

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x8b, 3x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1788-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 3-1: PROGRAM MEMORY MAP AND STACK FOR PIC16(L)F1788/9

	PC<14:0>						
CALL, CALLW 15 RETURN, RETLW Interrupt, RETFIE Stack Level 0							
	Stack Level 1						
	Stack Level 15						
	Reset Vector	0000h					
	•						
	Interrupt Vector	0004h					
	Page 0	0005h					
		07FFh					
	Page 1	0800h 0FFFh					
On-chip	Page 2	1000h					
Program <	1 490 2	17FFh					
Memory	Page 3	1800h					
		1FFFh					
	Page 4	2000h					
	• • •						
	Page 7	3FFFh					
	Rollover to Page 0	4000h					
	•						
	Rollover to Page 7	7FFFh					

3.1.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

3.1.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

constants		
BRW		;Add Index in W to
		;program counter to
		;select data
RETLW DAT	ra0	;Index0 data
RETLW DAT	TA1	;Index1 data
RETLW DAT	ra2	
RETLW DAT	ГАЗ	
my_function		
; LOTS (OF CODE	
MOVLW	DATA_IN	DEX
call cons	stants	
; THE CO	ONSTANT IS	IN W

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used.

3.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The high directive will set bit<7> if a label points to a location in program memory.

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

		•••						/			
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Banl	Bank 11-15										
58Ch											
 590h		Unimplemente	d							—	—
591h	DAC2CON0	DAC2EN		DAC2OE1	DAC2OE2	DAC2P	SS<1:0>			0-00 00	0-00 00
592h	DAC2CON1					DAC2R<4:0>			0 0000	0 0000	
593h	DAC3CON0	DAC3EN		DAC3OE1	DAC3OE2	DAC30E2 DAC3PSS<1:0>		0-00 00	0-00 00		
594h	DAC3CON1					DAC3R<4:0>		0 0000	0 0000		
595h	DAC4CON0	DAC4EN		DAC4OE1	DAC4OE2	DAC4P	SS<1:0>			0-00 00	0-00 00
596h	DAC4CON1						DAC4R<4:0>			0 0000	0 0000
597h 59Fh	_	Unimplemented —						_	_		
Banl	k 16-28										
x0Ch or x8Ch to x1Fh or x9Fh	-	Unimplemente	d								

Legend: x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: Unimplemented, read as '1'.

3: PIC16(L)F1789 only.

4: PIC16F1788/9 only.

9.1.1 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP.
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared.

- If the interrupt occurs **during or after** the execution of a **SLEEP** instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

CLKIN ⁽¹⁾ CLKOUT ⁽²⁾				Q1 Q2 Q3 Q4 /~_/~_/ \/	Q1 Q2 Q3 Q4 /_/_/	Q1 Q2 Q3 Q4 		
Interrupt flag			Interrupt Laten	су ⁽⁴⁾		· · · · · · · · · · · · · · · · · · ·		
GIE bit (INTCON reg.	Processor Sleep	in ✦						
Instruction Flow PC		<u>C + 2 X</u>	PC + 2	PC+2	X 0004h	X 0005h		
Instruction {	Inst(PC) = Sleep Inst(PC + 1)	<u> </u>	Inst(PC + 2)	· · · · · · · · · · · · · · · · · · ·	Inst(0004h)	Inst(0005h)		
Instruction { Executed {	Inst(PC - 1) Sleep	1 1 1	Inst(PC + 1)	Forced NOP	Forced NOP	Inst(0004h)		
2: 3:	 Note 1: External clock. High, Medium, Low mode assumed. 2: CLKOUT is shown here for timing reference. 3: Tost = 1024 Tosc; This delay does not apply to EC, RC and INTOSC Oscillator modes or Two-Speed Start-up (See Section 6.4 "Two-Speed Clock Start-up Mode"). 							

FIGURE 9-1: WAKE-UP FROM SLEEP THROUGH INTERRUPT

9.3 Register Definitions: Voltage Regulator Control

REGISTER 9-1: VREGCON: VOLTAGE REGULATOR CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-1/1
—		—	_	_	—	VREGPM	Reserved
bit 7							bit 0
Legend:							
R = Readable bi	+	M = M/ritable	hit		monted hit read	ae 'O'	

-		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-2 Unimplemented: Read as '0'

bit 1 VREGPM: Voltage Regulator Power Mode Selection bit

- 1 = Low-Power Sleep mode enabled in Sleep⁽²⁾ Draws lowest current in Sleep, slower wake-up
- Normal-Power mode enabled in Sleep⁽²⁾
 Draws higher current in Sleep, faster wake-up
- bit 0 Reserved: Read as '1'. Maintain this bit set.

Note 1: "F" devices only.

2: See Section 31.0 "Electrical Specifications".

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	RAIF	97
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	164
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	163
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	163
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	98
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	C4IE	C3IE	CCP2IE	99
PIE3	_	—	_	CCP3IE	—	—	_	—	100
PIE4	PSMC4TIE	PSMC3TIE	PSMC2TIE	PSMC1TIE	PSMC4SIE	PSMC3SIE	PSMC2SIE	PSMC1SIE	101
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	98
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	C4IF	C3IF	CCP2IF	103
PIR3	_	—	_	CCP3IF	—	—	_	—	104
PIR4	PSMC4TIF	PSMC3TIF	PSMC2TIF	PSMC1TIF	PSMC4SIF	PSMC3SIF	PSMC2SIF	PSMC1SIF	105
STATUS	_	—	_	TO	PD	Z	DC	С	31
VREGCON	—	—	—	_	—	—	VREGPM	Reserved	110
WDTCON	_	_	WDTPS<4:0> SWDTEN 114						
l agende – unimplemented legetion, read as 'o'. Shaded calls are not used in Dower Down mode									

TABLE 9-1: SUMMARY OF REGISTERS ASSOCIATED WITH POWER-DOWN MODE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used in Power-Down mode.

12.7 Register Definitions: EEPROM and Flash Control

REGISTER 12-1: EEDATL: EEPROM DATA LOW BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			EEDA	T<7:0>			
bit 7							bit C
Legend:							
R = Readable bit		W = Writable bit		U = Unimplemer	nted bit, read as '0	,	
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at F	POR and BOR/Valu	ue at all other Res	ets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0

EEDAT<7:0>: Read/write value for EEPROM data byte or Least Significant bits of program memory

REGISTER 12-2: EEDATH: EEPROM DATA HIGH BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
—	—	EEDAT<13:8>					
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 EEDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 12-3: EEADRL: EEPROM ADDRESS REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
EEADR<7:0>									
bit 7							bit 0		
Legend:									

Legena.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 EEADR<7:0>: Specifies the Least Significant bits for program memory address or EEPROM address

REGISTER 12-4: EEADRH: EEPROM ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
(1)				EEADR<14:8>			
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

bit 6-0 EEADR<14:8>: Specifies the Most Significant bits for program memory address or EEPROM address

Note 1: Unimplemented, read as '1'.

13.12 Register Definitions: PORTE

REGISTER 13-34: PORTE: PORTE REGISTER

U-0	U-0	U-0	U-0	R-x/u	R/W-x/u	R/W-x/u	R/W-x/u		
0-0	0-0	0-0	0-0	1\-X/U			-		
—	—	—	—	RE3	RE2 ⁽¹⁾	RE1 ⁽¹⁾	RE0 ⁽¹⁾		
bit 7		•					bit C		
Legend:									
R = Readable I	oit	W = Writable I	bit	U = Unimplemented bit, read as '0'					
u = Bit is uncha	anged	x = Bit is unkn	own	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clea	ared						

bit 7-4	Unimplemented: Read as '0'
bit 3-0	RE<3:0>: PORTE Input Pin bit ⁽¹⁾
	1 = Port pin is > Vін
	0 = Port pin is < VI∟

Note 1: RE<2:0> are available on PIC16(L)F1789 only.

REGISTER 13-35: TRISE: PORTE TRI-STATE REGISTER

U-0	U-0	U-0	U-0	U-1 ⁽¹⁾	R/W-1/1	R/W-1/1	R/W-1/1
_	—	_	_	_	TRISE2 ⁽²⁾	TRISE1 ⁽²⁾	TRISE0 ⁽²⁾
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 3 Unimplemented: Read as '1'

bit 2-0 **TRISA<2:0>:** PORTA Tri-State Control bit⁽²⁾ 1 = PORTA pin configured as an input (tri-stated) 0 = PORTA pin configured as an output

Note 1: Unimplemented, read as '1'.

2: TRISE<2:0> are available on PIC16(L)F1789 only.

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
TRIGSEL<3:0>				CHSN	I<3:0>				
bit 7				·			bit		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'			
u = Bit is unc	hanged	x = Bit is unk	nown	-n/n = Value a	at POR and BC	R/Value at all	other Resets		
'1' = Bit is se	t	'0' = Bit is cle	ared						
bit 7-4	TRIGSEL<3	:0>: ADC Auto-	conversion Tri	gger Source Se	election bits				
	1111 = PSN	/IC4 Falling Mat	ch Event						
		/IC4 Rising Mat							
		/IC4 Period Mat							
		AC2 Falling Edg							
		/IC2 Rising Edg /IC2 Period Mat							
		IC2 Feriod Mat							
		IC1 Rising Edg							
		IC1 Period Mat							
		011 = Reserved. Auto-conversion Trigger disabled.							
		= CCP2, Auto-conversion Trigger							
		P1, Auto-conver	sion Trigger						
	0000 = Disa	abled							
bit 3-0	CHSN<3:0>: Negative Differential Input Channel Select bits								
	When ADON = 0, all multiplexer inputs are disconnected.								
		C Negative refe	erence – select	ed by ADNREF	=				
	1110 = AN								
	1101 = AN 1100 = AN	-							
	1011 = AN								
	1010 = AN								
	1001 = AN								
	1000 = AN								
	0111 = AN	7(1)							
	0110 = AN								
	0101 = AN								
	0100 = AN 0011 = AN								
	0011 = AN 0010 = AN	-							
	0010 = AN 0001 = AN								
	0000 = AN								

Note 1: PIC16(L)F1789 only. For PIC16(L)F1788, "Reserved. No channel connected."

26.7 Auto-Shutdown

Auto-shutdown is a method to immediately override the PSMC output levels with specific overrides that allow for safe shutdown of the application.

Auto-shutdown includes a mechanism to allow the application to restart under different conditions.

Auto-shutdown is enabled with the PxASDEN bit of the PSMC Auto-shutdown Control (PSMCxASDC) register (Register 26-16). All auto-shutdown features are enabled when PxASDEN is set and disabled when cleared.

26.7.1 SHUTDOWN

There are two ways to generate a shutdown event:

- Manual
- External Input

26.7.1.1 Manual Override

The auto-shutdown control register can be used to manually override the pin functions. Setting the PxASE bit of the PSMC Auto-shutdown Control (PSMCxASDC) register (Register 26-16) generates a software shut-down event.

The auto-shutdown override will persist as long as PxASE remains set.

26.7.1.2 External Input Source

Any of the given sources that are available for event generation are also available for system shut-down. This is so that external circuitry can monitor and force a shutdown without any software overhead. Auto-shutdown sources are selected with the PSMC Auto-shutdown Source (PSMCxASDS) register (Register 26-18).

When any of the selected external auto-shutdown sources go high, the PxASE bit is set and an auto-shutdown interrupt is generated.

Note: The external shutdown sources are level sensitive, not edge sensitive. The shutdown condition will persist as long as the circuit is driving the appropriate logic level.

26.7.2 PIN OVERRIDE LEVELS

The logic levels driven to the output pins during an auto-shutdown event are determined by the PSMC Auto-shutdown Output Level (PSMCxASDL) register (Register 26-17).

26.7.2.1 PIN Override Enable

Setting the PxASDOV bit of the PSMC Auto-shutdown Control (PSMCxASDC) register (Register 26-16) will also force the override levels onto the pins, exactly like what happens when the auto-shutdown is used. However, whereas setting PxASE causes an auto-shutdown interrupt, setting PxASDOV does not generate an interrupt.

26.7.3 RESTART FROM AUTO-SHUTDOWN

After an auto-shutdown event has occurred, there are two ways for the module to resume operation:

- Manual restart
- · Automatic restart

The restart method is selected with the PxARSEN bit of the PSMC Auto-shutdown Control (PSMCxASDC) register (Register 26-16).

26.7.3.1 Manual Restart

When PxARSEN is cleared, and once the PxASDE bit is set, it will remain set until cleared by software.

The PSMC will restart on the period event after PxASDE bit is cleared in software.

26.7.3.2 Auto-Restart

When PxARSEN is set, the PxASDE bit will clear automatically when the source causing the Reset and no longer asserts the shut-down condition.

The PSMC will restart on the next period event after the auto-shutdown condition is removed.

Examples of manual and automatic restart are shown in Figure 26-20.

Note: Whether manual or auto-restart is selected, the PxASDE bit cannot be cleared in software when the auto-shutdown condition is still present.

R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	U-0
PxASDSIN	_	_	PxASDSC4	PxASDSC3	PxASDSC2	PxASDSC1	_
bit 7			ļ			I	bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	PxASDSIN: A	Auto-shutdown	occurs on PSI	MCxIN pin			
		utdown will occ			true		
	0 = PSMCxI	N pin will not c	ause auto-shu	utdown			
bit 6-5	Unimplemen	ted: Read as '	0'				
bit 4	PxASDSC4:	Auto-shutdown	occurs on syr	nc_C4OUT ou	tput		
		utdown will occ			it goes true		
	$0 = sync_C^2$	40UT will not c	ause auto-shu	utdown			
bit 3	PxASDSC3:	Auto-shutdown	occurs on syr	nc_C3OUT ou	tput		
		utdown will occ			it goes true		
	$0 = sync_C3$	30UT will not c	ause auto-shu	utdown			
bit 2	PxASDSC2:	Auto-shutdown	occurs on syr	nc_C2OUT ou	tput		
		utdown will occ			it goes true		
0 = sync_C2OUT will not cause auto-shutdown							
bit 1	PxASDSC1: Auto-shutdown occurs on sync_C1OUT output						
		utdown will occ			goes true		
		1OU will not ca		down			
bit 0	Unimplemen	ted: Read as '	0'				

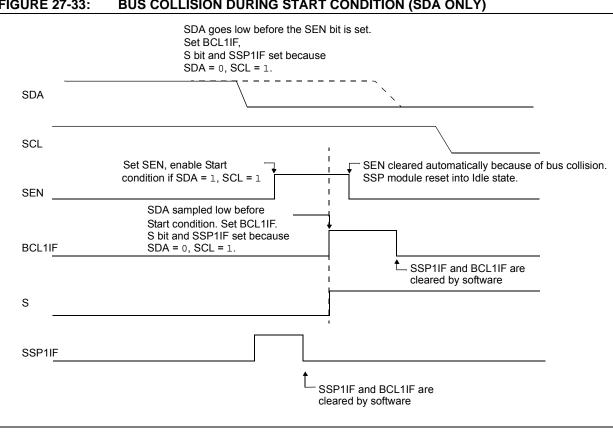
REGISTER 26-18: PSMCxASDS: PSMC AUTO-SHUTDOWN SOURCE REGISTER

27.6.13.1 Bus Collision During a Start Condition

During a Start condition, a bus collision occurs if:

- SDA or SCL are sampled low at the beginning of the Start condition (Figure 27-32).
- b) SCL is sampled low before SDA is asserted low (Figure 27-33).

During a Start condition, both the SDA and the SCL pins are monitored.


If the SDA pin is already low, or the SCL pin is already low, then all of the following occur:

- the Start condition is aborted,
- · the BCL1IF flag is set and
- · the MSSP module is reset to its Idle state (Figure 27-32).

The Start condition begins with the SDA and SCL pins deasserted. When the SDA pin is sampled high, the Baud Rate Generator is loaded and counts down. If the SCL pin is sampled low while SDA is high, a bus collision occurs because it is assumed that another master is attempting to drive a data '1' during the Start condition.

If the SDA pin is sampled low during this count, the BRG is reset and the SDA line is asserted early (Figure 27-34). If, however, a '1' is sampled on the SDA pin, the SDA pin is asserted low at the end of the BRG count. The Baud Rate Generator is then reloaded and counts down to zero; if the SCL pin is sampled as '0' during this time, a bus collision does not occur. At the end of the BRG count, the SCL pin is asserted low.

Note: The reason that bus collision is not a factor during a Start condition is that no two bus masters can assert a Start condition at the exact same time. Therefore, one master will always assert SDA before the other. This condition does not cause a bus collision because the two masters must be allowed to arbitrate the first address following the Start condition. If the address is the same, arbitration must be allowed to continue into the data portion, Repeated Start or Stop conditions.

FIGURE 27-33: **BUS COLLISION DURING START CONDITION (SDA ONLY)**

REGISTER 27-5: SSPMSK: SSP MASK REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
			MSł	<<7:0>					
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	W = Writable bit		nented bit, read	l as '0'			
u = Bit is unchanged x = Bit is unk			nown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is cle	ared						
bit 7-1	MSK<7:1>:	Mask bits							
	 1 = The received address bit n is compared to SSPADD<n> to detect I²C address match</n> 0 = The received address bit n is not used to detect I²C address match 								
bit 0	I ² C Slave me 1 = The rec	MSK<0>: Mask bit for I ² C Slave mode, 10-bit Address I ² C Slave mode, 10-bit address (SSPM<3:0> = 0111 or 1111): 1 = The received address bit 0 is compared to SSPADD<0> to detect I ² C address match 0 = The received address bit 0 is not used to detect I ² C address match							

 I^2C Slave mode, 7-bit address, the bit is ignored

'0' = Bit is cleared

REGISTER 27-6: SSPADD: MSSP ADDRESS AND BAUD RATE REGISTER (I²C MODE)

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
			ADD	<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BC	R/Value at all o	other Resets

Master mode:

1' = Bit is set

bit 7-0 ADD<7:0>: Baud Rate Clock Divider bits SCL pin clock period = ((ADD<7:0> + 1) *4)/Fosc

<u>10-Bit Slave mode — Most Significant Address Byte:</u>

- bit 7-3 **Not used:** Unused for Most Significant Address byte. Bit state of this register is a "don't care". Bit pattern sent by master is fixed by I²C specification and must be equal to '11110'. However, those bits are compared by hardware and are not affected by the value in this register.
- bit 2-1 ADD<2:1>: Two Most Significant bits of 10-bit address
- bit 0 Not used: Unused in this mode. Bit state is a "don't care".

<u>10-Bit Slave mode — Least Significant Address Byte:</u>

bit 7-0 ADD<7:0>: Eight Least Significant bits of 10-bit address

7-Bit Slave mode:

bit 0 Not used: Unused in this mode. Bit state is a "don't care".

28.1.2.4 Receive Framing Error

Each character in the receive FIFO buffer has a corresponding framing error Status bit. A framing error indicates that a Stop bit was not seen at the expected time. The framing error status is accessed via the FERR bit of the RCSTA register. The FERR bit represents the status of the top unread character in the receive FIFO. Therefore, the FERR bit must be read before reading the RCREG.

The FERR bit is read-only and only applies to the top unread character in the receive FIFO. A framing error (FERR = 1) does not preclude reception of additional characters. It is not necessary to clear the FERR bit. Reading the next character from the FIFO buffer will advance the FIFO to the next character and the next corresponding framing error.

The FERR bit can be forced clear by clearing the SPEN bit of the RCSTA register which resets the EUSART. Clearing the CREN bit of the RCSTA register does not affect the FERR bit. A framing error by itself does not generate an interrupt.

Note:	If all receive characters in the receive
	FIFO have framing errors, repeated reads
	of the RCREG will not clear the FERR bit.

28.1.2.5 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before the FIFO is accessed. When this happens the OERR bit of the RCSTA register is set. The characters already in the FIFO buffer can be read but no additional characters will be received until the error is cleared. The error must be cleared by either clearing the CREN bit of the RCSTA register or by resetting the EUSART by clearing the SPEN bit of the RCSTA register.

28.1.2.6 Receiving 9-bit Characters

The EUSART supports 9-bit character reception. When the RX9 bit of the RCSTA register is set the EUSART will shift nine bits into the RSR for each character received. The RX9D bit of the RCSTA register is the ninth and Most Significant data bit of the top unread character in the receive FIFO. When reading 9-bit data from the receive FIFO buffer, the RX9D data bit must be read before reading the eight Least Significant bits from the RCREG.

28.1.2.7 Address Detection

A special Address Detection mode is available for use when multiple receivers share the same transmission line, such as in RS-485 systems. Address detection is enabled by setting the ADDEN bit of the RCSTA register.

Address detection requires 9-bit character reception. When address detection is enabled, only characters with the ninth data bit set will be transferred to the receive FIFO buffer, thereby setting the RCIF interrupt bit. All other characters will be ignored.

Upon receiving an address character, user software determines if the address matches its own. Upon address match, user software must disable address detection by clearing the ADDEN bit before the next Stop bit occurs. When user software detects the end of the message, determined by the message protocol used, software places the receiver back into the Address Detection mode by setting the ADDEN bit.

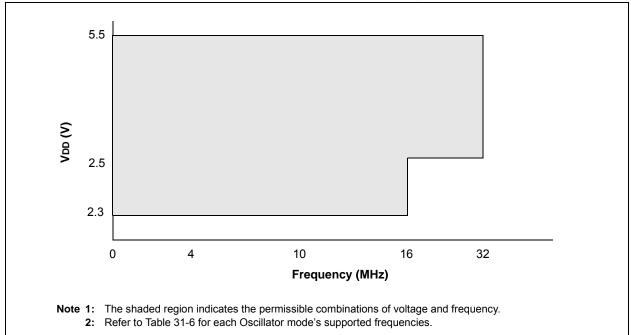
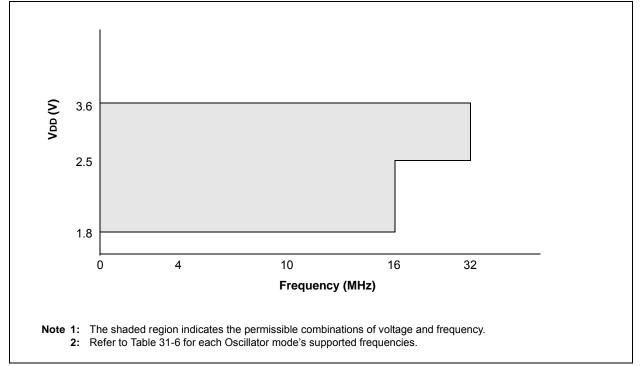

	SYNC = 0, BRGH = 0, BRG16 = 0												
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			
	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	_		_			_	_	_	_		_	_	
1200	—	_	_	1221	1.73	255	1200	0.00	239	1200	0.00	143	
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71	
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17	
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16	
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8	
57.6k	55.55k	-3.55	3	—	_	_	57.60k	0.00	7	57.60k	0.00	2	
115.2k	—	—	—	_	—	—	_	_	_	—	_	—	

TABLE 28-5: BAUD RATES FOR ASYNCHRONOUS MODES


		SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fosc = 8.000 MHz			Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300			_	300	0.16	207	300	0.00	191	300	0.16	51	
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12	
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	_	_	
9600	9615	0.16	12	_	_	_	9600	0.00	5	_	_	_	
10417	10417	0.00	11	10417	0.00	5	_	_	_	_	_	_	
19.2k	_	_	_	_	_	_	19.20k	0.00	2	_	_	_	
57.6k	—	—	—	—	_	—	57.60k	0.00	0	—	_	—	
115.2k	—	_	_	—	_	_	_	_	—	—	_	—	

	SYNC = 0, BRGH = 1, BRG16 = 0												
BAUD	Fosc	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz		
RATE	-	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	—	_	_		_	_	_	_	_		_	_	
1200	—	—	—	—		—	—	—	—	—	—	—	
2400		_	_	_	_	_	_	_	_	_	_	_	
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71	
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65	
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	

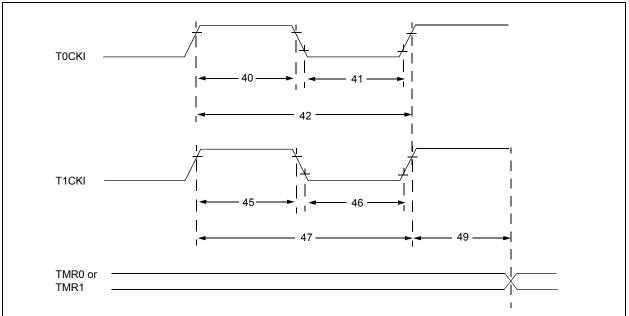
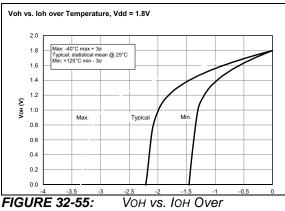
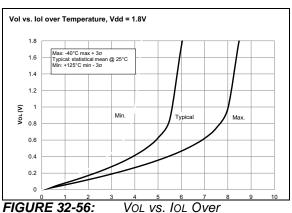


FIGURE 31-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS


TABLE 31-11:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
--------------	---

Standa	rd Operating	Conditions (u	Inless otherwis	e stated)					
Param No.	Sym.	Characteristic			Min.	Тур†	Max.	Units	Conditions
40*	TT0H	T0CKI High I	Pulse Width	No Prescaler	0.5 Tcy + 20	_		ns	
				With Prescaler	10			ns	
41*	T⊤0L	T0CKI Low F	Pulse Width	No Prescaler	0.5 Tcy + 20			ns	
				With Prescaler	10			ns	
42*	Тт0Р	T0CKI Period	t	Greater of: 20 or <u>Tcy + 40</u> N	—	—	ns	N = prescale value (2, 4,, 256)	
45*	T⊤1H	T1CKI High Time	Synchronous, No Prescaler		0.5 Tcy + 20	_		ns	
			Synchronous, with Prescaler		15	—	_	ns	
			Asynchronous		30			ns	
46*	T⊤1L	T1CKI Low Time	Synchronous, No Prescaler		0.5 Tcy + 20			ns	
			Synchronous, with Prescaler		15		_	ns	
			Asynchronous		30		_	ns	
47*	TT1P	T1CKI Input Period	Synchronous		Greater of: 30 or <u>Tcy + 40</u> N	—	_	ns	N = prescale value (1, 2, 4, 8)
			Asynchronous		60	—		ns	
48	F⊤1	Timer1 Oscillator Input Frequency Range (oscillator enabled by setting bit T1OSCEN)			32.4	32.768	33.1	kHz	
49*	TCKEZTMR1				2 Tosc	—	7 Tosc	—	Timers in Sync mode


* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note: Unless otherwise noted, VIN = 5V, FOSC = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

Temperature, VDD = 1.8V, PIC16LF1788/9 Only.

Temperature, VDD = 1.8V, PIC16LF1788/9 Only.

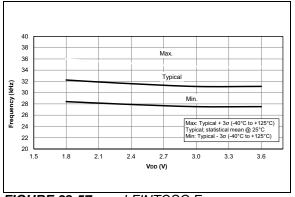


FIGURE 32-57: LFINTOSC Frequency, PIC16LF1788/9 Only.

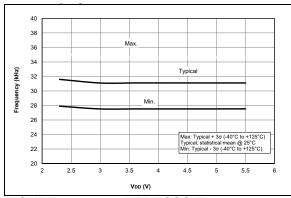
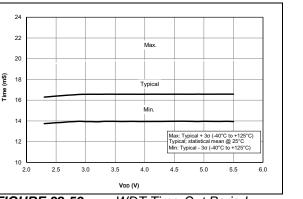
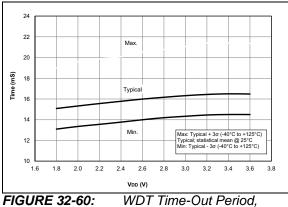
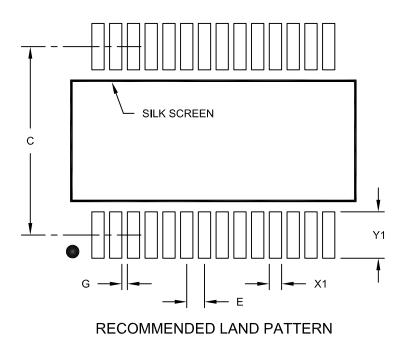


FIGURE 32-58: LFINTOSC Frequency, PIC16F1788/9 Only.


FIGURE 32-59: WDT Time-Out Period, PIC16F1788/9 Only.

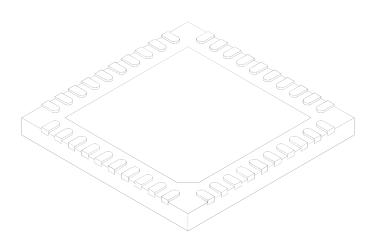
PIC16LF1788/9 Only.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	Dimension Limits					
Contact Pitch	E		0.65 BSC			
Contact Pad Spacing	С		7.20			
Contact Pad Width (X28)	X1			0.45		
Contact Pad Length (X28)	Y1			1.75		
Distance Between Pads	G	0.20				

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimension	MIN	NOM	MAX			
Number of Pins	N		40			
Pitch	е		0.40 BSC			
Overall Height	A	0.45	0.50	0.55		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3		0.127 REF			
Overall Width	E		5.00 BSC			
Exposed Pad Width	E2	3.60	3.70	3.80		
Overall Length	D		5.00 BSC			
Exposed Pad Length	D2	3.60	3.70	3.80		
Contact Width	b	0.15	0.20	0.25		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	ad K 0.20			-		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-156A Sheet 2 of 2

THE MICROCHIP WEBSITE

Microchip provides online support via our website site at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://microchip.com/support

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820