

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	24
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x12b; D/A 1x8b, 3x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SSOP (0.209", 5.30mm Width)
Supplier Device Package	28-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1788-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

IAD			zo-FIN ALLOCATION TABLE (FICTO(L)F1766) (Continued)												
0/1	28-Pin SPDIP, SOIC, SSOP	28-Pin QFN,	ADC	Reference	Comparator	Operation Amplifiers	8-bit/ 5-bit DAC	Timers	PSMC	ссь	EUSART	dSSM	Interrupt	Pull-up	Basic
RC6	17	14	-	_	—	_	_	-	PSMC2A	CCP3	TX CK		IOC	Y	_
RC7	18	15	Ι	_	C4OUT	Ι	_	-	PSMC2B	-	RX DT		IOC	Y	
RE3	1	26	Ι	—	-		—		—		-		IOC	Y	MCLR VPP
VDD	20	17		_	—	_	—	—	_	—	_	—		—	Vdd
Vss	8, 19	5, 16	—	_	_	—	_	_	_	_	-		—	—	Vss
Mate	4.		Alternate sin function extend with the ADECONIA (Desider 42.4) and ADECONIA (Desider 42.0) resident												

TABLE 1: 28-PIN ALLOCATION TABLE (PIC16(L)F1788) (Continued)

Note 1: Alternate pin function selected with the APFCON1 (Register 13-1) and APFCON2 (Register 13-2) registers.

IADI	LE 3-12:	SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)							1		
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	k 4										
20Ch	WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	1111 1111	1111 1111
20Dh	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	1111 1111
20Eh	WPUC	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	1111 1111	1111 1111
20Fh	WPUD ⁽³⁾	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0	1111 1111	1111 1111
210h	WPUE	—	—	-	-	WPUE3	WPUE2 ⁽³⁾	WPUE1 ⁽³⁾	WPUE0 ⁽³⁾	1111	1111
211h	SSP1BUF	Synchronous	Serial Port Re	ceive Buffer/Tra	ansmit Register					XXXX XXXX	uuuu uuuu
212h	SSP1ADD				ADD<	7:0>				0000 0000	0000 0000
213h	SSP1MSK				MSK<	7:0>				1111 1111	1111 1111
214h	SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
215h	SSP1CON1	WCOL	SSPOV	SSPEN	СКР		SSPN	1<3:0>		0000 0000	0000 0000
216h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
217h	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
218h				•	•		•		•		
 21Fh	-	Unimplemente	d							—	_
Ban	k 5										
28Ch	ODCONA	Open-Drain Co	Open-Drain Control for PORTA								0000 0000
28Dh	ODCONB	Open-Drain Control for PORTB								0000 0000	0000 0000
28Eh	ODCONC	Open-Drain Control for PORTC								0000 0000	0000 0000
28Fh	ODCOND ⁽³⁾	Open-Drain Control for PORTD								0000 0000	0000 0000
290h	ODCONE ⁽³⁾	—	—	—	—	—	ODE2	ODE1	ODE0	000	uuu
291h	CCPR1L	Capture/Comp	oare/PWM Re	gister 1 (LSB)						xxxx xxxx	uuuu uuuu
292h	CCPR1H	Capture/Comp	oare/PWM Re	gister 1 (MSB)						xxxx xxxx	uuuu uuuu
293h	CCP1CON	—	—	DC1E	8<1:0>		CCP1I	V<3:0>		00 0000	00 0000
294h		Unimplemente	ad							_	_
297h		ommpiemente	,u								
298h	CCPR2L	Capture/Comp	oare/PWM Re	gister 2 (LSB)						xxxx xxxx	uuuu uuuu
299h	CCPR2H	Capture/Comp	oare/PWM Re	gister 2 (MSB)						xxxx xxxx	uuuu uuuu
29Ah	CCP2CON	—	—	DC2E	8<1:0>		CCP2I	V<3:0>		00 0000	00 0000
29Bh 29Fh	_	Unimplemente	ed							-	-
Ban	k 6										
30Ch	SLRCONA	Slew Rate Cor	ntrol for PORT	Ā						0000 0000	0000 0000
30Dh	SLRCONB	Slew Rate Control for PORTB								0000 0000	0000 0000
30Eh	SLRCONC	Slew Rate Control for PORTC							1	0000 0000	
30Fh	SLRCOND(3)	Slew Rate Cor	ntrol for PORT	D						0000 0000	0000 0000
310h	SLRCONE ⁽³⁾	—	—	—	—	—	SLRE2	SLRE1	SLRE0	111	111
311h	CCPR3L	Capture/Comp	are/PWM Re	gister 3 (LSB)						xxxx xxxx	uuuu uuuu
312h	CCPR3H	Capture/Comp	are/PWM Re	gister 3 (MSB)						xxxx xxxx	uuuu uuuu
313h	CCP3CON	—	—	DC3B	8<1:0>		CCP3I	M<3:0>		00 0000	00 0000
314h 31Fh	_	Unimplemented							-	_	

x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. These registers can be addressed from any bank. Unimplemented, read as '1'. PIC16(L)F1789 only. Legend:

Note

1: 2:

3:

PIC16F1788/9 only. 4:

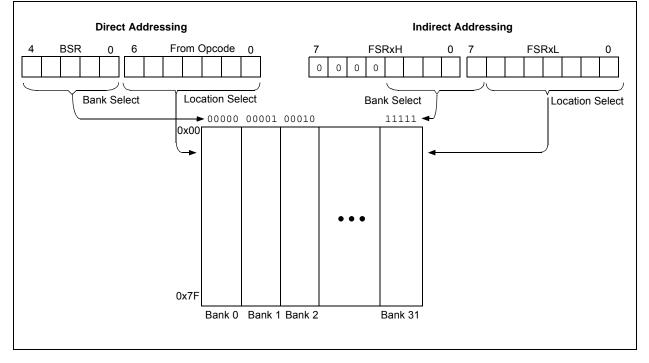
SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED) TABLE 3-12

IABI	LE 3-12: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)										
Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	Bank 30										
F0Ch F10h	_	Unimplemented								_	
F11h	PSMC4CON	PSMC4EN	PSMC4LD	P4DBFE	P4DBRE		P4MOE)E<3:0>		0000 0000	0000 0000
F12h	PSMC4MDL	P4MDLEN	P4MDLPOL	P4MDLBIT	_		P4MSR	RC<3:0>		000- 0000	000- 0000
F13h	PSMC4SYNC	P4POFST	P4PRPOL	P4DCPOL	_	_		P4SYNC<2:0>	>	000000	000000
F14h	PSMC4CLK	_	_	P4CPF	RE<1:0>	_	—	P4CSR	RC<1:0>	0000	0000
F15h	PSMC4OEN	_	_	_	—	_	—	P4OEB	P40EA	00	00
F16h	PSMC4POL	_	P4INPOL	_	—	—	—	P4POLB	P4POLA	-000	-000
F17h	PSMC4BLNK	_	_	P4FEB	M<1:0>	—	—	P4REB	M<1:0>	0000	0000
F18h	PSMC4REBS	P4REBSIN	—	_	P4REBSC4	P4REBSC3	P4REBSC2	P4REBSC1	_	00 000-	00 000-
F19h	PSMC4FEBS	P4FEBSIN	—	_	P4FEBSC4	P4FEBSC3	P4FEBSC2	P4FEBSC1	_	00 000-	00 000-
F1Ah	PSMC4PHS	P4PHSIN	_	_	P4PHSC4	P4PHSC3	P4PHSC2	P4PHSC1	P4PHST	00 0000	00 0000
F1Bh	PSMC4DCS	P4DCSIN	_	_	P4DCSC4	P4DCSC3	P4DCSC2	P4DCSC1	P4DCST	00 0000	00 0000
F1Ch	PSMC4PRS	P4PRSIN	_	_	P4PRSC4	P4PRSC3	P4PRSC2	P4PRSC1	P4PRST	00 0000	00 0000
F1Dh	PSMC4ASDC	P4ASE	P4ASDEN	P4ARSEN		—	—	—	P4ASDOV	0000	0000
F1Eh	PSMC4ASDL	—	—	—		—	—	P4ASDLB	P4ASDLA	00	00
F1Fh	PSMC4ASDS	P4ASDSIN	—	—	P4ASDSC4	P4ASDSC3	P4ASDSC2	P4ASDSC1	—	00 000-	00 000-
F20h	PSMC4INT	P4TOVIE	P4TPHIE	P4TDCIE	P4TPRIE	P4TOVIF	P4TPHIF	P4TDCIF	P4TPRIF	0000 0000	0000 0000
F21h	PSMC4PHL	Phase Low Co	unt							0000 0000	0000 0000
F22h	PSMC4PHH	Phase High Co	ount							0000 0000	0000 0000
F23h	PSMC4DCL	Duty Cycle Lov	w Count							0000 0000	0000 0000
F24h	PSMC4DCH	Duty Cycle Hig	gh Count							0000 0000	0000 0000
F25h	PSMC4PRL	Period Low Co	bunt							0000 0000	0000 0000
F26h	PSMC4PRH	Period High Co	ount							0000 0000	0000 0000
F27h	PSMC4TMRL	Time base Low	v Counter							0000 0001	0000 0001
F28h	PSMC4TMRH	Time base Hig	Fime base High Counter								0000 0000
F29h	PSMC4DBR	Rising Edge D	Rising Edge Dead-band Counter								0000 0000
F2Ah	PSMC4DBF	Falling Edge D	Falling Edge Dead-band Counter								0000 0000
F2Bh	PSMC4BLKR	Rising Edge B	Rising Edge Blanking Counter								0000 0000
F2Ch	PSMC4BLKF	Falling Edge B	Falling Edge Blanking Counter 0000 000 000								0000 0000
F2Dh	PSMC4FFA	_	— — — Fractional Frequency Adjust Register								0000
F2Eh	PSMC4STR0	_	_	_	_	—	—	P4STRB	P4STRA	01	01
F2Fh	PSMC4STR1	P4SSYNC	_	_	_		_	P4LSMEN	P4HSMEN	000	000

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. Legend:

Note 1: These registers can be addressed from any bank.

Unimplemented, read as '1'. 2:


3: PIC16(L)F1789 only.

PIC16F1788/9 only. 4:

3.6.1 TRADITIONAL DATA MEMORY

The traditional data memory is a region from FSR address 0x000 to FSR address 0xFFF. The addresses correspond to the absolute addresses of all SFR, GPR and common registers.

4.0 DEVICE CONFIGURATION

Device configuration consists of Configuration Words, Code Protection and Device ID.

4.1 Configuration Words

There are several Configuration Word bits that allow different oscillator and memory protection options. These are implemented as Configuration Word 1 at 8007h and Configuration Word 2 at 8008h.

Note: The DEBUG bit in Configuration Words is managed automatically by device development tools including debuggers and programmers. For normal device operation, this bit should be maintained as a '1'.

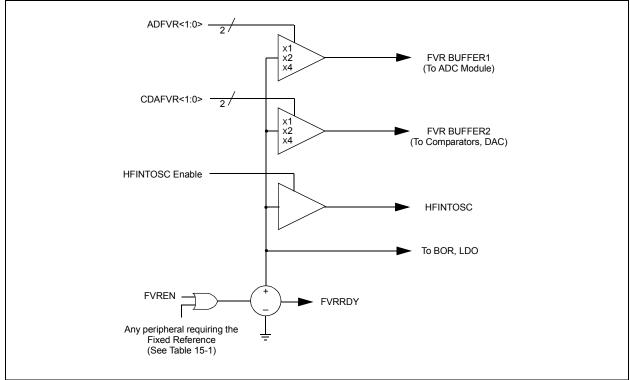
W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
			EEPROM Co	ntrol Register 2			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable	bit	U = Unimplen	nented bit, read	as '0'	
S = Bit can only b	be set	x = Bit is unknown		-n/n = Value a	t POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	ared				

REGISTER 12-6: EECON2: EEPROM CONTROL 2 REGISTER

bit 7-0 Data EEPROM Unlock Pattern bits

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the EECON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes. Refer to **Section 12.2.2** "Writing to the Data EEPROM Memory" for more information.

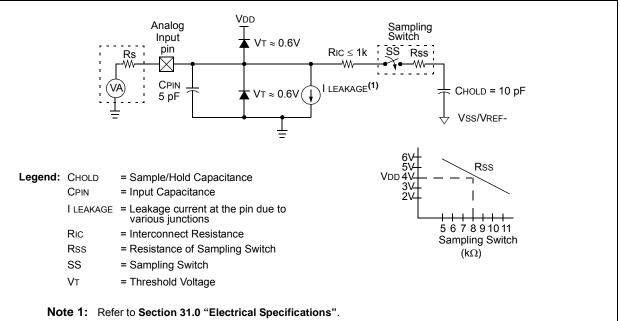
TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM

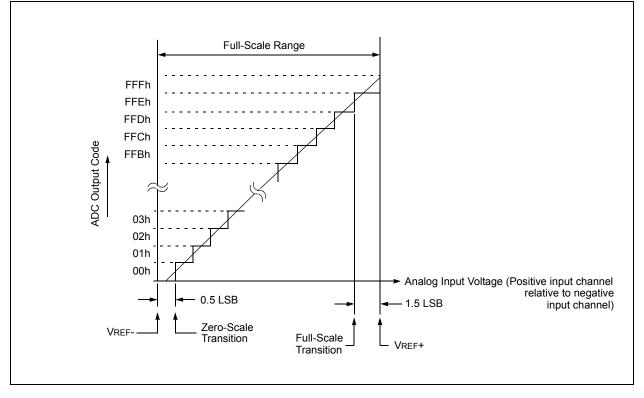

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
EECON1	EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	128
EECON2	2 EEPROM Control Register 2 (not a physical register)								129*
EEADRL	EEADRL<7:0>								127
EEADRH	(1) EEADRH<6:0>								127
EEDATL				EEDAT	L<7:0>				127
EEDATH	—	_			EEDAT	H<5:0>			127
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	C4IE	C3IE	CCP2IE	99
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	C4IF	C3IF	CCP2IF	103

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by data EEPROM module.

* Page provides register information.

2: Unimplemented, read as '1'.




TABLE 15-1: PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)

Peripheral	Conditions	Description
HFINTOSC	FOSC<2:0> = 100 and IRCF<3:0> ≠ 000x	INTOSC is active and device is not in Sleep
	BOREN<1:0> = 11	BOR always enabled
BOR	BOREN<1:0> = 10 and BORFS = 1	BOR disabled in Sleep mode, BOR Fast Start enabled.
	BOREN<1:0> = 01 and BORFS = 1	BOR under software control, BOR Fast Start enabled
LDO	All PIC16F1788/9 devices, when VREGPM = 1 and not in Sleep	The device runs off of the ULP regulator when in Sleep mode.
PSMC 64 MHz	PxSRC<1:0>	64 MHz clock forces HFINTOSC on during Sleep.

22.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A software programmable prescaler is available for exclusive use with Timer0. The prescaler is enabled by clearing the PSA bit of the OPTION_REG register.

Note:	The Watchdog Timer (WDT) uses its own
	independent prescaler.

There are eight prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION_REG register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be disabled by setting the PSA bit of the OPTION_REG register.

The prescaler is not readable or writable. All instructions writing to the TMR0 register will clear the prescaler.

22.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The TMR0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The TMR0IF bit can only be cleared in software. The Timer0 interrupt enable is the TMR0IE bit of the INTCON register.

Note:	The Timer0 interrupt cannot wake the
	processor from Sleep since the timer is
	frozen during Sleep.

22.1.5 8-BIT COUNTER MODE SYNCHRONIZATION

When in 8-Bit Counter mode, the incrementing edge on the T0CKI pin must be synchronized to the instruction clock. Synchronization can be accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the instruction clock. The high and low periods of the external clocking source must meet the timing requirements as shown in **Section 31.0 "Electrical Specifications"**.

22.1.6 OPERATION DURING SLEEP

Timer0 cannot operate while the processor is in Sleep mode. The contents of the TMR0 register will remain unchanged while the processor is in Sleep mode.

23.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 23-1 displays the Timer1 enable selections.

TABLE 23-1:	TIMER1 ENABLE
	SELECTIONS

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

23.2 Clock Source Selection

The TMR1CS<1:0> and T1OSCEN bits of the T1CON register are used to select the clock source for Timer1. Table 23-2 displays the clock source selections.

23.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, the TMR1H:TMR1L register pair will increment on multiples of Fosc as determined by the Timer1 prescaler.

When the Fosc internal clock source is selected, the Timer1 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1 value. To utilize the full resolution of Timer1, an asynchronous input signal must be used to gate the Timer1 clock input.

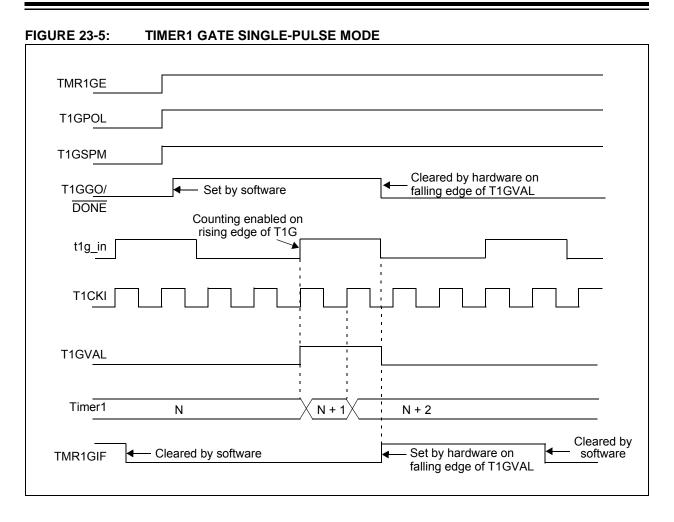
The following asynchronous sources may be used:

- Asynchronous event on the T1G pin to Timer1 gate
- C1 or C2 comparator input to Timer1 gate

23.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI, which can be synchronized to the microcontroller system clock or can run asynchronously.


When used as a timer with a clock oscillator, an external 32.768 kHz crystal can be used in conjunction with the dedicated internal oscillator circuit.

Note: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions:

- Timer1 enabled after POR
- Write to TMR1H or TMR1L
- · Timer1 is disabled
- Timer1 is disabled (TMR1ON = 0) when T1CKI is high then Timer1 is enabled (TMR1ON=1) when T1CKI is low.

TMR1CS<1:0>	T1OSCEN	Clock Source
11	х	Reserved
10	1	Timer1 Oscillator
10	0	External Clocking on T1CKI Pin
01	х	System Clock (Fosc)
00	x	Instruction Clock (Fosc/4)

TABLE 23-2: CLOCK SOURCE SELECTIONS

24.1 Timer2 Operation

The clock input to the Timer2 modules is the system instruction clock (Fosc/4).

A 4-bit counter/prescaler on the clock input allows direct input, divide-by-4 and divide-by-16 prescale options. These options are selected by the prescaler control bits, T2CKPS<1:0> of the T2CON register. The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/postscaler (see Section 24.2 "Timer2 Interrupt").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, whereas the PR2 register initializes to FFh. Both the prescaler and postscaler counters are cleared on the following events:

- · a write to the TMR2 register
- · a write to the T2CON register
- Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- Watchdog Timer (WDT) Reset
- · Stack Overflow Reset
- Stack Underflow Reset
- RESET Instruction

Note:	TMR2	is	not	cleared	when	T2CON	is
	written.						

24.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt. The Timer2 output signal (TMR2-to-PR2 match) provides the input for the 4-bit counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF of the PIR1 register. The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE, of the PIE1 register.

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0>, of the T2CON register.

24.3 Timer2 Output

The unscaled output of TMR2 is available primarily to the CCP modules, where it is used as a time base for operations in PWM mode.

Timer2 can be optionally used as the shift clock source for the MSSP module operating in SPI mode. Additional information is provided in Section 27.0 "Master Synchronous Serial Port (MSSP) Module"

24.4 Timer2 Operation During Sleep

The Timer2 timers cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and PR2 registers will remain unchanged while the processor is in Sleep mode.

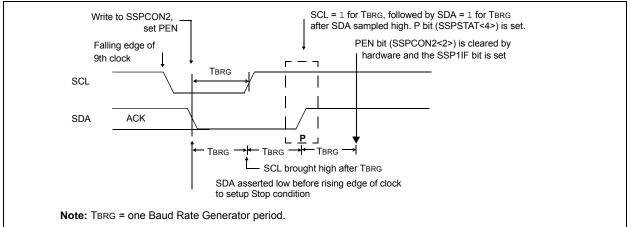

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page		
CCP2CON	—	_	DC2B	<1:0>		CCP2M<3:0>					
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97		
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	98		
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	102		
PR2	Timer2 Mo	dule Period	Register						220*		
T2CON	_	- T2OUTPS<3:0> TMR2ON T2CKPS<1:0>									
TMR2	Holding Re	gister for the	e 8-bit TMR2	2 Register					220*		

TABLE 24-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER2

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for Timer2 module.

* Page provides register information.

27.6.10 SLEEP OPERATION

While in Sleep mode, the I²C slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

27.6.11 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

27.6.12 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I²C bus may be taken when the P bit of the SSPSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCL1IF bit.

The states where arbitration can be lost are:

- Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

27.6.13 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin is '0', then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCL1IF and reset the I²C port to its Idle state (Figure 27-31).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I²C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSP1IF bit will be set.

A write to the SSPBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is Idle and the S and P bits are cleared.

		SYNC = 0, BRGH = 0, BRG16 = 0													
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz					
DATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)			
300	_		_			_	_	_	_		_	_			
1200	—	_	_	1221	1.73	255	1200	0.00	239	1200	0.00	143			
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71			
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17			
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16			
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8			
57.6k	55.55k	-3.55	3	—	_	_	57.60k	0.00	7	57.60k	0.00	2			
115.2k	—	—	—	_	—	—	_	_	_	—	_	—			

TABLE 28-5: BAUD RATES FOR ASYNCHRONOUS MODES

		SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fosc = 8.000 MHz			Fos	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE Actu	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300			_	300	0.16	207	300	0.00	191	300	0.16	51	
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12	
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	_	_	_	
9600	9615	0.16	12	_	_	_	9600	0.00	5	_	_	_	
10417	10417	0.00	11	10417	0.00	5	_	_	_	_	_	_	
19.2k	_	_	_	_	_	_	19.20k	0.00	2	_	_	_	
57.6k	—	_	—	—	_	—	57.60k	0.00	0	—	_	—	
115.2k	—	_	_	—	_	_	_	_	—	—	_	—	

		SYNC = 0, BRGH = 1, BRG16 = 0											
BAUD	Fosc = 32.000 MHz			Fosc = 20.000 MHz			Fosc = 18.432 MHz			Fosc = 11.0592 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	—	_	_		_	_	_	_	_		_	—	
1200	—	—	—	—		—	—	—	—	—	—	—	
2400		_	_	_	_	_	_	_	_	_	_	_	
9600	9615	0.16	207	9615	0.16	129	9600	0.00	119	9600	0.00	71	
10417	10417	0.00	191	10417	0.00	119	10378	-0.37	110	10473	0.53	65	
19.2k	19.23k	0.16	103	19.23k	0.16	64	19.20k	0.00	59	19.20k	0.00	35	
57.6k	57.14k	-0.79	34	56.82k	-1.36	21	57.60k	0.00	19	57.60k	0.00	11	
115.2k	117.64k	2.12	16	113.64k	-1.36	10	115.2k	0.00	9	115.2k	0.00	5	

28.5.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART.

28.5.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see **Section 28.5.1.3 "Synchronous Master Transmission")**, except in the case of the Sleep mode. If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in TXREG register.
- 3. The TXIF bit will not be set.
- After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- 5. If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 28.5.2.2 Synchronous Slave Transmission Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXREG register.

TABLE 28-9:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
APFCON1	C2OUTSEL	CC1PSEL	SDOSEL	SCKSEL	SDISEL	TXSEL	RXSEL	CCP2SEL	132	
BAUDCON	ABDOVF	RCIDL		SCKP	BRG16		WUE	ABDEN	356	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	98	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	102	
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	355	
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	147	
TXREG		EUSART Transmit Data Register								
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	354	

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous slave transmission.

Page provides register information.

33.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

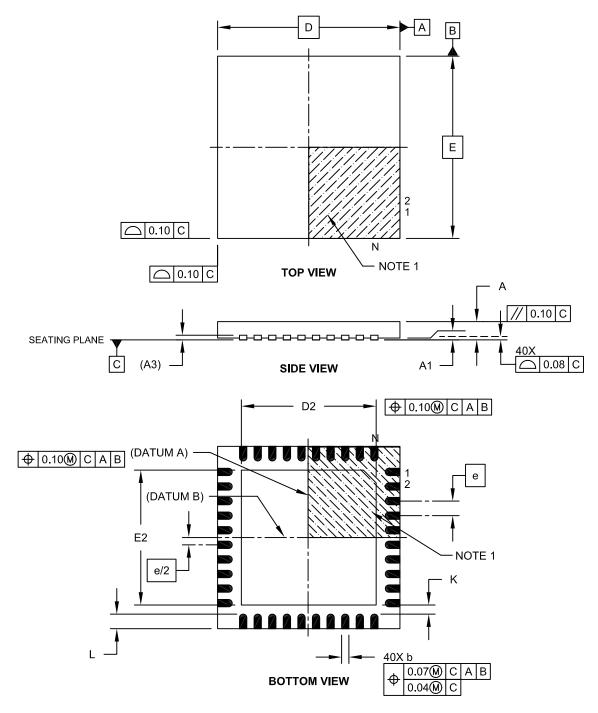
The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

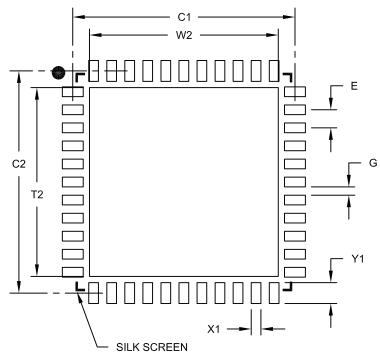
Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.


33.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

40-Lead Ultra Thin Plastic Quad Flat, No Lead Package (MV) – 5x5x0.5 mm Body [UQFN]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-156A Sheet 1 of 2

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED	LAND PATTERN
-------------	--------------

	Units					
Dimensio	n Limits	MIN	NOM	MAX		
Contact Pitch	E	0.65 BSC				
Optional Center Pad Width	W2			6.60		
Optional Center Pad Length	T2			6.60		
Contact Pad Spacing	C1		8.00			
Contact Pad Spacing	C2		8.00			
Contact Pad Width (X44)	X1			0.35		
Contact Pad Length (X44)	Y1			0.85		
Distance Between Pads	G	0.25				

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

1

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103B

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820