

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                     |
|----------------------------|----------------------------------------------------------------------------|
| Core Processor             | PIC                                                                        |
| Core Size                  | 8-Bit                                                                      |
| Speed                      | 32MHz                                                                      |
| Connectivity               | I <sup>2</sup> C, LINbus, SPI, UART/USART                                  |
| Peripherals                | Brown-out Detect/Reset, POR, PSMC, PWM, WDT                                |
| Number of I/O              | 24                                                                         |
| Program Memory Size        | 28KB (16K x 14)                                                            |
| Program Memory Type        | FLASH                                                                      |
| EEPROM Size                | 256 x 8                                                                    |
| RAM Size                   | 2K x 8                                                                     |
| Voltage - Supply (Vcc/Vdd) | 1.8V ~ 3.6V                                                                |
| Data Converters            | A/D 11x12b; D/A 1x8b, 3x5b                                                 |
| Oscillator Type            | Internal                                                                   |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                              |
| Package / Case             | 28-VQFN Exposed Pad                                                        |
| Supplier Device Package    | 28-QFN (6x6)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1788-i-ml |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong





### FIGURE 3-1: PROGRAM MEMORY MAP AND STACK FOR PIC16(L)F1788/9

|                         | <b></b>                              | _               |
|-------------------------|--------------------------------------|-----------------|
|                         | PC<14:0>                             |                 |
| CAI<br>RETUI<br>Interru | LL, CALLW<br>RN, RETLW<br>pt, RETFIE |                 |
|                         | Stack Level 0                        |                 |
|                         | Stack Level 1                        | _               |
|                         |                                      |                 |
|                         | Stack Level 15                       | ]               |
|                         | Reset Vector                         | 0000h           |
|                         | •                                    |                 |
|                         | Interrupt Vector                     | 0004b           |
| (                       |                                      | 000411<br>0005h |
|                         | Page 0                               | 07551           |
|                         |                                      |                 |
|                         | Page 1                               | 060011          |
|                         |                                      | 0FFFh           |
|                         |                                      | 1000h           |
| On-chip                 | Page 2                               |                 |
| Memory                  |                                      | 17FFh           |
| mennery                 | Page 3                               | 1800n           |
|                         |                                      | 1FFFh           |
|                         | Page 4                               | 2000h           |
|                         | •                                    |                 |
|                         | •                                    |                 |
|                         | Page 7                               | 3FFFh           |
|                         | Rollover to Page 0                   | 4000h           |
|                         | •                                    |                 |
|                         | :                                    |                 |
|                         | Rollover to Page 7                   | 7FFFh           |
|                         |                                      |                 |

# 3.1.1 READING PROGRAM MEMORY AS DATA

There are two methods of accessing constants in program memory. The first method is to use tables of RETLW instructions. The second method is to set an FSR to point to the program memory.

### 3.1.1.1 RETLW Instruction

The RETLW instruction can be used to provide access to tables of constants. The recommended way to create such a table is shown in Example 3-1.

| EXAMPLE 3-1: | RETLW INSTRUCTION |
|--------------|-------------------|
|              |                   |

| Add Index in W to  |
|--------------------|
| program counter to |
| select data        |
| Index0 data        |
| Index1 data        |
|                    |
|                    |
|                    |
|                    |
|                    |
|                    |
| EX                 |
|                    |
| IN W               |
|                    |

The BRW instruction makes this type of table very simple to implement. If your code must remain portable with previous generations of microcontrollers, then the BRW instruction is not available so the older table read method must be used.

### 3.1.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The high directive will set bit<7> if a label points to a location in program memory.



# 3.5.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words is programmed to '1', the device will be reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

## 3.6 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- · Traditional Data Memory
- Linear Data Memory
- Program Flash Memory

## 4.6 Device ID and Revision ID

The memory location 8006h is where the Device ID and Revision ID are stored. The upper nine bits hold the Device ID. The lower five bits hold the Revision ID. See **Section 12.5 "User ID, Device ID and Configuration Word Access**" for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID.

# 4.7 Register Definitions: Device and Revision

### REGISTER 4-3: DEVID: DEVICE ID REGISTER



# Legend:

R = Readable bit '1' = Bit is set '0' = Bit is cleared

bit 13-0 DEV<13:0>: Device ID bits

| Device      | DEVID<13:0> Values        |  |  |  |  |  |  |  |
|-------------|---------------------------|--|--|--|--|--|--|--|
| PIC16F1788  | 11 0000 0010 1011 (302Bh) |  |  |  |  |  |  |  |
| PIC16LF1788 | 11 0000 0010 1101 (302Dh) |  |  |  |  |  |  |  |
| PIC16F1789  | 11 0000 0010 1010 (302Ah) |  |  |  |  |  |  |  |
| PIC16LF1789 | 11 0000 0010 1100 (302Ch) |  |  |  |  |  |  |  |

### REGISTER 4-4: REVID: REVISION ID REGISTER

|                  |   | R                    | R   | R     | R      | R | R     |
|------------------|---|----------------------|-----|-------|--------|---|-------|
|                  |   |                      |     | REV<  | :13:8> |   |       |
|                  |   | bit 13               |     |       |        |   | bit 8 |
|                  |   |                      |     |       |        |   |       |
| R                | R | R                    | R   | R     | R      | R | R     |
|                  |   |                      | REV | <7:0> |        |   |       |
| bit 7            |   |                      |     |       |        |   | bit 0 |
|                  |   |                      |     |       |        |   |       |
| Legend:          |   |                      |     |       |        |   |       |
| R = Readable bit |   |                      |     |       |        |   |       |
| '1' = Bit is set |   | '0' = Bit is cleared |     |       |        |   |       |

bit 13-0 **REV<13:0>:** Revision ID bits

DS40001675C-page 62

### 6.4.2 TWO-SPEED START-UP SEQUENCE

- 1. Wake-up from Power-on Reset or Sleep.
- 2. Instructions begin execution by the internal oscillator at the frequency set in the IRCF<3:0> bits of the OSCCON register.
- 3. OST enabled to count 1024 clock cycles.
- 4. OST timed out, wait for falling edge of the internal oscillator.
- 5. OSTS is set.
- 6. System clock held low until the next falling edge of new clock (LP, XT or HS mode).
- 7. System clock is switched to external clock source.

# 

### FIGURE 6-8: TWO-SPEED START-UP

# 6.4.3 CHECKING TWO-SPEED CLOCK STATUS

Checking the state of the OSTS bit of the OSCSTAT register will confirm if the microcontroller is running from the external clock source, as defined by the FOSC<2:0> bits in the Configuration Words, or the internal oscillator.

| R-1/q            | R-0/q                                                                                                            | R-q/q                                                                                                       | R-0/q                                        | R-0/q                         | R-q/q                    | R-0/0            | R-0/q        |
|------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------|--------------------------|------------------|--------------|
| T1OSCR           | PLLR                                                                                                             | OSTS                                                                                                        | HFIOFR                                       | HFIOFL                        | MFIOFR                   | LFIOFR           | HFIOFS       |
| bit 7            |                                                                                                                  |                                                                                                             |                                              |                               |                          |                  | bit 0        |
|                  |                                                                                                                  |                                                                                                             |                                              |                               |                          |                  |              |
| Legend:          |                                                                                                                  |                                                                                                             |                                              |                               |                          |                  |              |
| R = Readable I   | bit                                                                                                              | W = Writable                                                                                                | bit                                          | U = Unimplen                  | nented bit, read         | l as '0'         |              |
| u = Bit is uncha | anged                                                                                                            | x = Bit is unkr                                                                                             | nown                                         | -n/n = Value a                | at POR and BO            | R/Value at all o | other Resets |
| '1' = Bit is set |                                                                                                                  | '0' = Bit is clea                                                                                           | ared                                         | q = Condition                 | al                       |                  |              |
| bit 7            | <b>T1OSCR:</b> Tim<br><u>If T1OSCEN =</u><br>1 = Timer1 c<br>0 = Timer1 c<br><u>If T1OSCEN =</u><br>1 = Timer1 c | ner1 Oscillator<br><u>= 1:</u><br>oscillator is rea<br>oscillator is not<br><u>= 0</u> :<br>clock source is | Ready bit<br>dy<br>ready<br>alwavs ready     |                               |                          |                  |              |
| bit 6            | PLLR 4x PLL<br>1 = 4x PLL is<br>0 = 4x PLL is                                                                    | Ready bit<br>s ready<br>s not ready                                                                         |                                              |                               |                          |                  |              |
| bit 5            | <b>OSTS:</b> Oscilla                                                                                             | ator Start-up Ti                                                                                            | mer Status bit                               |                               |                          |                  |              |
|                  | 1 = Running<br>0 = Running                                                                                       | from the clock from an intern                                                                               | defined by the al oscillator (F              | e FOSC<2:0> b<br>OSC<2:0> = 1 | oits of the Confi<br>00) | guration Words   | 3            |
| bit 4            | HFIOFR: High<br>1 = HFINTOS<br>0 = HFINTOS                                                                       | h-Frequency Ir<br>SC is ready<br>SC is not ready                                                            | nternal Oscillat                             | or Ready bit                  |                          |                  |              |
| bit 3            | HFIOFL: High<br>1 = HFINTOS<br>0 = HFINTOS                                                                       | n-Frequency In<br>SC is at least 2<br>SC is not 2% a                                                        | ternal Oscillato<br>% accurate<br>ccurate    | or Locked bit                 |                          |                  |              |
| bit 2            | MFIOFR: Med<br>1 = MFINTOS<br>0 = MFINTOS                                                                        | dium-Frequenc<br>SC is ready<br>SC is not ready                                                             | cy Internal Osc                              | illator Ready bi              | t                        |                  |              |
| bit 1            | LFIOFR: Low<br>1 = LFINTOS<br>0 = LFINTOS                                                                        | r-Frequency Inf<br>SC is ready<br>SC is not ready                                                           | ternal Oscillato                             | or Ready bit                  |                          |                  |              |
| bit 0            | <b>HFIOFS:</b> High<br>1 = HFINTOS<br>0 = HFINTOS                                                                | n-Frequency In<br>SC is at least 0<br>SC is not 0.5%                                                        | ternal Oscillato<br>.5% accurate<br>accurate | or Stable bit                 |                          |                  |              |

# REGISTER 6-2: OSCSTAT: OSCILLATOR STATUS REGISTER



4: For minimum width of INT pulse, refer to AC specifications in Section 31.0 "Electrical Specifications"".

5: INTF is enabled to be set any time during the Q4-Q1 cycles.

# 15.0 FIXED VOLTAGE REFERENCE (FVR)

The Fixed Voltage Reference, or FVR, is a stable voltage reference, independent of VDD, with 1.024V, 2.048V or 4.096V selectable output levels. The output of the FVR can be configured to supply a reference voltage to the following:

- · ADC input channel
- · ADC positive reference
- · Comparator positive input
- Digital-to-Analog Converter (DAC)

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

# 15.1 Independent Gain Amplifiers

The output of the FVR supplied to the ADC, Comparators, and DAC is routed through two independent programmable gain amplifiers. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels.

The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 17.0 "Analog-to-Digital Converter (ADC) Module"** for additional information.

The CDAFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the DAC and comparator module. Reference Section 19.0 "8-Bit Digital-to-Analog Converter (DAC) Module" and Section 21.0 "Comparator Module" for additional information.

# 15.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See **Section 31.0** "**Electrical Specifications**" for the minimum delay requirement.

# 15.3 FVR Buffer Stabilization Period

When either FVR Buffer1 or FVR Buffer 2 is enabled, the buffer amplifier circuits require 30  $\mu s$  to stabilize. This stabilization time is required even when the FVR is already operating and stable.

## 25.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 25-4.

## EQUATION 25-4: PWM RESOLUTION

Resolution = 
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

| TABLE 25-1: | EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz) |
|-------------|---------------------------------------------------------|
|-------------|---------------------------------------------------------|

| PWM Frequency             | 1.22 kHz | 4.88 kHz | 19.53 kHz | 78.12 kHz | 156.3 kHz | 208.3 kHz |
|---------------------------|----------|----------|-----------|-----------|-----------|-----------|
| Timer Prescale            | 16       | 4        | 1         | 1         | 1         | 1         |
| PR2 Value                 | 0xFF     | 0xFF     | 0xFF      | 0x3F      | 0x1F      | 0x17      |
| Maximum Resolution (bits) | 10       | 10       | 10        | 8         | 7         | 6.6       |

## TABLE 25-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

| PWM Frequency             | 1.22 kHz | 4.90 kHz | 19.61 kHz | 76.92 kHz | 153.85 kHz | 200.0 kHz |
|---------------------------|----------|----------|-----------|-----------|------------|-----------|
| Timer Prescale            | 16       | 4        | 1         | 1         | 1          | 1         |
| PR2 Value                 | 0x65     | 0x65     | 0x65      | 0x19      | 0x0C       | 0x09      |
| Maximum Resolution (bits) | 8        | 8        | 8         | 6         | 5          | 5         |

# 25.3.7 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

### 25.3.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

### 25.3.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

### 26.2.7 ASYNCHRONOUS INPUTS

The PSMC module supports asynchronous inputs alone or in combination with the synchronous inputs. asynchronous inputs include:

- Analog
  - sync\_C1OUT
  - sync\_C2OUT
  - sync\_C3OUT
  - sync\_C4OUT
- Digital
  - PSMCxIN pin

#### 26.2.7.1 Comparator Inputs

The outputs of any combination of the synchronized comparators may be used to trigger any of the three events as well as auto-shutdown.

The event triggers on the rising edge of the comparator output. Except for auto-shutdown, the event input is not level sensitive.

### 26.2.7.2 PSMCxIN Pin Input

The PSMCxIN pin may be used to trigger PSMC events. Data is passed through straight to the PSMC module without any synchronization to a system clock. This is so that input blanking may be applied to any external circuit using the module.

The event triggers on the rising edge of the PSMCxIN signal.

### 26.2.7.3 Asynchronous Polarity

Polarity control is available for the period and duty-cycle asynchronous event inputs. Polarity control is necessary when the same signal is used as the source for both events. Inverting the polarity of one event relative to the other enables starting the period on one edge of the signal and terminating the duty-cycle on the opposite edge. Polarity is controlled with the PxPRPOL and PxDCPOL bits of the PSMCxSYNC register. Inverting the asynchronous input with these controls inverts all enabled asynchronous inputs for the corresponding event.

### 26.2.8 INPUT BLANKING

Input blanking is a function whereby the inputs from any selected asynchronous input may be driven inactive for a short period of time. This is to prevent electrical transients from the turn-on/off of power components from generating a false event.

Blanking is initiated by either or both:

- · Rising event
- Falling event

Blanked inputs are suppressed from causing all asynchronous events, including:

- Rising
- Falling
- Period
- Shutdown

Rising edge and falling edge blanking are controlled independently. The following features are available for blanking:

- Blanking enable
- · Blanking time counters
- Blanking mode

The following Blanking modes are available:

- Blanking disabled
- Immediate blanking

The Falling Edge Blanking mode is set with the PxFEBM<1:0> bits of the PSMCx Blanking Control (PSMCxBLNK) register (Register 26-10).

The Rising Edge Blanking mode is set with the PxREBM<1:0> bits of the PSMCx Blanking Control (PSMCxBLNK) register (Register 26-10).

### 26.2.8.1 Blanking Disabled

With blanking disabled, the asynchronous inputs are passed to the PSMC module without any intervention.

### 26.2.8.2 Immediate Blanking

With Immediate blanking, a counter is used to determine the blanking period. The desired blanking time is measured in psmc\_clk periods. A rising edge event will start incrementing the rising edge blanking counter. A falling edge event will start incrementing the falling edge blanking counter.

The rising edge blanking time is set with the PSMC Rising Edge Blanking Time (PSMCxBLKR) register (Register 26-30). The inputs to be blanked are selected with the PSMC Rising Edge Blanked Source (PSMCxREBS) register (Register 26-11). During rising edge blanking, the selected blanked sources are suppressed for falling edge as well as rising edge, auto-shutdown and period events.

The falling edge blanking time is set with the PSMC Falling Edge Blanking Time (PSMCxBLKF) register (Register 26-31). The inputs to be blanked are selected with the PSMC Falling Edge Blanked Source (PSMCxFEBS) register (Register 26-12). During falling edge blanking, the selected blanked sources are suppressed for rising edge, as well as falling edge, auto-shutdown, and period events.

The blanking counters are incremented on the rising edge of psmc\_clk. Blanked sources are suppressed until the counter value equals the blanking time register causing the blanking to terminate.

As the rising and falling edge events are from asynchronous inputs, there may be some uncertainty in the actual blanking time implemented in each cycle. The maximum uncertainty is equal to one psmc\_clk period.

| PSMCxSTR0       01h       02h       04h       08h       10h       20h         Period Event | 3-Phase State      | 1   | 2   | 3   | 44  | 5 | 6   |
|--------------------------------------------------------------------------------------------|--------------------|-----|-----|-----|-----|---|-----|
| Period Event                                                                               | PSMCxSTR0          | 01h | 02h | 04h | 08h |   | 20h |
| Rising Edge Event                                                                          | Period Event       |     |     |     |     |   |     |
| Falling Edge Event                                                                         | Rising Edge Event  |     |     |     |     |   |     |
| PSMCxA (1H)                                                                                | Falling Edge Event |     |     |     |     |   |     |
| PSMCxB (1L)                                                                                | PSMCxA (1H)        |     |     |     |     |   |     |
| PSMCxC (2H)                                                                                | PSMCxB (1L)        |     |     |     |     |   |     |
| PSMCxD (2L)                                                                                | PSMCxC (2H)        |     |     |     |     |   |     |
| PSMCxE (3H)                                                                                | PSMCxD (2L)        |     |     |     |     |   |     |
|                                                                                            | PSMCxE (3H)        |     |     |     |     |   |     |
|                                                                                            | PSMCxF (3L)        |     |     |     |     |   |     |

# FIGURE 26-15: 3-PHASE PWM STEERING WAVEFORM (PXHSMEN = 0 AND PXLSMEN = 1)

PIC16(L)F1788/9

| R/W-0/0          | U-0                                                               | U-0                                                               | R/W-0/0         | R/W-0/0                   | R/W-0/0          | R/W-0/0          | R/W-0/0     |  |
|------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|-----------------|---------------------------|------------------|------------------|-------------|--|
| PxPHSIN          | —                                                                 | —                                                                 | PxPHSC4         | PxPHSC3                   | PxPHSC2          | PxPHSC1          | PxPHST      |  |
| bit 7            |                                                                   |                                                                   |                 |                           |                  |                  | bit C       |  |
|                  |                                                                   |                                                                   |                 |                           |                  |                  |             |  |
| Legend:          |                                                                   |                                                                   |                 |                           |                  |                  |             |  |
| R = Readable     | bit                                                               | W = Writable                                                      | e bit           | U = Unimpler              | mented bit, read | l as '0'         |             |  |
| u = Bit is unch  | anged                                                             | x = Bit is unk                                                    | nown            | -n/n = Value a            | at POR and BO    | R/Value at all o | ther Resets |  |
| '1' = Bit is set |                                                                   | '0' = Bit is cle                                                  | eared           |                           |                  |                  |             |  |
|                  |                                                                   |                                                                   |                 |                           |                  |                  |             |  |
| bit 7            | PxPHSIN: PS                                                       | SMCx Rising E                                                     | Edge Event occ  | urs on PSMC               | (IN pin          |                  |             |  |
|                  | 1 = Rising e                                                      | dge event will                                                    | occur when P    | SMCxIN pin go             | bes true         |                  |             |  |
|                  |                                                                   |                                                                   | cause rising et | ige event                 |                  |                  |             |  |
| DIT 6-5          | Unimplemen                                                        | ted: Read as                                                      |                 |                           |                  |                  |             |  |
| bit 4            | PXPHSC4: P                                                        | SMCx Rising                                                       | Edge Event oc   | curs on sync_(            |                  |                  |             |  |
|                  | 1 = Rising e<br>$0 = sync C_4$                                    | 40UT will not                                                     | cause rising ec | /nc_C4OUT of<br>lae event | lipul goes true  |                  |             |  |
| bit 3            | PxPHSC3: P                                                        | SMCx Rising                                                       | Edge Event oc   | curs on sync (            | C3OUT output     |                  |             |  |
|                  | 1 = Rising e                                                      | 1 = Rising edge event will occur when sync C3OUT output ages true |                 |                           |                  |                  |             |  |
|                  | 0 = sync_C                                                        | 30UT will not                                                     | cause rising ec | lge event                 |                  |                  |             |  |
| bit 2            | PxPHSC2: P                                                        | SMCx Rising                                                       | Edge Event oc   | curs on sync_0            | C2OUT output     |                  |             |  |
|                  | 1 = Rising e                                                      | dge event will                                                    | occur when sy   | /nc_C2OUT ou              | Itput goes true  |                  |             |  |
|                  | $0 = sync_C$                                                      | 20UT will not                                                     | cause rising ec | lge event                 |                  |                  |             |  |
| bit 1            | PxPHSC1: P                                                        | SMCx Rising                                                       | Edge Event oc   | curs on sync_(            | C1OUT output     |                  |             |  |
|                  | 1 = Rising edge event will occur when sync_C1OUT output goes true |                                                                   |                 |                           |                  |                  |             |  |
| h:+ 0            |                                                                   |                                                                   | cause rising et |                           |                  |                  |             |  |
| DIT U            | 1 - Dising o                                                      | VICX RISING E                                                     | age Event occu  | Irs on Time Ba            | Se match         |                  |             |  |
|                  | 0 = Time ba                                                       | se will not cau                                                   | ise rising edge | event                     |                  |                  |             |  |
|                  |                                                                   |                                                                   |                 |                           |                  |                  |             |  |

# **REGISTER 26-13: PSMCxPHS: PSMC PHASE SOURCE REGISTER<sup>(1)</sup>**

Note 1: Sources are not mutually exclusive: more than one source can cause a rising edge event.







### FIGURE 27-8: SLAVE SELECT SYNCHRONOUS WAVEFORM



| Name    | Bit 7                        | Bit 6   | Bit 5  | Bit 4  | Bit 3  | Bit 2  | Bit 1  | Bit 0   | Register<br>on Page |
|---------|------------------------------|---------|--------|--------|--------|--------|--------|---------|---------------------|
| APFCON1 | C2OUTSEL                     | CC1PSEL | SDOSEL | SCKSEL | SDISEL | TXSEL  | RXSEL  | CCP2SEL | 132                 |
| BAUDCON | ABDOVF                       | RCIDL   | —      | SCKP   | BRG16  | _      | WUE    | ABDEN   | 356                 |
| INTCON  | GIE                          | PEIE    | TMR0IE | INTE   | IOCIE  | TMR0IF | INTF   | IOCIF   | 97                  |
| PIE1    | TMR1GIE                      | ADIE    | RCIE   | TXIE   | SSP1IE | CCP1IE | TMR2IE | TMR1IE  | 98                  |
| PIR1    | TMR1GIF                      | ADIF    | RCIF   | TXIF   | SSP1IF | CCP1IF | TMR2IF | TMR1IF  | 102                 |
| RCREG   | EUSART Receive Data Register |         |        |        |        |        |        |         | 349*                |
| RCSTA   | SPEN                         | RX9     | SREN   | CREN   | ADDEN  | FERR   | OERR   | RX9D    | 355                 |
| SPBRGL  | BRG<7:0>                     |         |        |        |        |        |        | 357     |                     |
| SPBRGH  | BRG<15:8>                    |         |        |        |        |        |        | 357     |                     |
| TRISC   | TRISC7                       | TRISC6  | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0  | 147                 |
| TXSTA   | CSRC                         | TX9     | TXEN   | SYNC   | SENDB  | BRGH   | TRMT   | TX9D    | 354                 |

### TABLE 28-2: SUMMARY OF REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for asynchronous reception.

\* Page provides register information.

|        |                   |            |                             | SYNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1 |            |                             |                   |            |                             |                    |            |                             |
|--------|-------------------|------------|-----------------------------|------------------------------------------------------|------------|-----------------------------|-------------------|------------|-----------------------------|--------------------|------------|-----------------------------|
| BAUD   | Fosc = 32.000 MHz |            |                             | Fosc = 20.000 MHz                                    |            |                             | Fosc = 18.432 MHz |            |                             | Fosc = 11.0592 MHz |            |                             |
| RATE   | Actual<br>Rate    | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate                                       | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate    | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate     | %<br>Error | SPBRG<br>value<br>(decimal) |
| 300    | 300.0             | 0.00       | 26666                       | 300.0                                                | 0.00       | 16665                       | 300.0             | 0.00       | 15359                       | 300.0              | 0.00       | 9215                        |
| 1200   | 1200              | 0.00       | 6666                        | 1200                                                 | -0.01      | 4166                        | 1200              | 0.00       | 3839                        | 1200               | 0.00       | 2303                        |
| 2400   | 2400              | 0.01       | 3332                        | 2400                                                 | 0.02       | 2082                        | 2400              | 0.00       | 1919                        | 2400               | 0.00       | 1151                        |
| 9600   | 9604              | 0.04       | 832                         | 9597                                                 | -0.03      | 520                         | 9600              | 0.00       | 479                         | 9600               | 0.00       | 287                         |
| 10417  | 10417             | 0.00       | 767                         | 10417                                                | 0.00       | 479                         | 10425             | 0.08       | 441                         | 10433              | 0.16       | 264                         |
| 19.2k  | 19.18k            | -0.08      | 416                         | 19.23k                                               | 0.16       | 259                         | 19.20k            | 0.00       | 239                         | 19.20k             | 0.00       | 143                         |
| 57.6k  | 57.55k            | -0.08      | 138                         | 57.47k                                               | -0.22      | 86                          | 57.60k            | 0.00       | 79                          | 57.60k             | 0.00       | 47                          |
| 115.2k | 115.9k            | 0.64       | 68                          | 116.3k                                               | 0.94       | 42                          | 115.2k            | 0.00       | 39                          | 115.2k             | 0.00       | 23                          |

# TABLE 28-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

|        |                  |            |                             | SYNC = 0         | YNC = 0, BRGH = 1, BRG16 = 1 or SYNC = 1, BRG16 = 1 |                             |                   |            |                             |                  |            |                             |  |
|--------|------------------|------------|-----------------------------|------------------|-----------------------------------------------------|-----------------------------|-------------------|------------|-----------------------------|------------------|------------|-----------------------------|--|
| BAUD   | Fosc = 8.000 MHz |            |                             | Fosc = 4.000 MHz |                                                     |                             | Fosc = 3.6864 MHz |            |                             | Fosc = 1.000 MHz |            |                             |  |
| RATE   | Actual<br>Rate   | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate   | %<br>Error                                          | SPBRG<br>value<br>(decimal) | Actual<br>Rate    | %<br>Error | SPBRG<br>value<br>(decimal) | Actual<br>Rate   | %<br>Error | SPBRG<br>value<br>(decimal) |  |
| 300    | 300.0            | 0.00       | 6666                        | 300.0            | 0.01                                                | 3332                        | 300.0             | 0.00       | 3071                        | 300.1            | 0.04       | 832                         |  |
| 1200   | 1200             | -0.02      | 1666                        | 1200             | 0.04                                                | 832                         | 1200              | 0.00       | 767                         | 1202             | 0.16       | 207                         |  |
| 2400   | 2401             | 0.04       | 832                         | 2398             | 0.08                                                | 416                         | 2400              | 0.00       | 383                         | 2404             | 0.16       | 103                         |  |
| 9600   | 9615             | 0.16       | 207                         | 9615             | 0.16                                                | 103                         | 9600              | 0.00       | 95                          | 9615             | 0.16       | 25                          |  |
| 10417  | 10417            | 0          | 191                         | 10417            | 0.00                                                | 95                          | 10473             | 0.53       | 87                          | 10417            | 0.00       | 23                          |  |
| 19.2k  | 19.23k           | 0.16       | 103                         | 19.23k           | 0.16                                                | 51                          | 19.20k            | 0.00       | 47                          | 19.23k           | 0.16       | 12                          |  |
| 57.6k  | 57.14k           | -0.79      | 34                          | 58.82k           | 2.12                                                | 16                          | 57.60k            | 0.00       | 15                          | —                | _          | _                           |  |
| 115.2k | 117.6k           | 2.12       | 16                          | 111.1k           | -3.55                                               | 8                           | 115.2k            | 0.00       | 7                           | —                | _          | _                           |  |

| MOVIW            | Move INDFn to W                                                                                                                                                                                                                                                                                                                                                                        |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] MOVIW ++FSRn<br>[ <i>label</i> ] MOVIWFSRn<br>[ <i>label</i> ] MOVIW FSRn++<br>[ <i>label</i> ] MOVIW FSRn<br>[ <i>label</i> ] MOVIW k[FSRn]                                                                                                                                                                                                                          |
| Operands:        | $\begin{array}{l} n \in [0,1] \\ mm \in [00,01,10,11] \\ -32 \leq k \leq 31 \end{array}$                                                                                                                                                                                                                                                                                               |
| Operation:       | $\begin{split} &\text{INDFn} \rightarrow \text{W} \\ &\text{Effective address is determined by} \\ &\text{FSR + 1 (preincrement)} \\ &\text{FSR - 1 (predecrement)} \\ &\text{FSR + k (relative offset)} \\ &\text{After the Move, the FSR value will} \\ &\text{be either:} \\ &\text{FSR + 1 (all increments)} \\ &\text{FSR - 1 (all decrements)} \\ &\text{Unchanged} \end{split}$ |
| Status Affected: | Z                                                                                                                                                                                                                                                                                                                                                                                      |

Status Affected:

| Mode          | Syntax | mm |
|---------------|--------|----|
| Preincrement  | ++FSRn | 00 |
| Predecrement  | FSRn   | 01 |
| Postincrement | FSRn++ | 10 |
| Postdecrement | FSRn   | 11 |

Description:

This instruction is used to move data between W and one of the indirect registers (INDFn). Before/ after this move, the pointer (FSRn) is updated by pre/post incrementing/decrementing it.

**Note:** The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the FSRn.

FSRn is limited to the range 0000h -FFFFh. Incrementing/ decrementing it beyond these bounds will cause it to wraparound.

| MOVLB                                                  | Move literal to BSR                                                                                       |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Syntax:                                                | [ <i>label</i> ]MOVLB k                                                                                   |
| Operands:                                              | $0 \leq k \leq 31$                                                                                        |
| Operation:                                             | $k \rightarrow BSR$                                                                                       |
| Status Affected:                                       | None                                                                                                      |
| Description:                                           | The 5-bit literal 'k' is loaded into the Bank Select Register (BSR).                                      |
|                                                        |                                                                                                           |
| WOVLP                                                  | Move literal to PCLATH                                                                                    |
| Syntax:                                                | [ label ] MOVLP k                                                                                         |
| Syntax:<br>Operands:                                   | Move literal to PCLATH<br>[ <i>label</i> ] MOVLP k<br>$0 \le k \le 127$                                   |
| Syntax:<br>Operands:<br>Operation:                     | Move literal to PCLATH<br>[ <i>label</i> ] MOVLP k<br>$0 \le k \le 127$<br>$k \rightarrow PCLATH$         |
| Syntax:<br>Operands:<br>Operation:<br>Status Affected: | Move literal to PCLATH<br>[ <i>label</i> ] MOVLP k<br>$0 \le k \le 127$<br>$k \rightarrow PCLATH$<br>None |

| MOVLW            | Move literal to W                                                                         |
|------------------|-------------------------------------------------------------------------------------------|
| Syntax:          | [ <i>label</i> ] MOVLW k                                                                  |
| Operands:        | $0 \leq k \leq 255$                                                                       |
| Operation:       | $k \rightarrow (W)$                                                                       |
| Status Affected: | None                                                                                      |
| Description:     | The 8-bit literal 'k' is loaded into W register. The "don't cares" will assemble as '0's. |
| Words:           | 1                                                                                         |
| Cycles:          | 1                                                                                         |
| Example:         | MOVLW 0x5A                                                                                |
|                  | After Instruction<br>W = 0x5A                                                             |

PCLATH register.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1  $\mu$ F, TA = 25°C.



**FIGURE 32-49:** IPD, Comparator, NP Mode (CxSP = 1), PIC16LF1788/9 Only.



**FIGURE 32-50:** IPD, Comparator, NP Mode (CxSP = 1), PIC16F1788/9 Only.



FIGURE 32-51: VOH vs. IOH Over Temperature, VDD = 5.0V, PIC16F1788/9 Only.



FIGURE 32-52: VOL vs. IOL Over Temperature, VDD = 5.0V, PIC16F1788/9 Only.







FIGURE 32-54: VOL vs. IOL Over Temperature, VDD = 3.0V.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1  $\mu$ F, TA = 25°C.



FIGURE 32-61: Brown-Out Reset Voltage, Low Trip Point (BORV = 1), PIC16LF1788/9 Only.



FIGURE 32-62: Brown-Out Reset Hysteresis, Low Trip Point (BORV = 1), PIC16LF1788/9 Only.



FIGURE 32-63: Brown-Out Reset Voltage, Low Trip Point (BORV = 1), PIC16F1788/9 Only.



**FIGURE 32-64:** Brown-Out Reset Hysteresis, Low Trip Point (BORV = 1), PIC16F1788/9 Only.



**FIGURE 32-65:** Brown-Out Reset Voltage, High Trip Point (BORV = 0).



**FIGURE 32-66:** Brown-Out Reset Hysteresis, High Trip Point (BORV = 0).

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1  $\mu$ F, TA = 25°C.



**FIGURE 32-85:** ADC 12-bit Mode, Single-Ended DNL, VDD = 3.0V, TAD =  $1 \mu$ S,  $25^{\circ}$ C.



**FIGURE 32-86:** ADC 12-bit Mode, Single-Ended DNL, VDD = 3.0V, TAD =  $4 \mu$ S,  $25^{\circ}$ C.



**FIGURE 32-87:** ADC 12-bit Mode, Single-Ended INL, VDD = 3.0V, TAD =  $1 \mu$ S,  $25^{\circ}$ C.



**FIGURE 32-88:** ADC 12-bit Mode, Single-Ended INL, VDD = 3.0V, TAD =  $4 \mu$ S,  $25^{\circ}$ C.



Single-Ended DNL, VDD = 3.0V, VREF = 3.0V.



