

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x8b, 3x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1788-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram – 40-Pin PDIP

0/1	28-Pin SPDIP, SOIC, SSOP	28-Pin QFN,	ADC	Reference	Comparator	Operation Amplifiers	8-bit/ 5-bit DAC	Timers	PSMC	ссь	EUSART	dSSM	Interrupt	Pull-up	Basic
RC6	17	14	-	_	—	—	—	—	PSMC2A	CCP3	TX CK	-	IOC	Y	
RC7	18	15	_	_	C4OUT	—	—	—	PSMC2B	—	RX DT	-	IOC	Y	—
RE3	1	26	_	—	—	—	—	—	—	—	_	_	IOC	Y	MCLR VPP
VDD	20	17	—	—	_	—	—	_	—	-	_	—			Vdd
Vss	8, 19	5, 16	_	—	—	—	—	—	—	—	—	_	—	_	Vss

TABLE 1: 28-PIN ALLOCATION TABLE (PIC16(L)F1788) (Continued)

Note 1: Alternate pin function selected with the APFCON1 (Register 13-1) and APFCON2 (Register 13-2) registers.

TABLE 3-6:PIC16(L)F1788/9 MEMORYMAP (BANK 10 DETAILS)

Note 1: PIC16(L)F1789 only.

TABLE 3-7:PIC16(L)F1788/9 MEMORYMAP (BANK 11 DETAILS)

	BANK 11	
58Ch		
	Unimplemented Read as '0'	
590h		
591h	DAC2CON0	
592h	DAC2CON1	
593h	DAC3CON0	
594h	DAC3CON1	
595h	DAC4CON0	
596h	DAC4CON1	
597h		
	Unimplemented Read as '0'	
59Fh		
and a second	— I halasa baasa anta di alata	

Legend: Unimplemented data memory locations, read as '0'.

TABLE 3-8:PIC16(L)F1788/9 MEMORYMAP (BANK 31 DETAILS)

BANK 31

F8Ch FE3h	Unimplemented Read as '0'
FE4h	STATUS_SHAD
FE5h	WREG_SHAD
FE6h	BSR_SHAD
FE7h	PCLATH_SHAD
FE8h	FSR0L_SHAD
FE9h	FSR0H_SHAD
FEAh	FSR1L_SHAD
FEBh	FSR1H_SHAD
FECh	—
FEDh	STKPTR
FEEh	TOSL
FEFh	TOSH

Legend: Unimplemented data memory locations, read as '0'.

TABLE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	k 11-15										
58Ch 590h	_	Unimplemente	d							_	—
591h	DAC2CON0	DAC2EN		DAC2OE1	DAC2OE2	DAC2PS	SS<1:0>			0-00 00	0-00 00
592h	DAC2CON1						DAC2R<4:0>			0 0000	0 0000
593h	DAC3CON0	DAC3EN		DAC3OE1	DAC3OE2	DAC30E2 DAC3PSS<1:0> 0				0-00 00	0-00 00
594h	DAC3CON1					DAC3R<4:0>				0 0000	0 0000
595h	DAC4CON0	DAC4EN		DAC4OE1	DAC4OE2	DAC4OE2 DAC4PSS<1:0>				0-00 00	0-00 00
596h	DAC4CON1						DAC4R<4:0>			0 0000	0 0000
597h 59Fh	_	Unimplemented									_
Ban	k 16-28										
x0Ch or x8Ch to x1Fh or x9Fh	_	Unimplemente	d							_	_

Legend: x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

Note 1: These registers can be addressed from any bank.

2: Unimplemented, read as '1'.

3: PIC16(L)F1789 only.

4: PIC16F1788/9 only.

TABLE 3-12:	SPECIAL FUNCTION REGISTER SUMMARY	(CONTINUED)

-						· · · · ·						
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets	
Ban	Bank 31											
F8Ch to FE3h	_	Unimplemente	Inimplemented								_	
FE4h	STATUS_ SHAD	—	—	—	—	—	Z	DC	С	xxx	:uuu	
FE5h	WREG_SHAD	Working Regis	ter Shadow							XXXX XXXX	uuuu uuuu	
FE6h	BSR_SHAD	_	—	—	Bank Select R	egister Shadov	v			x xxxx	u uuuu	
FE7h	PCLATH_ SHAD	—	Program Co	unter Latch Hig	h Register Sha	dow				-xxx xxxx	uuuu uuuu	
FE8h	FSR0L_SHAD	Indirect Data N	lemory Addre	ess 0 Low Point	er Shadow					XXXX XXXX	uuuu uuuu	
FE9h	FSR0H_ SHAD	Indirect Data N	lemory Addre	ess 0 High Poin	ter Shadow					XXXX XXXX	uuuu uuuu	
FEAh	FSR1L_SHAD	Indirect Data N	lemory Addre	ess 1 Low Point	er Shadow					XXXX XXXX	uuuu uuuu	
FEBh	FSR1H_ SHAD	Indirect Data N	Indirect Data Memory Address 1 High Pointer Shadow								uuuu uuuu	
FECh	_	Unimplemente	Unimplemented								—	
FEDh	STKPTR	—	—	—	Current Stack	Pointer				1 1111	1 1111	
FEEh	TOSL	Top of Stack L	ow byte							XXXX XXXX	uuuu uuuu	
FEFh	TOSH	_	Top of Stack	High byte						-xxx xxxx	-uuu uuuu	

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. These registers can be addressed from any bank. Unimplemented, read as '1'. Legend:

Note

1: 2:

PIC16(L)F1789 only. 3:

4: PIC16F1788/9 only.

12.3 Flash Program Memory Overview

It is important to understand the Flash program memory structure for erase and programming operations. Flash program memory is arranged in rows. A row consists of a fixed number of 14-bit program memory words. A row is the minimum block size that can be erased by user software.

Flash program memory may only be written or erased if the destination address is in a segment of memory that is not write-protected, as defined in bits WRT<1:0> of Configuration Words.

After a row has been erased, the user can reprogram all or a portion of this row. Data to be written into the program memory row is written to 14-bit wide data write latches. These write latches are not directly accessible to the user, but may be loaded via sequential writes to the EEDATH:EEDATL register pair.

Note:	If the user wants to modify only a portion
	of a previously programmed row, then the
	contents of the entire row must be read
	and saved in RAM prior to the erase.

The number of data write latches may not be equivalent to the number of row locations. During programming, user software may need to fill the set of write latches and initiate a programming operation multiple times in order to fully reprogram an erased row. For example, a device with a row size of 32 words and eight write latches will need to load the write latches with data and initiate a programming operation four times.

The size of a program memory row and the number of program memory write latches may vary by device. See Table 12-1 for details.

12.3.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the Least and Most Significant address bits to the EEADRH:EEADRL register pair.
- 2. Clear the CFGS bit of the EECON1 register.
- 3. Set the EEPGD control bit of the EECON1 register.
- 4. Then, set control bit RD of the EECON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF EECON1, RD" instruction to be ignored. The data is available in the very next cycle, in the EEDATH:EEDATL register pair; therefore, it can be read as two bytes in the following instructions.

EEDATH:EEDATL register pair will hold this value until another read or until it is written to by the user.

- Note 1: The two instructions following a program memory read are required to be NOPS. This prevents the user from executing a two-cycle instruction on the next instruction after the RD bit is set.
 - 2: Flash program memory can be read regardless of the setting of the CP bit.

TABLE 12-1: FLASH MEMORY ORGANIZATION BY DEVICE

Device	Erase Block (Row) Size/Boundary	Number of Write Latches/Boundary
PIC16(L)F1788/9	32 words, EEADRL<4:0> = 00000	32 words, EEADRL<4:0> = 00000

13.3.7 PORTA FUNCTIONS AND OUTPUT PRIORITIES

Each PORTA pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 13-2.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input functions, such as ADC, and comparator inputs, are not shown in the priority lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown in the priority list.

Pin Name	Function Priority ⁽¹⁾						
RA0	RA0						
RA1	OPA1OUT RA1						
RA2	DAC1OUT1 RA2						
RA3	RA3						
RA4	C1OUT RA4						
RA5	C2OUT RA5						
RA6	CLKOUT C2OUT RA6						
RA7	RA7						

TABLE 13-2: PORTA OUTPUT PRIORITY

Note 1: Priority listed from highest to lowest.

U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	
	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	
bit 7							bit (
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'		
u = Bit is unchanged		x = Bit is unknown		-n/n = Value at POR and BOR/Value at all other Re				
'1' = Bit is set		'0' = Bit is clea	ared					

REGISTER 13-14: ANSELB: PORTB ANALOG SELECT REGISTER

bit 7 Unimplemented: Read as '0'

bit 6-0 **ANSB<6:0>**: Analog Select between Analog or Digital Function on pins RB<6:0>, respectively 0 = Digital I/O. Pin is assigned to port or digital special function. 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.

REGISTER 13-15: WPUB: WEAK PULL-UP PORTB REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUB0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 WPUB<7:0>: Weak Pull-up Register bits

- 1 = Pull-up enabled
- 0 = Pull-up disabled

Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.

2: The weak pull-up device is automatically disabled if the pin is in configured as an output.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 13-36: LATE: PORTE DATA LATCH REGISTER⁽²⁾

U-0	U-0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u
—	—	_	—	_	LATE2	LATE1	LATE0
bit 7							bit 0
Legend:							

Logonan		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-3 Unimplemented: Read as '0'

bit 2-0 LATE<2:0>: PORTE Output Latch Value bits⁽²⁾

- **Note 1:** Writes to PORTE are actually written to corresponding LATE register. Reads from PORTE register is return of actual I/O pin values.
 - **2:** LATE<2:0> are available on PIC16(L)F1789 only.

REGISTER 13-37: ANSELE: PORTE ANALOG SELECT REGISTER⁽²⁾

U-0	U-0	U-0	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1
—	—	—	—	—	ANSE2	ANSE1	ANSE0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 2-0 **ANSE<2:0>**: Analog Select between Analog or Digital Function on pins RE<2:0>, respectively

- 0 = Digital I/O. Pin is assigned to port or digital special function.
- 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
- **Note 1:** When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.
 - 2: ANSELE<2:0> are available on PIC16(L)F1789 only.

'1' = Bit is set

R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	
IOCxF7	IOCxF6	IOCxF5	IOCxF4	IOCxF3	IOCxF2	IOCxF1	IOCxF0	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'						
u = Bit is unchanged $x = Bit$ is unknown			-n/n = Value at POR and BOR/Value at all other Resets					

REGISTER 14-3: IOCxF: INTERRUPT-ON-CHANGE FLAG REGISTER

'0' = Bit is cleared

bit 7-0 IOCxF<7:0>: Interrupt-on-Change Flag bits⁽¹⁾

1 = An enabled change was detected on the associated pin. Set when IOCxPx = 1 and a rising edge was detected RBx, or when IOCxNx = 1 and a falling edge was detected on RBx.

HS - Bit is set in hardware

0 = No change was detected, or the user cleared the detected change.

Note 1: For IOCEF register, bit 3 (IOCEF3) is the only implemented bit in the register.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	—	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	143
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97
IOCAF	IOCAF7	IOCAF6	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	164
IOCAN	IOCAN7	IOCAN6	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	163
IOCAP	IOCAP7	IOCAP6	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	163
IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	IOCBF3	IOCBF2	IOCBF1	IOCBF0	164
IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4	IOCBN3	IOCBN2	IOCBN1	IOCBN0	163
IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	IOCBP3	IOCBP2	IOCBP1	IOCBP0	163
IOCCF	IOCCF7	IOCCF6	IOCCF5	IOCCF4	IOCCF3	IOCCF2	IOCCF1	IOCCF0	164
IOCCN	IOCCN7	IOCCN6	IOCCN5	IOCCN4	IOCCN3	IOCCN2	IOCCN1	IOCCN0	163
IOCCP	IOCCP7	IOCCP6	IOCCP5	IOCCP4	IOCCP3	IOCCP2	IOCCP1	IOCCP0	163
IOCEF	—	—	—	—	IOCEF3	—	—	—	164
IOCEN	—	_	—	—	IOCEN3	_	_	—	163
IOCEP	—	—	—	—	IOCEP3	—	—	—	163
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	142

TABLE 14-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPT-ON-CHANGE

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupt-on-change.

21.0 COMPARATOR MODULE

Comparators are used to interface analog circuits to a digital circuit by comparing two analog voltages and providing a digital indication of their relative magnitudes. Comparators are very useful mixed signal building blocks because they provide analog functionality independent of program execution. The analog comparator module includes the following features:

- · Independent comparator control
- Programmable input selection
- · Comparator output is available internally/externally
- Programmable output polarity
- Interrupt-on-change
- · Wake-up from Sleep
- Programmable Speed/Power optimization
- · PWM shutdown
- Programmable and fixed voltage reference

21.1 Comparator Overview

A single comparator is shown in Figure 21-1 along with the relationship between the analog input levels and the digital output. When the analog voltage at VIN+ is less than the analog voltage at VIN-, the output of the comparator is a digital low level. When the analog voltage at VIN+ is greater than the analog voltage at VIN-, the output of the comparator is a digital high level.

The comparators available for this device are located in Table 21-1.

TABLE 21-1: COMPARATOR AVAILABILITY PER DEVICE

Device	C1	C2	C3	C4
PIC16(L)F1788/9	•	•	•	•

SINGLE COMPARATOR

21.10 Analog Input Connection Considerations

A simplified circuit for an analog input is shown in Figure 21-4. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

21.10.1 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see **Section 13.1 "Alternate Pin Function**" for more information.

FIGURE 21-4: ANALOG INPUT MODEL

R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W/HC-0/u	R-x/x	R/W-0/u	R/W-0/u
TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	T1GSS	;<1:0>
bit 7		I	I	1			bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared	HC = Bit is cle	eared by hardw	vare	
bit 7 TMR1GE: Timer1 Gate Enable bit <u>If TMR1ON = 0</u> : This bit is ignored <u>If TMR1ON = 1</u> : 1 = Timer1 counting is controlled by the Timer1 gate function 0 = Timer1 counts regardless of Timer1 gate function							
bit 6	T1GPOL: Tim	ner1 Gate Pola	rity bit				
	1 = Timer1 ga 0 = Timer1 ga	ate is active-hig ate is active-lo	gh (Timer1 cou w (Timer1 cou	unts when gate nts when gate i	is high) s low)		
bit 5	T1GTM: Time	er1 Gate Toggle	e Mode bit				
	1 = Timer1 G 0 = Timer1 G Timer1 gate fl	ate Toggle mo ate Toggle mo ip-flop toggles	de is enabled de is disabled on every rising	and toggle flip- g edge.	flop is cleared		
bit 4	T1GSPM: Tin	ner1 Gate Sing	le-Pulse Mode	e bit			
	1 = Timer1 G 0 = Timer1 G	ate Single-Pul ate Single-Pul	se mode is en se mode is dis	abled and is co abled	ntrolling Timer1	1 gate	
bit 3	T1GGO/DON	E: Timer1 Gate	e Single-Pulse	Acquisition Sta	atus bit		
	1 = Timer1 ga 0 = Timer1 ga	ate single-puls ate single-puls	e acquisition is e acquisition h	s ready, waiting as completed o	for an edge or has not been	started	
bit 2	T1GVAL: Tim	er1 Gate Curre	ent State bit				
	Indicates the Unaffected by	current state o / Timer1 Gate I	f the Timer1 ga Enable (TMR1	ate that could b GE).	e provided to T	MR1H:TMR1L	
bit 1-0	T1GSS<1:0>	: Timer1 Gate	Source Select	bits			
	<pre>11 = Comparator 2 optionally synchronized output (sync_C2OUT) 10 = Comparator 1 optionally synchronized output (sync_C1OUT) 01 = Timer0 overflow output 00 = Timer1 gate pin</pre>						

REGISTER 23-2: T1GCON: TIMER1 GATE CONTROL REGISTER

26.3.9 ECCP COMPATIBLE FULL-BRIDGE PWM

This mode of operation is designed to match the Full-Bridge mode from the ECCP module. It is called ECCP compatible as the term "full-bridge" alone has different connotations in regards to the output waveforms.

Full-Bridge Compatible mode uses the same waveform events as the single PWM mode to generate the output waveforms.

There are both Forward and Reverse modes available for this operation, again to match the ECCP implementation. Direction is selected with the mode control bits.

26.3.9.1 Mode Features

- · Dead-band control available on direction switch
 - Changing from forward to reverse uses the falling edge dead-band counters.
 - Changing from reverse to forward uses the rising edge dead-band counters.
- · No steering control available
- PWM is output on the following four pins only:
 - PSMCxA
 - PSMCxB
 - PSMCxC
 - PSMCxD

26.3.9.2 Waveform Generation - Forward

In this mode of operation, three of the four pins are static. PSMCxA is the only output that changes based on rising edge and falling edge events.

Static Signal Assignment

- · Outputs set to active state
 - PSMCxD
- · Outputs set to inactive state
 - PSMCxB
 - PSMCxC

Rising Edge Event

· PSMCxA is set active

Falling Edge Event

PSMCxA is set inactive

26.3.9.3 Waveform Generation – Reverse

In this mode of operation, three of the four pins are static. Only PSMCxB toggles based on rising edge and falling edge events.

Static Signal Assignment

- · Outputs set to active state
 - PSMCxC
- · Outputs set to inactive state
 - PSMCxA
- PSMCxD
- Rising Edge Event
- PSMCxB is set active

Falling Edge Event

· PSMCxB is set inactive

FIGURE 26-12: ECCP COMPATIBLE FULL-BRIDGE PWM WAVEFORM – PSMCXSTR0 = 0FH

PWM Period Number	1	2	3	-4	5	6	7	-8	9	—10—	11	-12
	•	Forward	mode o	peration-			Reverse	e mode c	peration			
Period Event	□	Γ						<u> </u>]			
Falling Edge Event												_
PSMCxA												F
PSMCxB											1 1 1	_
PSMCxC											- 1 - 1 - 1	
					-	 ←Fallir	g Edge I	Dead Ba	Rising	Edge De	ad Ban	b
PSMCxD												†

28.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (INTOSC). However, the INTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind.

The first (preferred) method uses the OSCTUNE register to adjust the INTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 6.2.2** "Internal Clock Sources" for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 28.4.1** "**Auto-Baud Detect**"). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.

LSLF	Logical Left Shift
Syntax:	[<i>label</i>]LSLF f{,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f<7>) \rightarrow C$ $(f<6:0>) \rightarrow dest<7:1>$ $0 \rightarrow dest<0>$
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the left through the Carry flag. A '0' is shifted into the LSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'. $x \leftarrow register f \leftarrow 0$

LSRF	Logical Right Shift
Syntax:	[<i>label</i>]LSRF f{,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	0 → dest<7> (f<7:1>) → dest<6:0>, (f<0>) → C,
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. A '0' is shifted into the MSb. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in register 'f'.

0 register f	-	Х
--------------	---	---

MOVF	Move f			
Syntax:	[<i>label</i>] MOVF f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	$(f) \rightarrow (dest)$			
Status Affected:	Z			
Description:	The contents of register f is moved to a destination dependent upon the status of d. If $d = 0$, destination is W register. If $d = 1$, the destination is file register f itself. $d = 1$ is useful to test a file register since status flag Z is affected.			
Words:	1			
Cycles:	1			
Example:	MOVF FSR, 0			
	After Instruction W = value in FSR register Z = 1			

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 32-25: IDD Typical, HFINTOSC Mode, PIC16F1788/9 Only.

FIGURE 32-26: IDD Maximum, HFINTOSC Mode, PIC16F1788/9 Only.

FIGURE 32-27: IDD Typical, HS Oscillator, 25°C, PIC16LF1788/9 Only.

FIGURE 32-28: IDD Maximum, HS Oscillator, PIC16LF1788/9 Only.

FIGURE 32-29: IDD Typical, HS Oscillator, 25°C, PIC16F1788/9 Only.

FIGURE 32-30: IDD Maximum, HS Oscillator, PIC16F1788/9 Only.

(mA)

8

Package Marking Information (Continued)

34.2 Package Details

The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES		
Dimension Limits		MIN	NOM	MAX
Number of Pins	Ν	28		
Pitch	е	.100 BSC		
Top to Seating Plane	А	-	_	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	_	.430

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

44-Lead Plastic Thin Quad Flatpack (PT) 10X10X1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

r				
	Units	Units MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E	0.80 BSC		
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076B