                  |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| 12 Postscaler<br>12 Postscaler<br>11 Postscaler                                                                                                                                                                                                   |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| 11 Postscaler                                                                                                                                                                                                                                     |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
|                                                                                                                                                                                                                                                   | r usisualei<br>Postscaler                                                                                   |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| 1001 = 1:10 Postscaler                                                                                                                                                                                                                            |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| 9 Postscaler                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| 8 Postscaler                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| 0110 = 1:7 Postscaler<br>0101 = 1:6 Postscaler<br>0100 = 1:5 Postscaler                                                                                                                                                                           |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
|                                                                                                                                                                                                                                                   |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
|                                                                                                                                                                                                                                                   |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| 0011 = 1:4 Postscaler<br>0010 = 1:3 Postscaler                                                                                                                                                                                                    |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
|                                                                                                                                                                                                                                                   |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| 0001 = 1:2 Postscaler                                                                                                                                                                                                                             |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| 1 Postscaler                                                                                                                                                                                                                                      |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| TMR2ON: Timer2 On bit                                                                                                                                                                                                                             |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| r2 is on                                                                                                                                                                                                                                          |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| r2 is off                                                                                                                                                                                                                                         |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| :1:0>: Timer2 Cloc                                                                                                                                                                                                                                | k Prescale Se                                                                                               | elect bits                                                                                                               |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| caler is 64                                                                                                                                                                                                                                       |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| caler is 16                                                                                                                                                                                                                                       |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
| caler is 4                                                                                                                                                                                                                                        |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
|                                                                                                                                                                                                                                                   |                                                                                                             |                                                                                                                          |                                                                                                                                   |                                                                                                                                   |                                                                                                                                   |  |  |
|                                                                                                                                                                                                                                                   | er2 is on<br>er2 is off<br><1:0>: Timer2 Cloo<br>scaler is 64<br>scaler is 16<br>scaler is 4<br>scaler is 1 | er2 is on<br>er2 is off<br><1:0>: Timer2 Clock Prescale Se<br>scaler is 64<br>scaler is 16<br>scaler is 4<br>scaler is 1 | er2 is on<br>er2 is off<br><1:0>: Timer2 Clock Prescale Select bits<br>scaler is 64<br>scaler is 16<br>scaler is 4<br>scaler is 1 | er2 is on<br>er2 is off<br><1:0>: Timer2 Clock Prescale Select bits<br>scaler is 64<br>scaler is 16<br>scaler is 4<br>scaler is 1 | er2 is on<br>er2 is off<br><1:0>: Timer2 Clock Prescale Select bits<br>scaler is 64<br>scaler is 16<br>scaler is 4<br>scaler is 1 |  |  |

#### 26.10 Register Updates

There are ten double-buffered registers that can be updated "on the fly". However, due to the asynchronous nature of the potential updates, a special hardware system is used for the updates.

There are two operating cases for the PSMC:

- module is enabled
- module is disabled

#### 26.10.1 DOUBLE BUFFERED REGISTERS

The double-buffered registers that are affected by the special hardware update system are:

- PSMCxPRL
- PSMCxPRH
- PSMCxDCL
- PSMCxDCH
- PSMCxPHL
- PSMCxPHH
- PSMCxDBR
- PSMCxDBF
- PSMCxBLKR
- PSMCxBLKF
- PSMCxSTR0 (when the PxSSYNC bit is set)

#### 26.10.2 MODULE DISABLED UPDATES

When the PSMC module is disabled (PSMCxEN = 0), any write to one of the buffered registers will also write directly to the buffer. This means that all buffers are loaded and ready for use when the module is enabled.

#### 26.10.3 MODULE ENABLED UPDATES

When the PSMC module is enabled (PSMCxEN = 1), the PSMCxLD bit of the PSMC Control (PSMCxCON) register (Register 26-1) must be used.

When the PSMCxLD bit is set, the transfer from the register to the buffer occurs on the next period event. The PSMCxLD bit is automatically cleared by hardware after the transfer to the buffers is complete.

The reason that the PSMCxLD bit is required is that depending on the customer application and operation conditions, all 10 registers may not be updated in one PSMC period. If the buffers are loaded at different times (i.e., DCL gets updated, but DCH does not OR DCL and DCL are updated by PRH and PRL are not), then unintended operation may occur.

The sequence for loading the buffer registers when the PSMC module is enabled is as follows:

- 1. Software updates all registers.
- 2. Software sets the PSMCxLD bit.
- 3. Hardware updates all buffers on the next period event.
- 4. Hardware clears PSMCxLD bit.

#### 26.11 Operation During Sleep

The PSMC continues to operate in Sleep with the following clock sources:

- Internal 64 MHz
- · External clock



#### 28.4.4 BREAK CHARACTER SEQUENCE

The EUSART module has the capability of sending the special Break character sequences that are required by the LIN bus standard. A Break character consists of a Start bit, followed by 12 '0' bits and a Stop bit.

To send a Break character, set the SENDB and TXEN bits of the TXSTA register. The Break character transmission is then initiated by a write to the TXREG. The value of data written to TXREG will be ignored and all '0's will be transmitted.

The SENDB bit is automatically reset by hardware after the corresponding Stop bit is sent. This allows the user to preload the transmit FIFO with the next transmit byte following the Break character (typically, the Sync character in the LIN specification).

The TRMT bit of the TXSTA register indicates when the transmit operation is active or idle, just as it does during normal transmission. See Figure 28-9 for the timing of the Break character sequence.

#### 28.4.4.1 Break and Sync Transmit Sequence

The following sequence will start a message frame header made up of a Break, followed by an auto-baud Sync byte. This sequence is typical of a LIN bus master.

- 1. Configure the EUSART for the desired mode.
- 2. Set the TXEN and SENDB bits to enable the Break sequence.
- 3. Load the TXREG with a dummy character to initiate transmission (the value is ignored).
- 4. Write '55h' to TXREG to load the Sync character into the transmit FIFO buffer.
- 5. After the Break has been sent, the SENDB bit is reset by hardware and the Sync character is then transmitted.

When the TXREG becomes empty, as indicated by the TXIF, the next data byte can be written to TXREG.

#### Write to TXREG Dummy Write **BRG** Output (Shift Clock) TX (pin) Start bit bit 0 bit 1 Stop bit Break TXIF bit (Transmit Interrupt Flag) TRMT bit (Transmit Shift Empty Flag) SENDB Sampled Here Auto Cleared SENDB (send Break control bit)

### FIGURE 28-9: SEND BREAK CHARACTER SEQUENCE

## 28.4.5 RECEIVING A BREAK CHARACTER

The Enhanced EUSART module can receive a Break character in two ways.

The first method to detect a Break character uses the FERR bit of the RCSTA register and the received data as indicated by RCREG. The Baud Rate Generator is assumed to have been initialized to the expected baud rate.

A Break character has been received when;

- RCIF bit is set
- FERR bit is set
- RCREG = 00h

The second method uses the Auto-Wake-up feature described in **Section 28.4.3** "**Auto-Wake-up on Break**". By enabling this feature, the EUSART will sample the next two transitions on RX/DT, cause an RCIF interrupt, and receive the next data byte followed by another interrupt.

Note that following a Break character, the user will typically want to enable the Auto-Baud Detect feature. For both methods, the user can set the ABDEN bit of the BAUDCON register before placing the EUSART in Sleep mode.

| CALLW            | Subroutine Call With W                                                                                                                                                                                                |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ label ] CALLW                                                                                                                                                                                                       |
| Operands:        | None                                                                                                                                                                                                                  |
| Operation:       | (PC) +1 → TOS,<br>(W) → PC<7:0>,<br>(PCLATH<6:0>) → PC<14:8>                                                                                                                                                          |
| Status Affected: | None                                                                                                                                                                                                                  |
| Description:     | Subroutine call with W. First, the return address (PC + 1) is pushed onto the return stack. Then, the contents of W is loaded into PC<7:0>, and the contents of PCLATH into PC<14:8>. CALLW is a 2-cycle instruction. |

| CLRF             | Clear f                                                               |
|------------------|-----------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] CLRF f                                               |
| Operands:        | $0 \leq f \leq 127$                                                   |
| Operation:       | $\begin{array}{l} 00h \rightarrow (f) \\ 1 \rightarrow Z \end{array}$ |
| Status Affected: | Z                                                                     |
| Description:     | The contents of register 'f' are<br>cleared and the Z bit is set.     |

| CLRW             | Clear W                                                                                    |
|------------------|--------------------------------------------------------------------------------------------|
| Syntax:          | [label] CLRW                                                                               |
| Operands:        | None                                                                                       |
| Operation:       | $\begin{array}{l} \text{00h} \rightarrow (\text{W}) \\ 1 \rightarrow \text{Z} \end{array}$ |
| Status Affected: | Z                                                                                          |
| Description:     | W register is cleared. Zero bit (Z) is set.                                                |

| CLRWDT           | Clear Watchdog Timer                                                                                                                                                                |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [label] CLRWDT                                                                                                                                                                      |
| Operands:        | None                                                                                                                                                                                |
| Operation:       | $\begin{array}{l} \text{O0h} \rightarrow \text{WDT} \\ 0 \rightarrow \text{WDT prescaler,} \\ 1 \rightarrow \overline{\text{TO}} \\ 1 \rightarrow \overline{\text{PD}} \end{array}$ |
| Status Affected: | TO, PD                                                                                                                                                                              |
| Description:     | CLRWDT instruction resets the<br>Watchdog Timer. It also resets the<br>prescaler of the WDT.<br>Status bits TO and PD are set.                                                      |

| COMF             | Complement f                                                                                                                                                   |  |  |  |  |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Syntax:          | [ <i>label</i> ] COMF f,d                                                                                                                                      |  |  |  |  |  |
| Operands:        | $0 \le f \le 127$<br>$d \in [0,1]$                                                                                                                             |  |  |  |  |  |
| Operation:       | $(\overline{f}) \rightarrow (destination)$                                                                                                                     |  |  |  |  |  |
| Status Affected: | Z                                                                                                                                                              |  |  |  |  |  |
| Description:     | The contents of register 'f' are<br>complemented. If 'd' is '0', the<br>result is stored in W. If 'd' is '1',<br>the result is stored back in<br>register 'f'. |  |  |  |  |  |

| DECF             | Decrement f                                                                                                                                       |  |  |  |  |  |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Syntax:          | [ label ] DECF f,d                                                                                                                                |  |  |  |  |  |
| Operands:        | $\begin{array}{l} 0 \leq f \leq 127 \\ d  \in  [0,1] \end{array}$                                                                                 |  |  |  |  |  |
| Operation:       | (f) - 1 $\rightarrow$ (destination)                                                                                                               |  |  |  |  |  |
| Status Affected: | Z                                                                                                                                                 |  |  |  |  |  |
| Description:     | Decrement register 'f'. If 'd' is '0',<br>the result is stored in the W<br>register. If 'd' is '1', the result is<br>stored back in register 'f'. |  |  |  |  |  |

| NOP              | No Operation  |  |  |  |
|------------------|---------------|--|--|--|
| Syntax:          | [label] NOP   |  |  |  |
| Operands:        | None          |  |  |  |
| Operation:       | No operation  |  |  |  |
| Status Affected: | None          |  |  |  |
| Description:     | No operation. |  |  |  |
| Words:           | 1             |  |  |  |
| Cycles:          | 1             |  |  |  |
| Example:         | NOP           |  |  |  |

| OPTION           | Load OPTION_REG Register<br>with W                   |  |  |  |  |
|------------------|------------------------------------------------------|--|--|--|--|
| Syntax:          | [label] OPTION                                       |  |  |  |  |
| Operands:        | None                                                 |  |  |  |  |
| Operation:       | $(W) \rightarrow OPTION\_REG$                        |  |  |  |  |
| Status Affected: | None                                                 |  |  |  |  |
| Description:     | Move data from W register to<br>OPTION_REG register. |  |  |  |  |

| RESET            | Software Reset                                                           |  |  |  |  |
|------------------|--------------------------------------------------------------------------|--|--|--|--|
| Syntax:          | [label] RESET                                                            |  |  |  |  |
| Operands:        | None                                                                     |  |  |  |  |
| Operation:       | Execute a device Reset. Resets the RI flag of the PCON register.         |  |  |  |  |
| Status Affected: | None                                                                     |  |  |  |  |
| Description:     | This instruction provides a way to execute a hardware Reset by software. |  |  |  |  |

| RETFIE           | Return from Interrupt                                                                                                                                                                                              |  |  |  |  |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Syntax:          | [label] RETFIE                                                                                                                                                                                                     |  |  |  |  |  |  |
| Operands:        | None                                                                                                                                                                                                               |  |  |  |  |  |  |
| Operation:       | $\begin{array}{l} TOS \to PC, \\ 1 \to GIE \end{array}$                                                                                                                                                            |  |  |  |  |  |  |
| Status Affected: | None                                                                                                                                                                                                               |  |  |  |  |  |  |
| Description:     | Return from Interrupt. Stack is<br>POPed and Top-of-Stack (TOS) is<br>loaded in the PC. Interrupts are<br>enabled by setting Global<br>Interrupt Enable bit, GIE<br>(INTCON<7>). This is a 2-cycle<br>instruction. |  |  |  |  |  |  |
| Words:           | 1                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Cycles:          | 2                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Example:         | RETFIE                                                                                                                                                                                                             |  |  |  |  |  |  |
|                  | After Interrupt<br>PC = TOS<br>GIE = 1                                                                                                                                                                             |  |  |  |  |  |  |
| RETLW            | Return with literal in W                                                                                                                                                                                           |  |  |  |  |  |  |
| Syntax:          | [ <i>label</i> ] RETLW k                                                                                                                                                                                           |  |  |  |  |  |  |
| Operands:        | $0 \le k \le 255$                                                                                                                                                                                                  |  |  |  |  |  |  |
| Operation:       | $k \rightarrow (W);$<br>TOS $\rightarrow PC$                                                                                                                                                                       |  |  |  |  |  |  |
| Status Affected: | None                                                                                                                                                                                                               |  |  |  |  |  |  |
| Description:     | The W register is loaded with the<br>8-bit literal 'k'. The program<br>counter is loaded from the top of<br>the stack (the return address).<br>This is a 2-cycle instruction                                       |  |  |  |  |  |  |
| Words:           | 1                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Cycles:          | 2                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Example:         | CALL TABLE;W contains<br>table<br>;offset value                                                                                                                                                                    |  |  |  |  |  |  |
| TABLE            | <pre>. ;W now has table value<br/>ADDWF PC ;W = offset<br/>RETLW k1 ;Begin table<br/>RETLW k2 ;<br/>RETLW kn ; End of table<br/>Before Instruction<br/>W = 0x07</pre>                                              |  |  |  |  |  |  |

| PIC16LF      | 1788/9          |                              | Standard Operating Conditions (unless otherwise stated) |      |         |            |                                                                               |  |
|--------------|-----------------|------------------------------|---------------------------------------------------------|------|---------|------------|-------------------------------------------------------------------------------|--|
| PIC16F1      | 788/9           |                              |                                                         |      |         |            |                                                                               |  |
| Param Device |                 | Min                          | Turch                                                   |      | lle lle | Conditions |                                                                               |  |
| No.          | Characteristics | ics Min. Typ† Max. Units VDD |                                                         | VDD  | Note    |            |                                                                               |  |
| D009         | LDO Regulator   | _                            | 75                                                      | —    | μA      | _          | High Power mode, normal operation                                             |  |
|              |                 | —                            | 15                                                      | —    | μA      | —          | Sleep VREGCON<1> = 0                                                          |  |
|              |                 | —                            | 0.3                                                     | —    | μA      | —          | Sleep VREGCON<1> = 1                                                          |  |
| D010         |                 | _                            | 8                                                       | 20   | μA      | 1.8        | Fosc = 32 kHz                                                                 |  |
|              |                 | —                            | 12                                                      | 24   | μA      | 3.0        | LP Oscillator mode (Note 4),<br>-40°C $\leq$ TA $\leq$ +85°C                  |  |
| D010         |                 | _                            | 18                                                      | 63   | μA      | 2.3        | Fosc = 32 kHz                                                                 |  |
|              |                 |                              | 20                                                      | 74   | μA      | 3.0        | LP Oscillator mode (Note 4, 5), $40^{\circ}$ C $\leq$ Th $\leq 195^{\circ}$ C |  |
|              |                 |                              | 22                                                      | 79   | μA      | 5.0        | $-40 \text{ C} \le 18 \le +85 \text{ C}$                                      |  |
| D012         |                 | _                            | 160                                                     | 650  | μA      | 1.8        | Fosc = 4 MHz                                                                  |  |
|              |                 | _                            | 320                                                     | 1000 | μA      | 3.0        | XT Oscillator mode                                                            |  |
| D012         |                 | _                            | 260                                                     | 700  | μA      | 2.3        | Fosc = 4 MHz                                                                  |  |
|              |                 | _                            | 330                                                     | 1100 | μA      | 3.0        | XT Oscillator mode (Note 5)                                                   |  |
|              |                 | _                            | 380                                                     | 1300 | μA      | 5.0        |                                                                               |  |

#### TABLE 31-2: SUPPLY VOLTAGE (IDD)<sup>(1,2)</sup>

**Note 1:** The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

**3:** For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: 0.1  $\mu$ F capacitor on VCAP.

6: 8 MHz crystal oscillator with 4x PLL enabled.

### TABLE 31-9: CLKOUT AND I/O TIMING PARAMETERS

| Standard Operating Conditions (unless otherwise stated) |          |                                                              |               |      |      |       |                |  |  |
|---------------------------------------------------------|----------|--------------------------------------------------------------|---------------|------|------|-------|----------------|--|--|
| Param<br>No.                                            | Sym.     | Characteristic                                               | Min.          | Тур† | Max. | Units | Conditions     |  |  |
| OS11                                                    | TosH2ckL | Fosc↑ to CLKOUT↓ <sup>(1)</sup>                              | —             | _    | 70   | ns    | VDD = 3.3-5.0V |  |  |
| OS12                                                    | TosH2ckH | Fosc↑ to CLKOUT↑ <sup>(1)</sup>                              | —             | _    | 72   | ns    | VDD = 3.3-5.0V |  |  |
| OS13                                                    | TckL2ioV | CLKOUT↓ to Port out valid <sup>(1)</sup>                     | —             |      | 20   | ns    |                |  |  |
| OS14                                                    | TioV2ckH | Port input valid before CLKOUT <sup>(1)</sup>                | Tosc + 200 ns | _    | —    | ns    |                |  |  |
| OS15                                                    | TosH2ioV | Fosc↑ (Q1 cycle) to Port out valid                           | —             | 50   | 70*  | ns    | VDD = 3.3-5.0V |  |  |
| OS16                                                    | TosH2iol | Fosc↑ (Q2 cycle) to Port input invalid<br>(I/O in hold time) | 50            | _    | —    | ns    | VDD = 3.3-5.0V |  |  |
| OS17                                                    | TioV2osH | Port input valid to Fosc↑ (Q2 cycle)<br>(I/O in setup time)  | 20            | _    | —    | ns    |                |  |  |
| OS18*                                                   | TioR     | Port output rise time                                        | —             | 40   | 72   | ns    | VDD = 1.8V     |  |  |
|                                                         |          |                                                              | —             | 15   | 32   |       | VDD = 3.3-5.0V |  |  |
| OS19*                                                   | TioF     | Port output fall time                                        | —             | 28   | 55   | ns    | VDD = 1.8V     |  |  |
|                                                         |          |                                                              | —             | 15   | 30   |       | VDD = 3.3-5.0V |  |  |
| OS20*                                                   | Tinp     | INT pin input high or low time                               | 25            | _    | —    | ns    |                |  |  |
| OS21*                                                   | Tioc     | Interrupt-on-change new input level time                     | 25            | _    | —    | ns    |                |  |  |

\* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

**Note 1:** Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

## TABLE 31-22: I<sup>2</sup>C BUS START/STOP BITS REQUIREMENTS

| Standard Operating Conditions (unless otherwise stated) |         |                 |              |      |      |       |            |                              |  |
|---------------------------------------------------------|---------|-----------------|--------------|------|------|-------|------------|------------------------------|--|
| Param<br>No.                                            | Symbol  | Charact         | Min.         | Тур. | Max. | Units | Conditions |                              |  |
| SP90*                                                   | TSU:STA | Start condition | 100 kHz mode | 4700 | _    | —     | ns         | Only relevant for Repeated   |  |
|                                                         |         | Setup time      | 400 kHz mode | 600  |      |       |            | Start condition              |  |
| SP91*                                                   | THD:STA | Start condition | 100 kHz mode | 4000 | _    | _     | ns         | After this period, the first |  |
|                                                         |         | Hold time       | 400 kHz mode | 600  |      |       |            | clock pulse is generated     |  |
| SP92*                                                   | Tsu:sto | Stop condition  | 100 kHz mode | 4700 | _    |       | ns         |                              |  |
|                                                         |         | Setup time      | 400 kHz mode | 600  |      |       |            |                              |  |
| SP93                                                    | THD:STO | Stop condition  | 100 kHz mode | 4000 |      |       | ns         |                              |  |
|                                                         |         | Hold time       | 400 kHz mode | 600  |      |       |            |                              |  |

\* These parameters are characterized but not tested.



#### FIGURE 31-21: I<sup>2</sup>C BUS DATA TIMING

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1  $\mu$ F, TA = 25°C.



**FIGURE 32-126:** Typical DAC DNL Error, VDD = 3.0V, VREF = External 3V.



**FIGURE 32-127:** Typical DAC INL Error, VDD = 3.0V, VREF = External 3V.



**FIGURE 32-128:** Typical DAC DNL Error, VDD = 5.0V, VREF = External 5V, PIC16F1788/9 Only.



**FIGURE 32-130:** Absolute Value of DAC DNL Error, VDD = 3.0V, VREF = VDD.



FIGURE 32-129: Typical DAC INL Error, VDD = 5.0V, VREF = External 5V, PIC16F1788/9 Only.



**FIGURE 32-131:** Absolute Value of DAC INL Error, VDD = 3.0V.