

Welcome to E-XFL.COM

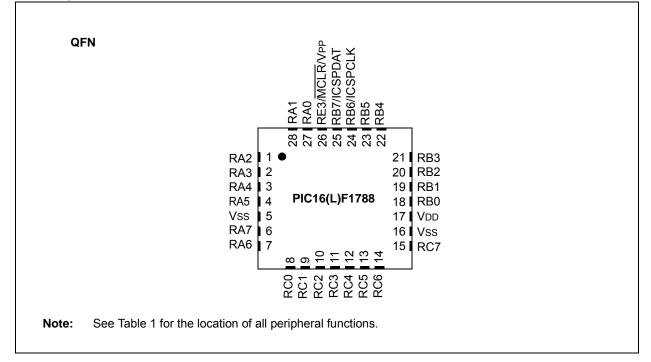
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 11x12b; D/A 1x8b, 3x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1788t-i-ss


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram – 28-Pin SPDIP, SOIC, SSOP

Pin Diagram – 28-Pin QFN

Name	Function	Input Type	Output Type	Description
RB4/AN11/C3IN1+/SS ⁽¹⁾	RB4	TTL/ST	CMOS	General purpose I/O.
	AN11	AN		ADC Channel 11 input.
	C3IN1+	AN	_	Comparator C3 positive input.
	SS	ST	_	Slave Select input.
RB5/AN13/C4IN2-/T1G/CCP3 ⁽¹⁾	RB5	TTL/ST	CMOS	General purpose I/O.
SDO ⁽¹⁾	AN13	AN	_	ADC Channel 13 input.
	C4IN2-	AN	_	Comparator C4 negative input.
	T1G	ST	_	Timer1 gate input.
	CCP3	ST	CMOS	Capture/Compare/PWM3.
	SDO	_	CMOS	SPI data output.
RB6/C4IN1+/TX ⁽¹⁾ /CK ⁽¹⁾ /SDI ⁽¹⁾ /	RB6	TTL/ST	CMOS	General purpose I/O.
SDA ⁽¹⁾ /ICSPCLK	C4IN1+	AN	_	Comparator C4 positive input.
	ТХ	—	CMOS	EUSART asynchronous transmit.
	СК	ST	CMOS	EUSART synchronous clock.
	SDI	ST	_	SPI data input.
	SDA	l ² C	OD	I ² C data input/output.
	ICSPCLK	ST	_	Serial Programming Clock.
RB7/DAC1OUT2/DAC2OUT2/	RB7	TTL/ST	CMOS	General purpose I/O.
DAC3OUT2/DAC4OUT2/RX ⁽¹⁾ /	DAC10UT2	_	AN	Voltage Reference output.
DT ⁽¹⁾ /SCK ⁽¹⁾ /SCL ⁽¹⁾ /ICSPDAT	DAC2OUT2	_	AN	Voltage Reference output.
	DAC3OUT2	_	AN	Voltage Reference output.
	DAC4OUT2	_	AN	Voltage Reference output.
	RX	ST	_	EUSART asynchronous input.
	DT	ST	CMOS	EUSART synchronous data.
	SCK	ST	CMOS	SPI clock.
	SCL	l ² C	OD	I ² C clock.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
RC0/T1OSO/T1CKI/PSMC1A	RC0	TTL/ST	CMOS	General purpose I/O.
	T10S0	XTAL	XTAL	Timer1 Oscillator Connection.
	T1CKI	ST	_	Timer1 clock input.
	PSMC1A	_	CMOS	PSMC1 output A.
RC1/T1OSI/PSMC1B/CCP2	RC1	TTL/ST	CMOS	
	T10SI	XTAL	XTAL	Timer1 Oscillator Connection.
	PSMC1B	_	CMOS	PSMC1 output B.
	CCP2	ST	CMOS	Capture/Compare/PWM2.
RC2/PSMC1C/CCP1	RC2	TTL/ST	CMOS	General purpose I/O.
	PSMC1C		CMOS	PSMC1 output C.
	CCP1	ST	CMOS	Capture/Compare/PWM1.
RC3/PSMC1D/SCK/SCL	RC3	TTL/ST	CMOS	General purpose I/O.
	PSMC1D		CMOS	PSMC1 output D.
	SCK	ST	CMOS	SPI clock.
	SCL	I ² C	OD	I ² C clock.
egend: AN = Analog input or c				

DIC16/I)E1780 DINICIT DESCRIPTION (CONTINUED) TADIE 4 9.

HV = High Voltage XTAL = Crystal

levels

Note 1: Pin functions can be assigned to one of two locations via software. See Register 13-1.

2: All pins have interrupt-on-change functionality.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constants	
DW	DATA0 ;First constant
DW	DATA1 ;Second constant
DW	DATA2
DW	DATA3
my_function	1
; LOTS	OF CODE
MOVLW	DATA_INDEX
ADDLW	LOW constants
MOVWF	FSR1L
MOVLW	HIGH constants ;MSb is set
automatical	ly
MOVWF	FSR1H
BTFSC	STATUS,C ;carry from ADDLW?
INCF	FSR1H,f ;yes
MOVIW	0[FSR1]
; THE PROGRA	AM MEMORY IS IN W
1	

3.2.1.1 STATUS Register

The STATUS register, shown in Register 3-1, contains:

- · the arithmetic status of the ALU
- · the Reset status

REGISTER 3-1:

The STATUS register can be the destination for any instruction, like any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the \overline{TO} and \overline{PD} bits are not writable. Therefore, the result of an instruction with the STATUS register as destination may be different than intended.

3.3 **Register Definitions: Status**

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the STATUS register as '000u uluu' (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions are used to alter the STATUS register, because these instructions do not affect any Status bits. For other instructions not affecting any Status bits (Refer to Section 30.0 "Instruction Set Summary").

Note:	The C and DC bits operate as Borrow and				
	Digit Borrow out bits, respectively, in				
	subtraction.				

U-0	U-0	U-0	R-1/q	R-1/g	

STATUS: STATUS REGISTER

U-0	U-0	U-0	R-1/q	R-1/q	R/W-0/u	R/W-0/u	R/W-0/u		
	_		TO	PD	Z	DC ⁽¹⁾	C ⁽¹⁾		
bit 7							bit (
Legend:									
R = Readab	le bit	W = Writable I	oit	U = Unimpler	mented bit, read	l as '0'			
u = Bit is une	changed	x = Bit is unkn	own	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is se	et	'0' = Bit is clea	ared	q = Value der	pends on condit	ion			
bit 7-5	Unimplemen	ted: Read as '0)'						
bit 4	TO: Time-Out	t bit							
		er-up, CLRWDT		r SLEEP instruc	tion				
		me-out occurred	t l						
bit 3	PD: Power-D	own bit							
		er-up or by the							
1.1.0		tion of the SLEE	P Instruction	1					
bit 2	Z: Zero bit								
		t of an arithmet t of an arithmet	U 1		ero				
bit 1			•			ons)(1)			
	-	DC: Digit Carry/Digit Borrow bit (ADDWF, ADDLW, SUBLW, SUBWF instructions) ⁽¹⁾							
	0 = No carry-out from the 4th low-order bit of the result								
bit 0									
	1 = A carry-or	ut from the Mos	t Significant	bit of the result	occurred				
	0 = No carry-	out from the Mo	st Significan	t bit of the resu	It occurred				
Note 1: F	or Borrow, the po	larity is reverse	d A subtract	tion is executed	l by adding the	two's complem	ent of the		

Note 1: For Borrow, the polarity is reversed. A subtraction is executed by adding the two's complement of the second operand.

6.2.2.1 HFINTOSC

The High-Frequency Internal Oscillator (HFINTOSC) is a factory calibrated 16 MHz internal clock source. The frequency of the HFINTOSC can be altered via software using the OSCTUNE register (Register 6-3).

The output of the HFINTOSC connects to a postscaler and multiplexer (see Figure 6-1). One of multiple frequencies derived from the HFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See **Section 6.2.2.7** "Internal Oscillator Clock Switch Timing" for more information.

The HFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<2:0> = 100, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'.

A fast startup oscillator allows internal circuits to power up and stabilize before switching to HFINTOSC.

The High Frequency Internal Oscillator Ready bit (HFIOFR) of the OSCSTAT register indicates when the HFINTOSC is running.

The High Frequency Internal Oscillator Status Locked bit (HFIOFL) of the OSCSTAT register indicates when the HFINTOSC is running within 2% of its final value.

The High Frequency Internal Oscillator Stable bit (HFIOFS) of the OSCSTAT register indicates when the HFINTOSC is running within 0.5% of its final value.

6.2.2.2 MFINTOSC

The Medium-Frequency Internal Oscillator (MFINTOSC) is a factory calibrated 500 kHz internal clock source. The frequency of the MFINTOSC can be altered via software using the OSCTUNE register (Register 6-3).

The output of the MFINTOSC connects to a postscaler and multiplexer (see Figure 6-1). One of nine frequencies derived from the MFINTOSC can be selected via software using the IRCF<3:0> bits of the OSCCON register. See **Section 6.2.2.7** "Internal Oscillator Clock Switch Timing" for more information.

The MFINTOSC is enabled by:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired HF frequency, and
- FOSC<2:0> = 100, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

The Medium Frequency Internal Oscillator Ready bit (MFIOFR) of the OSCSTAT register indicates when the MFINTOSC is running.

6.2.2.3 Internal Oscillator Frequency Adjustment

The 500 kHz internal oscillator is factory calibrated. This internal oscillator can be adjusted in software by writing to the OSCTUNE register (Register 6-3). Since the HFINTOSC and MFINTOSC clock sources are derived from the 500 kHz internal oscillator a change in the OSCTUNE register value will apply to both.

The default value of the OSCTUNE register is '0'. The value is a 6-bit two's complement number. A value of 1Fh will provide an adjustment to the maximum frequency. A value of 20h will provide an adjustment to the minimum frequency.

When the OSCTUNE register is modified, the oscillator frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. Operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

6.2.2.4 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is an uncalibrated 31 kHz internal clock source.

The output of the LFINTOSC connects to a multiplexer (see Figure 6-1). Select 31 kHz, via software, using the IRCF<3:0> bits of the OSCCON register. See Section 6.2.2.7 "Internal Oscillator Clock Switch Timing" for more information. The LFINTOSC is also the frequency for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

The LFINTOSC is enabled by selecting 31 kHz (IRCF<3:0> bits of the OSCCON register = 000) as the system clock source (SCS bits of the OSCCON register = 1x), or when any of the following are enabled:

- Configure the IRCF<3:0> bits of the OSCCON register for the desired LF frequency, and
- FOSC<2:0> = 100, or
- Set the System Clock Source (SCS) bits of the OSCCON register to '1x'

Peripherals that use the LFINTOSC are:

- Power-up Timer (PWRT)
- Watchdog Timer (WDT)
- Fail-Safe Clock Monitor (FSCM)

The Low-Frequency Internal Oscillator Ready bit (LFIOFR) of the OSCSTAT register indicates when the LFINTOSC is running.

6.6 Register Definitions: Oscillator Control

REGISTER 6-1: OSCCON: OSCILLATOR CONTROL REGISTER

R/W-0/0) R/W-0/0	R/W-1/1	R/W-1/1	R/W-1/1	U-0	R/W-0/0	R/W-0/0	
SPLLEN	N	IRCF	<3:0>		_	SCS	<1:0>	
oit 7							bit 0	
_egend:								
R = Reada	ıble bit	W = Writable	bit	U = Unimplem	ented bit, rea	ad as '0'		
u = Bit is u	nchanged	x = Bit is unkr	nown	-n/n = Value at	t POR and B	OR/Value at all	other Resets	
1' = Bit is	set	'0' = Bit is cle	ared					
oit 7	If PLLEN in SPLLEN bit	Configuration W	′ <u>ords = 1:</u> LL is always e	nabled (subject	to oscillator r	equirements)		
bit 6-3 $IRCF<3:0>: Internal Oscillator Frequency Select bits$ $1111 = 16 \text{ MHz HF or 32 MHz HF}^{(2)}$ $1110 = 8 \text{ MHz or 32 MHz HF}^{(2)}$ $1101 = 4 \text{ MHz HF}$ $1000 = 2 \text{ MHz HF}$ $1010 = 500 \text{ kHz HF}^{(1)}$ $1001 = 250 \text{ kHz HF}^{(1)}$ $1000 = 125 \text{ kHz HF}^{(1)}$ $0111 = 500 \text{ kHz MF} (default upon Reset)$ $0110 = 250 \text{ kHz MF}$ $0101 = 125 \text{ kHz MF}$ $0101 = 125 \text{ kHz MF}$ $0101 = 31.25 \text{ kHz HF}^{(1)}$ $000x = 31 \text{ kHz LF}$								
oit 2	Unimpleme	Unimplemented: Read as '0'						
oit 1-0	1x = Interna	SCS<1:0>: System Clock Select bits 1x = Internal oscillator block 01 = Timer1 oscillator 00 = Clock determined by FOSC<2:0> in Configuration Words.						

2: 32 MHz when SPLLEN bit is set. Refer to Section 6.2.2.6 "32 MHz Internal Oscillator Frequency Selection".

R-1/q	R-0/q	R-q/q	R-0/q	R-0/q	R-q/q	R-0/0	R-0/q
T1OSCR	PLLR	OSTS	HFIOFR	HFIOFL	MFIOFR	LFIOFR	HFIOFS
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared	q = Condition	al		
bit 7 T1OSCR: Timer1 Oscillator Ready bit <u>If T1OSCEN = 1</u> : 1 = Timer1 oscillator is ready 0 = Timer1 oscillator is not ready <u>If T1OSCEN = 0</u> : 1 = Timer1 clock source is always ready							
bit 6	PLLR 4x PLI 1 = 4x PLL 0 = 4x PLL	is ready					
bit 5	1 = Running	lator Start-up Ti g from the clock g from an intern	defined by the	e FOSC<2:0> I	oits of the Confi 00)	guration Word	S
bit 4	1 = HFINTO	h-Frequency lr SC is ready SC is not ready		or Ready bit			
bit 3	1 = HFINTO	h-Frequency In SC is at least 2 SC is not 2% a	% accurate	or Locked bit			
bit 2 MFIOFR: Medium-Frequency Internal Oscillator Ready bit 1 = MFINTOSC is ready 0 = MFINTOSC is not ready							
bit 1	1 LFIOFR: Low-Frequency Internal Oscillator Ready bit 1 = LFINTOSC is ready 0 = LFINTOSC is not ready						
bit 0							

REGISTER 6-2: OSCSTAT: OSCILLATOR STATUS REGISTER

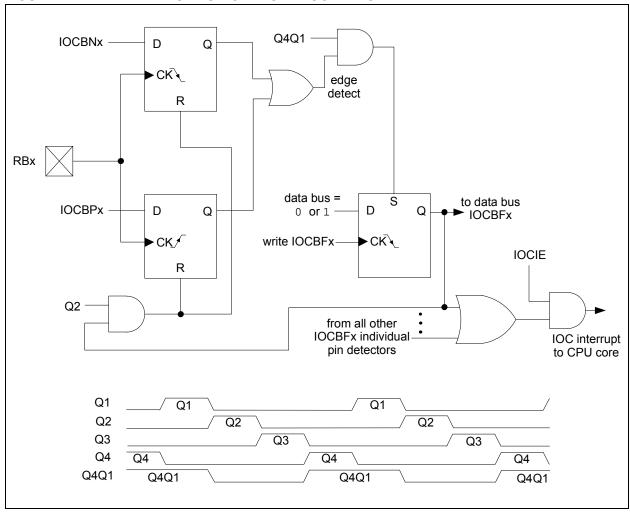
8.6 Register Definitions: Interrupt Control

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R-0/0
GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF ⁽¹⁾
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
u = Bit is unch		x = Bit is unki		•	at POR and BO		ther Resets
1' = Bit is set		'0' = Bit is cle					
bit 7	GIE: Global II	nterrupt Enable	> hit				
		all active interru					
pit 6	1 = Enables a	eral Interrupt E all active periph all peripheral ir	neral interrupts	3			
bit 5	1 = Enables t	er0 Overflow Ir he Timer0 inte the Timer0 inte	rrupt	e bit			
bit 4	1 = Enables t	ternal Interrupt he INT externa the INT externa	l interrupt				
oit 3	IOCIE: Interrupt-on-Change Enable bit 1 = Enables the interrupt-on-change 0 = Disables the interrupt-on-change						
bit 2	 TMR0IF: Timer0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed 0 = TMR0 register did not overflow 						
bit 1	 INTF: INT External Interrupt Flag bit 1 = The INT external interrupt occurred 0 = The INT external interrupt did not occur 						
bit 0	IOCIF: Interrupt-on-Change Interrupt Flag bit ⁽¹⁾ 1 = When at least one of the interrupt-on-change pins changed state 0 = None of the interrupt-on-change pins have changed state						

REGISTER 8-1: INTCON: INTERRUPT CONTROL REGISTER

Note 1: The IOCIF Flag bit is read-only and cleared when all the Interrupt-on-change flags in the IOCBF register have been cleared by software.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Enable bit, GIE, of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.


EXAMPLE 12-5: WRITING TO FLASH PROGRAM MEMORY

	LE 12-J.		
; This	write rout	tine assumes the f	ollowing:
; 1. Tł	ne 16 bytes	s of data are load	led, starting at the address in DATA_ADDR
; 2. Ea	ach word of	f data to be writt	en is made up of two adjacent bytes in DATA_ADDR,
; st	tored in li	ittle endian forma	t
; 3. A	valid star	rting address (the	e least significant bits = 0000) is loaded in ADDRH:ADDRL
; 4. AI	DDRH and AI	DDRL are located i	n shared data memory 0x70 - 0x7F (common RAM)
;			
	BCF	INTCON,GIE	; Disable ints so required sequences will execute properly
	BANKSEL	EEADRH	; Bank 3
	MOVF	ADDRH,W	; Load initial address
	MOVWF	EEADRH	;
	MOVF	ADDRL,W	;
	MOVWF	EEADRL	;
	MOVLW	LOW DATA_ADDR	; Load initial data address
	MOVWF	FSROL	;
	MOVLW	HIGH DATA_ADDR	; Load initial data address
	MOVWF	FSROH	;
	BSF	EECON1, EEPGD	; Point to program memory
	BCF	EECON1,CFGS	; Not configuration space
	BSF		; Enable writes
	BSF	EECON1,LWLO	; Only Load Write Latches
LOOP		-	
	MOVIW	FSR0++	; Load first data byte into lower
	MOVWF		i
	MOVIW	FSR0++	; Load second data byte into upper
	MOVWF	EEDATH	i
	MOVF	EEADRL,W	; Check if lower bits of address are '000'
	XORLW	0x0F	; Check if we're on the last of 16 addresses
	ANDLW	0x0F	;
	BTFSC	STATUS, Z	; Exit if last of 16 words,
	GOTO	START_WRITE	;
	MOVLW	55h	; Start of required write sequence:
	MOVWF		; Write 55h
0	MOVLW		;
ed nce	MOVWF		; Write AAh
Required Sequence	BSF		; Set WR bit to begin write
Seq	NOP		; Any instructions here are ignored as processor
ш (у	NOT		; halts to begin write sequence
	NOP		; Processor will stop here and wait for write to complete.
			; After write processor continues with 3rd instruction.
	TNGE		
	INCF		; Still loading latches Increment address ; Write next latches
	GOTO	TOOL	, WIILE MEAL LAUGHES
START_V	WR T T F		
DIANI_	BCF	EECON1,LWLO	; No more loading latches - Actually start Flash program
	201		<pre>/ memory write</pre>
	MOVLW	55h	; Start of required write sequence:
	MOVWF		/ Write 55h
ъg	MOVLW		;
enc	MOVWF		; Write AAh
Required Sequence	BSF		; Set WR bit to begin write
Se	NOP		; Any instructions here are ignored as processor
			; halts to begin write sequence
	NOP		; Processor will stop here and wait for write complete.
L			· ofter write processor continues with 2nd instanction
	DCF		; after write processor continues with 3rd instruction ; Disable writes
	BCF BSF		; Disable writes ; Enable interrupts
	101	THICON, GTE	, maste meetrapes

13.2 Register Definitions: Alternate Pin Function Control

REGISTER 13-1: APFCON1: ALTERNATE PIN FUNCTION CONTROL 1 REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
C2OUTSEL	CCP1SEL	SDOSEL	SCKSEL	SDISEL	TXSEL	RXSEL	CCP2SEL			
bit 7	•					•	bit (
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
u = bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets			
'1' = Bit is set	-	'0' = Bit is clea	ared							
bit 7		C2OUT Pin Se	lection bit							
	1 = C2OUT 0 = C2OUT									
bit 6		•	out Pin Selecti	on bit						
		CCP1SEL : CCP1 Input/Output Pin Selection bit 1 = CCP1 is on pin RB0								
		0 = CCP1 is on pin RC2								
bit 5	SDOSEL: MS	SDOSEL: MSSP SDO Pin Selection bit								
	1 = SDO is on pin RB5									
	0 = SDO is on pin RC5									
bit 4		SSP Serial Clock (SCL/SCK) Pin Selection bit								
	1 = SCL/SCK is on pin RB7									
		0 = SCL/SCK is on pin RC3 SDISEL: MSSP Serial Data (SDA/SDI) Output Pin Selection bit								
bit 3		I is on pin RB6	(SDA/SDI) OU	Itput Pin Selec	tion dit					
		l is on pin RC4								
bit 2		Pin Selection bit								
5.1 2	1 = TX is on pin RB6									
	0 = TX is on pin RC6									
bit 1	RXSEL: RX Pin Selection bit									
	1 = RX is on pin RB7									
	0 = RX is on pin RC7									
bit 0	CCP2SEL: C	CP2 Input/Outp	out Pin Selecti	on bit						
	1 = CCP2 is									
	0 = CCP2 is	on pin RC1								

FIGURE 14-1: INTERRUPT-ON-CHANGE BLOCK DIAGRAM

17.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- · Port configuration
- · Channel selection
 - Single-ended
 - Differential
- ADC voltage reference selection
- ADC conversion clock source
- · Interrupt control
- · Result formatting

17.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 13.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined					
	as a digital input may cause the input					
	buffer to conduct excess current.					

17.1.2 CHANNEL SELECTION

There are up to 18 channel selections available:

- AN<13:8, 4:0> pins (PIC16(L)F1788 only)
- AN<21, 13:0> pins (PIC16(L)F1789 only)
- Temperature Indicator
- DAC_output
- FVR (Fixed Voltage Reference) Output

Refer to Section 15.0 "Fixed Voltage Reference (FVR)" and Section 16.0 "Temperature Indicator Module" for more information on these channel selections.

When converting differential signals, the negative input for the channel is selected with the CHSN<3:0> bits of the ADCON2 register. Any positive input can be paired with any negative input to determine the differential channel.

The CHS<4:0> bits of the ADCON0 register determine which positive channel is selected.

When CHSN<3:0> = 1111 then the ADC is effectively a single ended ADC converter.

When changing channels, a delay is required before starting the next conversion.

17.1.3 ADC VOLTAGE REFERENCE

The ADPREF bits of the ADCON1 register provide control of the positive voltage reference. The positive voltage reference can be:

- VREF+
- VDD
- FVR Buffer1

The ADNREF bits of the ADCON1 register provide control of the negative voltage reference. The negative voltage reference can be:

- VREF- pin
- Vss

See **Section 15.0** "Fixed Voltage Reference (FVR)" for more details on the Fixed Voltage Reference.

17.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (dedicated internal FRC oscillator)

The time to complete one bit conversion is defined as TAD. One full 12-bit conversion requires 15 TAD periods as shown in Figure 17-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the ADC conversion requirements in **Section 31.0 "Electrical Specifications"** for more information. Table 17-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

23.11 Register Definitions: Timer1 Control

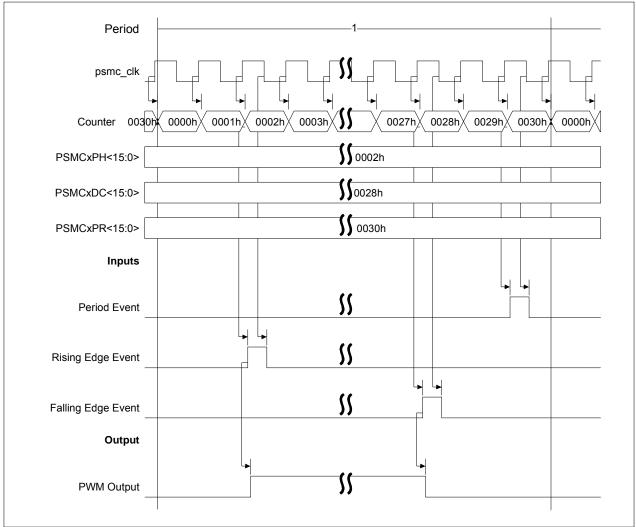
т

REGISTER 23-1: T1CON: TIMER1 CONTROL REGISTER

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	U-0	R/W-0/u			
TMR1	CS<1:0>	T1CKP	S<1:0>	T1OSCEN	T1SYNC	—	TMR10N			
bit 7										
Legend:										
R = Readable		W = Writable I		•	nented bit, read					
u = Bit is unc	•	x = Bit is unkn		-n/n = Value a	at POR and BOF	R/Value at all	other Resets			
'1' = Bit is set	t	'0' = Bit is clea	ared							
bit 7-6	TMR1CS<1:	0>: Timer1 Cloc	k Source Sele	ect bits						
	11 = Reserved, do not use.									
	10 = Timer1	10 = Timer1 clock source is pin or oscillator:								
		If TIOSCEN = 0:								
	External clock from T1CKI pin (on the rising edge) I <u>f T1OSCEN = 1</u> :									
	Crystal oscillator on T1OSI/T1OSO pins									
	01 = Timer1 clock source is system clock (Fosc)									
	00 = Timer1	clock source is	instruction clo	ock (Fosc/4)						
bit 5-4	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits									
	11 = 1:8 Prescale value									
	10 = 1:4 Prescale value									
	01 = 1:2 Prescale value 00 = 1:1 Prescale value									
bit 3	T1OSCEN:	LP Oscillator En	able Control b	bit						
	1 = Dedicated Timer1 oscillator circuit enabled									
	0 = Dedicated Timer1 oscillator circuit disabled									
bit 2	T1SYNC: Timer1 Synchronization Control bit									
	 1 = Do not synchronize asynchronous clock input 0 = Synchronize asynchronous clock input with system clock (Fosc) 									
	-		•	it with system c	lock (Fosc)					
bit 1	-	nted: Read as 'o)´							
bit 0	TMR1ON: T									
	1 = Enables		Time and such	61:						
	0 = Stops II	mer1 and clears	inner'i gate	пр-пор						

The clock source is selected with the PxCPRE<1:0> bits of the PSMCx Clock Control (PSMCxCLK) register

The prescaler output is psmc_clk, which is the clock


used by all of the other portions of the PSMC module.

(Register 26-7).

26.2.6 CLOCK PRESCALER

There are four prescaler choices available to be applied to the selected clock:

- Divide by 1
- Divide by 2
- Divide by 4
- Divide by 8

FIGURE 26-3: TIME BASE WAVEFORM GENERATION

26.3.4 PUSH-PULL PWM WITH COMPLEMENTARY OUTPUTS

The complementary push-pull PWM is used to drive transistor bridge circuits as well as synchronous switches on the secondary side of the bridge. The PWM waveform is output on four pins presented as two pairs of two-output signals with a normal and complementary output in each pair. Dead band can be inserted between the normal and complementary outputs at the transition times.

26.3.4.1 Mode Features

- Dead-band control is available
- · No steering control available
- Primary PWM output is only on:
 - PSMCxA
 - PSMCxB
- Complementary PWM output is only on:
 - PSMCxE
 - PSMCxF

Note: This is a subset of the 6-pin output of the push-pull PWM output, which is why pin functions are fixed in these positions, so they are compatible with that mode. See Section 26.3.6 "Push-Pull PWM with Four Full-Bridge and Complementary Outputs".

26.3.4.2 Waveform Generation

Push-Pull waveforms generate alternating outputs on the output pairs. Therefore, there are two sets of rising edge events and two sets of falling edge events

Odd numbered period rising edge event:

- PSMCxE is set inactive
- · Dead-band rising is activated (if enabled)
- PSMCxA is set active

Odd numbered period falling edge odd event:

- PSMCxA is set inactive
- Dead-band falling is activated (if enabled)
- · PSMCxE is set active

Even numbered period rising edge event:

- · PSMCxF is set inactive
- · Dead-band rising is activated (if enabled)
- PSMCxB is set active

Even numbered period falling edge event:

- · PSMCxB is set inactive
- Dead-band falling is activated (if enabled)
- · PSMCxF is set active

FIGURE 26-7: PUSH-PULL WITH COMPLEMENTARY OUTPUTS PWM WAVEFORM

PWM Period Number	11	2	3
Period Event			
Rising Edge Event			
Falling Edge Event			
→ PSMCxA	Rising Edge Dead Band + Falling Edge	ge Dead Band Falling Edge I	←Rising Edge Dead Band
PSMCxE			
PSMCxB			
	+	-→ -Falling Edge I -→ Rising Edge Dead Band	Dead Band
PSMCxF			_

© 2013-2015 Microchip Technology Inc.

REGISTER 26-27: PSMCxDBR: PSMC RISING EDGE DEAD-BAND TIME REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
			PSMCxI	DBR<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown		nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared					

bit 7-0

—

PSMCxDBR<7:0>: Rising Edge Dead-Band Time bits

= Unsigned number of PSMCx psmc_clk clock periods in rising edge dead band

REGISTER 26-28: PSMCxDBF: PSMC FALLING EDGE DEAD-BAND TIME REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
PSMCxDBF<7:0>								
bit 7 bit 0								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 **PSMCxDBF<7:0>:** Falling Edge Dead-Band Time bits

Unsigned number of PSMCx psmc_clk clock periods in falling edge dead band

REGISTER 26-29: PSMCxFFA: PSMC FRACTIONAL FREQUENCY ADJUST REGISTER

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
—	—	—	-	PSMCxFFA<3:0>				
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 Unimplemented: Read as '0'

=

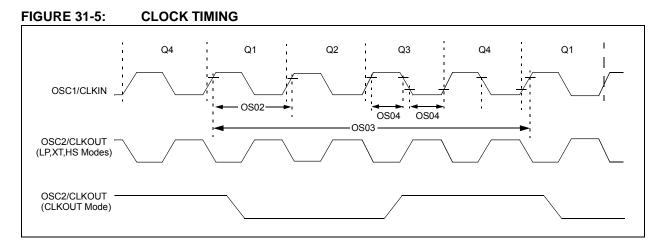
bit 3-0 **PSMCxFFA<3:0>:** Fractional Frequency Adjustment bits

 Unsigned number of fractional PSMCx psmc_clk clock periods to add to each period event time. The fractional time period = 1/(16*psmc_clk)

TABLE 31-4: I/O PORTS (CONTINUED)

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
		Capacitive Loading Specs on Output Pins						
D101*	COSC2	OSC2 pin	_	—	15	pF	In XT, HS and LP modes when external clock is used to drive OSC1	
D101A*	Сю	All I/O pins	—	_	50	pF		
		VCAP Capacitor Charging		•	•			
D102		Charging current	_	200		μΑ		
D102A		Source/sink capability when charging complete	_	0.0	—	mA		

These parameters are characterized but not tested.


† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended to use an external clock in RC mode.

2: Negative current is defined as current sourced by the pin.

3: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

4: Including OSC2 in CLKOUT mode.

TABLE 31-6: CLOCK OSCILLATOR TIMING REQUIREMENTS

Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
OS01	Fosc	External CLKIN Frequency ⁽¹⁾	DC	—	0.5	MHz	EC Oscillator mode (low)
			DC	_	4	MHz	EC Oscillator mode (medium)
			DC	_	20	MHz	EC Oscillator mode (high)
		Oscillator Frequency ⁽¹⁾	—	32.768	_	kHz	LP Oscillator mode
			0.1	_	4	MHz	XT Oscillator mode
			1	_	4	MHz	HS Oscillator mode
			1	_	20	MHz	HS Oscillator mode, VDD > 2.7V
			DC	_	4	MHz	RC Oscillator mode, VDD > 2.0V
OS02 To	Tosc	External CLKIN Period ⁽¹⁾	27	_	×	μS	LP Oscillator mode
			250	_	×	ns	XT Oscillator mode
			50	_	×	ns	HS Oscillator mode
			50	_	∞	ns	EC Oscillator mode
		Oscillator Period ⁽¹⁾	—	30.5	_	μS	LP Oscillator mode
			250	_	10,000	ns	XT Oscillator mode
			50	_	1,000	ns	HS Oscillator mode
			250	_	—	ns	RC Oscillator mode
OS03	TCY	Instruction Cycle Time ⁽¹⁾	200	Тсү	DC	ns	Tcy = 4/Fosc
OS04*	TosH,	External CLKIN High,	2	_	_	μS	LP oscillator
	TosL	External CLKIN Low	100	—	—	ns	XT oscillator
			20	—	—	ns	HS oscillator
OS05*	TosR,	External CLKIN Rise,	0	—	×	ns	LP oscillator
	TosF	External CLKIN Fall	0	—	×	ns	XT oscillator
			0	_	×	ns	HS oscillator

Standard Operating Conditions (unless otherwise stated)

These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 µF, TA = 25°C.

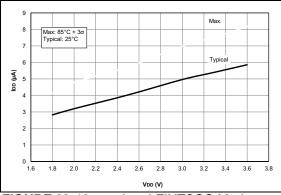


FIGURE 32-19: IDD, LFINTOSC Mode, Fosc = 31 kHz, PIC16LF1788/9 Only.

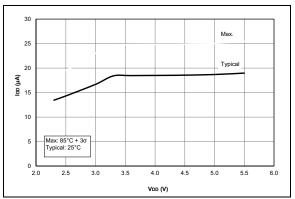


FIGURE 32-20: IDD, LFINTOSC Mode, Fosc = 31 kHz, PIC16F1788/9 Only.

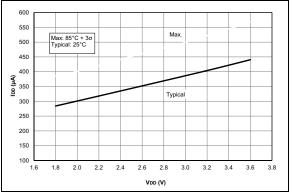


FIGURE 32-21: IDD, MFINTOSC Mode, Fosc = 500 kHz, PIC16LF1788/9 Only.

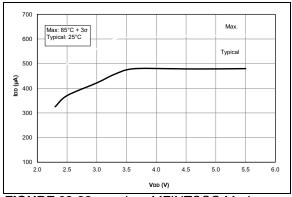


FIGURE 32-22: IDD, MFINTOSC Mode, Fosc = 500 kHz, PIC16F1788/9 Only.

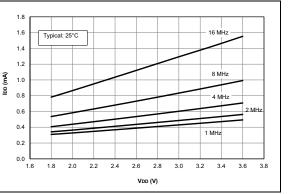


FIGURE 32-23: IDD Typical, HFINTOSC Mode, PIC16LF1788/9 Only.

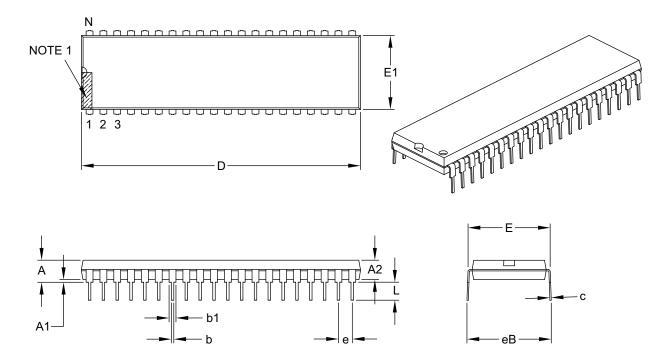


FIGURE 32-24: IDD Maximum, HFINTOSC Mode, PIC16LF1788/9 Only.

8

40-Lead Plastic Dual In-Line (P) – 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES			
	Dimension Limits	MIN	NOM	MAX		
Number of Pins	N		40			
Pitch	е		.100 BSC			
Top to Seating Plane	A	-	-	.250		
Molded Package Thickness	A2	.125	-	.195		
Base to Seating Plane	A1	.015	-	_		
Shoulder to Shoulder Width	E	.590	-	.625		
Molded Package Width	E1	.485	-	.580		
Overall Length	D	1.980	-	2.095		
Tip to Seating Plane	L	.115	-	.200		
Lead Thickness	С	.008	_	.015		
Upper Lead Width	b1	.030	-	.070		
Lower Lead Width	b	.014	-	.023		
Overall Row Spacing §	eB	-	-	.700		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-016B