

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

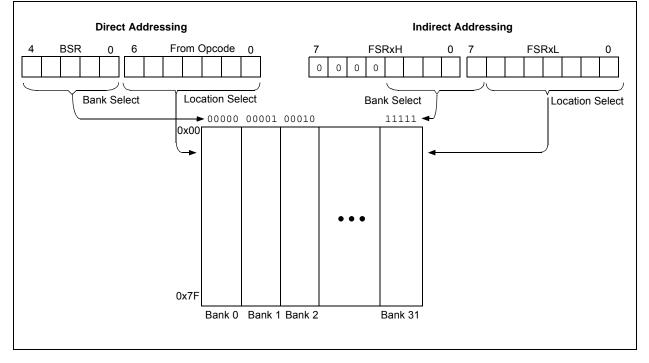
Details

Betails	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 11x12b; D/A 1x8b, 3x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1788t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description			
RA0/AN0/C1IN0-/C2IN0-/	RA0	TTL/ST	CMOS	General purpose I/O.			
C3IN0-/C4IN0-/ SS⁽¹⁾	AN0	AN	—	ADC Channel 0 input.			
	C1IN0-	AN	—	Comparator C1 negative input.			
	C2IN0-	AN	_	Comparator C2 negative input.			
	C3IN0-	AN	_	Comparator C3 negative input.			
	C4IN0-	AN	_	Comparator C4 negative input.			
	SS	ST	_	Slave Select input.			
RA1/AN1/C1IN1-/C2IN1-/	RA1	TTL/ST	CMOS	General purpose I/O.			
C3IN1-/C4IN1-/OPA1OUT	AN1	AN	_	ADC Channel 1 input.			
	C1IN1-	AN	_	Comparator C1 negative input.			
	C2IN1-	AN	_	Comparator C2 negative input.			
	C3IN1-	AN	_	Comparator C3 negative input.			
	C4IN1-	AN	_	Comparator C4 negative input.			
	OPA1OUT	_	AN	Operational Amplifier 1 output.			
RA2/AN2/C1IN0+/C2IN0+/	RA2	TTL/ST	CMOS	General purpose I/O.			
C3IN0+/C4IN0+/DAC1OUT1/	AN2	AN	_	ADC Channel 2 input.			
VREF-/DAC1VREF-	C1IN0+	AN	—	Comparator C1 positive input.			
	C2IN0+	AN	—	Comparator C2 positive input.			
	C3IN0+	AN	—	Comparator C3 positive input.			
	C4IN0+	AN	_	Comparator C4 positive input.			
	DAC1OUT1	_	AN	Digital-to-Analog Converter output.			
	VREF-	AN	_	ADC Negative Voltage Reference input.			
	DAC1VREF-	AN	_	Digital-to-Analog Converter negative reference.			
RA3/AN3/VREF+/C1IN1+/	RA3	TTL/ST	CMOS	General purpose I/O.			
DAC1VREF+/DAC2VREF+/	AN3	AN	_	ADC Channel 3 input.			
DAC3VREF+/DAC4VREF+	VREF+	AN	_	ADC Voltage Reference input.			
	C1IN1+	AN	_	Comparator C1 positive input.			
	DAC1VREF+	AN	_	Digital-to-Analog Converter positive reference.			
	DAC2VREF+	AN	_	Digital-to-Analog Converter positive reference.			
	DAC3VREF+	AN	_	Digital-to-Analog Converter positive reference.			
	DAC4VREF+	AN	_	Digital-to-Analog Converter positive reference.			
RA4/C1OUT/OPA1IN+/T0CKI	RA4	TTL/ST	CMOS	General purpose I/O.			
	C1OUT	_	CMOS	Comparator C1 output.			
	OPA1IN+	AN	_	Operational Amplifier 1 non-inverting input.			
	TOCKI	ST	_	Timer0 clock input.			
RA5/AN4/C2OUT/OPA1IN-/	RA5	TTL/ST	CMOS	General purpose I/O.			
SS ⁽¹⁾ /DAC2OUT1	AN4	AN	_	ADC Channel 4 input.			
	C2OUT	_	CMOS	Comparator C2 output.			
	OPA1IN-	AN	_	Operational Amplifier 1 inverting input.			
	SS	ST	_	Slave Select input.			
	DAC2OUT1	_	AN	Digital-to-Analog Converter output.			
Legend: AN = Analog input or TTL = TTL compatible HV = High Voltage	output CMOS input ST		compatil tt Trigger				


TABLE 1-3: PIC16(L)F1789 PINOUT DESCRIPTION

2: All pins have interrupt-on-change functionality.

3.6.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

FIGURE 6-7: INTERNAL OSCILLATOR SWITCH TIMING

HFINTOSC/	
LFINTOSC	
IRCF <3:0>	X
System Clock	
HFINTOSC/	
LFINTOSC	
IRCF <3:0>	X
System Clock	

6.4.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- 2. Instructions begin execution by the internal oscillator at the frequency set in the IRCF<3:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed out, wait for falling edge of the internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode).
- 7. System clock is switched to external clock source.

FIGURE 6-8: TWO-SPEED START-UP

6.4.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCSTAT register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Words, or the internal oscillator.

U-0	U-0	U-0	R/W-0/0	U-0	U-0	U-0	U-0		
—	—	—	CCP3IE	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'			
u = Bit is uncha	u = Bit is unchanged x = Bit is unknown		iown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7-5	Unimplemen	ted: Read as '	כ'						
bit 4	CCP3IE: CCF	3 Interrupt Ena	able bit						
		the CCP3 intern the CCP3 inter							
bit 3-0	Unimplemen	ted: Read as 'o)'						

REGISTER 8-4: PIE3: PERIPHERAL INTERRUPT ENABLE REGISTER 3

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
PSMC4T	IF PSMC3TIF	PSMC2TIF	PSMC1TIF	PSMC4SIF	PSMC3SIF	PSMC2SIF	PSMC1SIF
bit 7		•	•	•			bit
Legend:							
R = Reada	ble bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
u = Bit is u	0	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is s	set	'0' = Bit is clea	ared				
bit 7	PSMC4TIF: F	SMC4 Time B	ase Interrupt F	-lag bit			
	1 = Interrupt i			0			
	0 = Interrupt i	s not pending					
bit 6	PSMC3TIF: F	SMC3 Time B	ase Interrupt F	lag bit			
	1 = Interrupt i 0 = Interrupt i						
bit 5	-	SMC2 Time B	ase Interrupt F	-lag bit			
	1 = Interrupt i		·	0			
	0 = Interrupt i	s not pending					
bit 4	PSMC1TIF: F	SMC1 Time B	ase Interrupt F	-lag bit			
	1 = Interrupt i 0 = Interrupt i						
bit 3	-	PSMC4 Auto-sh	nutdown Flag	bit			
	1 = Interrupt i		0				
	0 = Interrupt i						
bit 2	PSMC3SIF: F	PSMC3 Auto-sh	nutdown Flag	bit			
	1 = Interrupt i						
	0 = Interrupt i	s not pending					
bit 1		PSMC2 Auto-sh	nutdown Flag	bit			
	1 = Interrupt i						
L H 0	0 = Interrupt i			L : 1			
bit 0		PSMC1 Auto-sh	hutdown Flag	DIT			
	1 = Interrupt i 0 = Interrupt i						
	Interrupt flag bits a condition occurs, r its corresponding Enable bit, GIE, c User software appropriate interru prior to enabling a	egardless of the enable bit or th of the INTCON should ensu	e state of le Global register. ure the				

REGISTER 8-9: PIR4: PERIPHERAL INTERRUPT REQUEST REGISTER 4

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	ANSA7	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	137
INLVLA	INLVLA7	INLVLA6	INLVLA5	INLVLA4	INLVLA3	INLVLA2	INLVLA1	INLVLA0	138
LATA	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	136
ODCONA	ODA7	ODA6	ODA5	ODA4	ODA3	ODA2	ODA1	ODA0	138
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		
PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	136
SLRCONA	SLRA7	SLRA6	SLRA5	SLRA4	SLRA3	SLRA2	SLRA1	SLRA0	138
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	136
WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	137

TABLE 13-3: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

TABLE 13-4: SUMMARY OF CONFIGURATION WORD WITH PORTA

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
0015104	13:8	_	_	FCMEN	IESO	CLKOUTEN	BOREN<1:0>		CPD	50
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE	E<1:0>	FOSC<2:0>			58

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTA.

'1' = Bit is set

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
ODD7	ODD6	ODD5	ODD4	ODD3	ODD2	ODD1	ODD0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimpler	nented bit, read	as '0'			
u = Bit is unchanged x = Bit is unknown				-n/n = Value at POR and BOR/Value at all other Resets					

bit 7-0 ODD<7:0>: PORTD Open-Drain Enable bits

For RD<7:0> pins, respectively

1 = Port pin operates as open-drain drive (sink current only)

0 = Port pin operates as standard push-pull drive (source and sink current)

REGISTER 13-32: SLRCOND: PORTD SLEW RATE CONTROL REGISTER

'0' = Bit is cleared

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| SLRD7 | SLRD6 | SLRD5 | SLRD4 | SLRD3 | SLRD2 | SLRD1 | SLRD0 |
| bit 7 | | • | • | | | • | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 SLRD<7:0>: PORTD Slew Rate Enable bits For RD<7:0> pins, respectively 1 = Port pin slew rate is limited 0 = Port pin slews at maximum rate

REGISTER 13-33: INLVLD: PORTD INPUT LEVEL CONTROL REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| INLVLD7 | INLVLD6 | INLVLD5 | INLVLD4 | INLVLD3 | INLVLD2 | INLVLD1 | INLVLD0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

INLVLD<7:0>: PORTD Input Level Select bits

For RD<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	ADRMD			CHS<4:0>			GO/DONE	ADON	177
ADCON1	ADFM		ADCS<2:0>		—	ADNREF	ADPRE	F<1:0>	178
ADCON2		TRIGSE	EL<3:0>			CHSN	\ <3:0>		179
ADRESH	A/D Result I	A/D Result Register High							180, 181
ADRESL	A/D Result I	D Result Register Low							180, 181
ANSELA	ANSA7	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	137
ANSELB	—	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	143
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	98
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	102
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	136
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	142
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	/R<1:0>	ADFVF	۲<1:0>	167

TABLE 17-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for the ADC module.

23.11 Register Definitions: Timer1 Control

т

REGISTER 23-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	U-0	R/W-0/u
TMR1CS<1:0>		T1CKP	S<1:0>	T1OSCEN	T1SYNC	_	TMR10N
bit 7							bit
Legend:							
R = Readable		W = Writable		•	nented bit, read		
u = Bit is unc	•	x = Bit is unkn		-n/n = Value a	at POR and BOF	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	TMR1CS<1:	0>: Timer1 Cloc	k Source Sele	ect bits			
	11 = Reserv	ed, do not use.					
	10 = Timer1	clock source is	pin or oscillat	or:			
		CEN = 0:					
		I clock from T10	KI pin (on the	e rising eage)			
		oscillator on T1	OSI/T1OSO p	ins			
	01 = Timer1	clock source is	system clock	(Fosc)			
	00 = Timer1	clock source is	instruction clo	ock (Fosc/4)			
bit 5-4	T1CKPS<1:	0>: Timer1 Inpu	Clock Presca	ale Select bits			
	11 = 1:8 Pre						
	10 = 1:4 Pre 01 = 1:2 Pre						
	01 = 1.2 Fie						
bit 3	T1OSCEN:	_P Oscillator En	able Control b	bit			
	1 = Dedicate	dicated Timer1 oscillator circuit enabled					
	0 = Dedicate	ed Timer1 oscilla	ator circuit dis	abled			
bit 2		mer1 Synchroniz					
		synchronize asy			· · / - `		
	-	nize asynchron		it with system c	lock (Fosc)		
bit 1	-	nted: Read as ')´				
bit 0	TMR1ON: T						
	1 = Enables		Time and moto	flin flor			
	$0 = Stops \Pi$	mer1 and clears	s niner i gate	шр-пор			

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
CCP2CON	—	_	DC2B	<1:0>		CCP2N	/<3:0>		231
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	98
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	102
PR2	Timer2 Mo	dule Period	le Period Register				220*		
T2CON	_		T2OUTPS<3:0> TMR2ON T2CKPS<1:0>				222		
TMR2	Holding Re	gister for the	ster for the 8-bit TMR2 Register					220*	

TABLE 24-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

26.5 Output Steering

Output steering allows for PWM signals generated by the PSMC module to be placed on different pins under software control. Synchronized steering will hold steering changes until the first period event after the PSMCxLD bit is set. Unsynchronized steering changes will take place immediately.

Output steering is available in the following modes:

- 3-phase PWM
- Single PWM
- Complementary PWM

26.5.1 3-PHASE STEERING

3-phase steering is available in the 3-Phase Modulation mode only. For more details on 3-phase steering refer to **Section 26.3.12 "3-Phase PWM"**.

26.5.2 SINGLE PWM STEERING

In Single PWM Steering mode, the single PWM signal can be routed to any combination of the PSMC output pins. Examples of unsynchronized single PWM steering are shown in Figure 26-16.

PxSTRB	
PxSTR <u>C</u>	
PxSTRF PSMCxF With synchronization disabled, it is possible to get glitches on the PWM outputs.	

R/W-0/0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
PxMDLEN	PxMDLPOL	PxMDLBIT	_		PxMSR	C<3:0>	
bit 7		· · · ·					bit
Legend:							
R = Readable	bit	W = Writable b	it	-	nented bit, read		
u = Bit is unch	anged	x = Bit is unkno	own	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is clear	red				
bit 7	PxMDLEN: P	SMC Periodic N	lodulation I	Mode Enable bit			
		is active when in module is alway		selected by PxMS	SRC<3:0> is in i	ts active state (see PxMPOL
bit 6		PSMC Periodic		Polarity bit			
	1 = PSMCx	is active when the	he PSMCx	Modulation sour Modulation sour			
	0 = PSMCx PxMDLEN = 0	is active when the	he PxMDLI N = 1 and F	POL equals logic POL equals logic PxMSRC<3:0> <:	: '1'		
bit 4		ted: Read as '0'					
bit 3-0	•			ion Source Selec	tion bits		
	0111 = Reset 0110 = PSM0 0101 = PSM0 0100 = Reset 0011 = PSM0	rved rved rved rved rved Cx Modulation S rved Cx Modulation S rved Cx Modulation S Cx Modulation S Cx Modulation S	ource is C(ource is C(ource is sy ource is sy	CP2 CP1 nc_C3OUT nc_C2OUT			

REGISTER 26-2: PSMCxMDL: PSMC MODULATION CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	—	PxASDLF ⁽¹⁾	PxASDLE ⁽¹⁾	PxASDLD ⁽¹⁾	PxASDLC ⁽¹⁾	PxASDLB	PxASDLA
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	t POR and BOF	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7-6	Unimplemen	ted: Read as ')'				
bit 5	PxASDLF: P	SMCx Output F	Auto-Shutdov	wn Pin Level bi	t(1)		
		uto-shutdown is					
		uto-shutdown is	•		•		
bit 4	PxASDLE: P	SMCx Output E	E Auto-Shutdo	wn Pin Level bi	it(1)		
		uto-shutdown is	· •		0		
		uto-shutdown is			•		
bit 3		SMCx Output E					
		uto-shutdown is					
bit 2		uto-shutdown is			•		
DIL 2		SMCx Output (
		uto-shutdown is uto-shutdown is					
bit 1		SMCx Output E	-		-		
		uto-shutdown is					
		uto-shutdown is	· •		0		
bit 0	PxASDLA: P	SMCx Output A	Auto-Shutdo	wn Pin Level b	it		
		uto-shutdown is					
	0 = When a	uto-shutdown is	s asserted, pin	PSMCxA will	drive logic '0'		

REGISTER 26-17: PSMCxASDL: PSMC AUTO-SHUTDOWN OUTPUT LEVEL REGISTER

Note 1: These bits are not implemented on PSMC2.

R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0
PxASDSIN	_	_	PxASDSC4	PxASDSC3	PxASDSC2	PxASDSC1	_
bit 7			ļ			I	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	PxASDSIN: A	Auto-shutdown	occurs on PSI	MCxIN pin			
		utdown will occ			true		
	0 = PSMCxI	N pin will not c	ause auto-shu	utdown			
bit 6-5	Unimplemen	ted: Read as '	0'				
bit 4	PxASDSC4:	Auto-shutdown	occurs on syr	nc_C4OUT ou	tput		
		utdown will occ			it goes true		
	$0 = sync_C^2$	40UT will not c	ause auto-shu	utdown			
bit 3	PxASDSC3:	Auto-shutdown	occurs on syr	nc_C3OUT ou	tput		
		utdown will occ			it goes true		
	$0 = sync_C3$	30UT will not c	ause auto-shu	utdown			
bit 2	PxASDSC2:	Auto-shutdown	occurs on syr	nc_C2OUT ou	tput		
		utdown will occ			it goes true		
	$0 = sync_C2$	20UT will not c	ause auto-shu	utdown			
bit 1	PxASDSC1:	Auto-shutdown	occurs on syr	nc_C1OUT ou	tput		
		utdown will occ			goes true		
		1OU will not ca		down			
bit 0	Unimplemen	ted: Read as '	0'				

REGISTER 26-18: PSMCxASDS: PSMC AUTO-SHUTDOWN SOURCE REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			PSMCxB	LKR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				

REGISTER 26-30: PSMCxBLKR: PSMC RISING EDGE BLANKING TIME REGISTER

bit 7-0

PSMCxBLKR<7:0>: Rising Edge Blanking Time bits

= Unsigned number of PSMCx psmc_clk clock periods in rising edge blanking

REGISTER 26-31: PSMCxBLKF: PSMC FALLING EDGE BLANKING TIME REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
		PSMCxBl	_KF<7:0>			
						bit 0
	R/W-0/0	R/W-0/0 R/W-0/0		R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 PSMCxBLKF<7:0>		

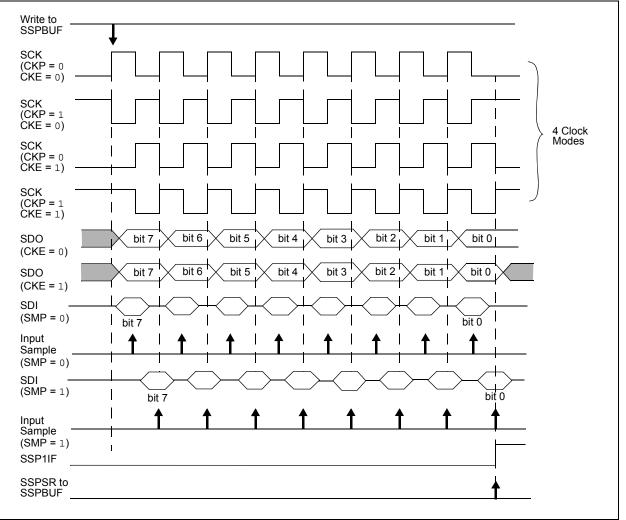
Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PSMCxBLKF<7:0>:** Falling Edge Blanking Time bits

= Unsigned number of PSMCx psmc_clk clock periods in falling edge blanking

27.2.3 SPI MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK line. The master determines when the slave (Processor 2, Figure 27-5) is to broadcast data by the software protocol.


In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and Status bits appropriately set). The clock polarity is selected by appropriately programming the CKP bit of the SSPCON1 register and the CKE bit of the SSPSTAT register. This then, would give waveforms for SPI communication as shown in Figure 27-6, Figure 27-8 and Figure 27-9, where the MSB is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 * Tcy)
- Fosc/64 (or 16 * Tcy)
- Timer2 output/2
- Fosc/(4 * (SSPADD + 1))

Figure 27-6 shows the waveforms for Master mode.

When the CKE bit is set, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

FIGURE 27-6: SPI MODE WAVEFORM (MASTER MODE)

REGISTER 27-1: SSPSTAT: SSP STATUS REGISTER (CONTINUED)

bit 0

BF: Buffer Full Status bit

Receive (SPI and I²C modes):

1 = Receive complete, SSPBUF is full

0 = Receive not complete, SSPBUF is empty

Transmit (I²C mode only):

- 1 = Data transmit in progress (does not include the ACK and Stop bits), SSPBUF is full
- 0 = Data transmit complete (does not include the \overline{ACK} and Stop bits), SSPBUF is empty

BRA	Relative Branch
Syntax:	[<i>label</i>]BRA label [<i>label</i>]BRA \$+k
Operands:	-256 \leq label - PC + 1 \leq 255 -256 \leq k \leq 255
Operation:	$(PC) + 1 + k \rightarrow PC$
Status Affected:	None
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a 2-cycle instruction. This branch has a limited range.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BRW	Relative Branch with W
Syntax:	[label] BRW
Operands:	None
Operation:	$(PC) + (W) \rightarrow PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + (W). This instruction is a 2-cycle instruction.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b < 7 \end{array}$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

BSF	Bit Set f
Syntax:	[<i>label</i>]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	1 → (f)
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	$\begin{array}{l} (PC)+1 \rightarrow TOS, \\ k \rightarrow PC < 10:0>, \\ (PCLATH < 6:3>) \rightarrow PC < 14:11> \end{array}$
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruction.