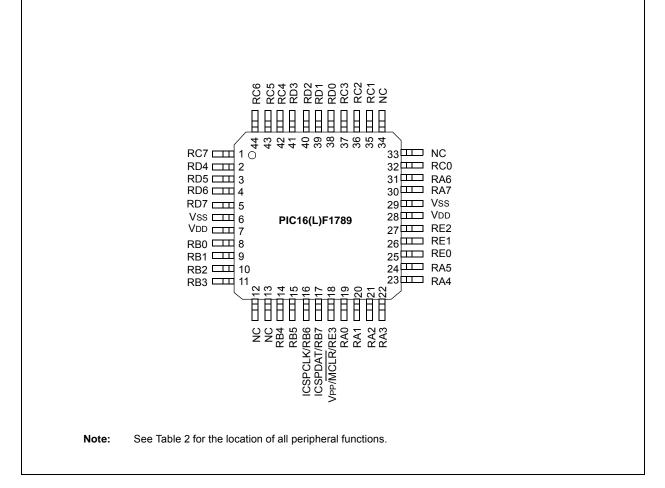


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	35
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 1x8b, 3x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1789-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram – 44-Pin TQFP

Name	Function	Input Type	Output Type	Description
RA0/AN0/C1IN0-/C2IN0-/	RA0	TTL/ST	CMOS	General purpose I/O.
C3IN0-/C4IN0-/ SS⁽¹⁾	AN0	AN0 AN		ADC Channel 0 input.
	C1IN0-	AN		Comparator C1 negative input.
	C2IN0-	AN		Comparator C2 negative input.
	C3IN0-	AN		Comparator C3 negative input.
	C4IN0-	AN		Comparator C4 negative input.
	SS	ST		Slave Select input.
RA1/AN1/C1IN1-/C2IN1-/	RA1	TTL/ST	CMOS	General purpose I/O.
C3IN1-/C4IN1-/OPA1OUT	AN1	AN		ADC Channel 1 input.
	C1IN1-	AN	—	Comparator C1 negative input.
	C2IN1-	AN	—	Comparator C2 negative input.
	C3IN1-	AN	—	Comparator C3 negative input.
	C4IN1-	AN	—	Comparator C4 negative input.
	OPA1OUT	—	AN	Operational Amplifier 1 output.
RA2/AN2/C1IN0+/C2IN0+/	RA2	TTL/ST	CMOS	General purpose I/O.
C3IN0+/C4IN0+/DAC1OUT1/	AN2	AN	_	ADC Channel 2 input.
VREF-/DAC1VREF-	C1IN0+	AN	_	Comparator C1 positive input.
	C2IN0+	AN	_	Comparator C2 positive input.
	C3IN0+	AN	_	Comparator C3 positive input.
	C4IN0+	AN		Comparator C4 positive input.
	DAC1OUT1	_	AN	Digital-to-Analog Converter output.
	VREF-	AN		ADC Negative Voltage Reference input.
	DAC1VREF-	AN		Digital-to-Analog Converter negative reference.
RA3/AN3/VREF+/C1IN1+/	RA3	TTL/ST	CMOS	General purpose I/O.
DAC1VREF+/DAC2VREF+/	AN3	AN	_	ADC Channel 3 input.
DAC3VREF+/DAC4VREF+	VREF+	AN	_	ADC Voltage Reference input.
	C1IN1+	AN	_	Comparator C1 positive input.
	DAC1VREF+	AN	_	Digital-to-Analog Converter positive reference.
	DAC2VREF+	AN	_	Digital-to-Analog Converter positive reference.
	DAC3VREF+	AN	_	Digital-to-Analog Converter positive reference.
	DAC4VREF+	AN	_	Digital-to-Analog Converter positive reference.
RA4/C1OUT/OPA1IN+/T0CKI/	RA4	TTL/ST	CMOS	General purpose I/O.
DAC4OUT1	C10UT	_	CMOS	Comparator C1 output.
	OPA1IN+	AN	_	Operational Amplifier 1 non-inverting input.
	TOCKI	ST	_	Timer0 clock input.
	DAC4OUT1	_	AN	Digital-to-Analog Converter output.
RA5/AN4/C2OUT/OPA1IN-/	RA5	TTL/ST	CMOS	General purpose I/O.
SS ⁽¹⁾ /DAC2OUT1	AN4	AN	_	ADC Channel 4 input.
	C2OUT	_	CMOS	Comparator C2 output.
	OPA1IN-	AN	_	Operational Amplifier 1 inverting input.
	SS	ST		Slave Select input.
	50	<u> </u>		Digital-to-Analog Converter output.

TABLE 1-2: PIC16(L)F1788 PINOUT DESCRIPTION

 Legend:
 AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD = Open-Drain

 TTL = TTL compatible input
 ST = Schmitt Trigger input with CMOS levels
 I²C = Schmitt Trigger input with I²C

 HV = High Voltage
 XTAL = Crystal levels

Note 1: Pin functions can be assigned to one of two locations via software. See Register 13-1.

2: All pins have interrupt-on-change functionality.

The memory maps for Bank 0 through Bank 31 are shown in the tables in this section.

TABLE 3-3: PIC16(L)F1788 MEMORY MAP (BANKS 0-7)

	BANK 0	•	, BANK 1		BANK 2		BANK 3		BANK 4		BANK 5		BANK 6		BANK 7
000h		080h		100h		180h		200h		280h		300h		380h	
	Core Registers (Table 3-2)														
00Bh		08Bh		10Bh		18Bh		20Bh		28Bh		30Bh		38Bh	
00Ch	PORTA	08Ch	TRISA	10Ch	LATA	18Ch	ANSELA	20Ch	WPUA	28Ch	ODCONA	30Ch	SLRCONA	38Ch	INLVLA
00Dh	PORTB	08Dh	TRISB	10Dh	LATB	18Dh	ANSELB	20Dh	WPUB	28Dh	ODCONB	30Dh	SLRCONB	38Dh	INLVLB
00Eh	PORTC	08Eh	TRISC	10Eh	LATC	18Eh	ANSELC	20Eh	WPUC	28Eh	ODCONC	30Eh	SLRCONC	38Eh	INLVLC
00Fh	_	08Fh	_	10Fh		18Fh	—	20Fh		28Fh	_	30Fh		38Fh	—
010h	PORTE	090h	TRISE	110h	—	190h	—	210h	WPUE	290h	-	310h	_	390h	INLVLE
011h	PIR1	091h	PIE1	111h	CM1CON0	191h	EEADRL	211h	SSP1BUF	291h	CCPR1L	311h	CCPR3L	391h	IOCAP
012h	PIR2	092h	PIE2	112h	CM1CON1	192h	EEADRH	212h	SSP1ADD	292h	CCPR1H	312h	CCPR3H	392h	IOCAN
013h	PIR3	093h	PIE3	113h	CM2CON0	193h	EEDATL	213h	SSP1MSK	293h	CCP1CON	313h	CCP3CON	393h	IOCAF
014h	PIR4	094h	PIE4	114h	CM2CON1	194h	EEDATH	214h	SSP1STAT	294h	—	314h	—	394h	IOCBP
015h	TMR0	095h	OPTION_REG	115h	CMOUT	195h	EECON1	215h	SSP1CON1	295h	—	315h	_	395h	IOCBN
016h	TMR1L	096h	PCON	116h	BORCON	196h	EECON2	216h	SSP1CON2	296h	—	316h	—	396h	IOCBF
017h	TMR1H	097h	WDTCON	117h	FVRCON	197h	VREGCON ⁽¹⁾	217h	SSP1CON3	297h	—	317h	_	397h	IOCCP
018h	T1CON	098h	OSCTUNE	118h	DAC1CON0	198h	—	218h		298h	CCPR2L	318h	—	398h	IOCCN
019h	T1GCON	099h	OSCCON	119h	DAC1CON1	199h	RC1REG	219h		299h	CCPR2H	319h	—	399h	IOCCF
01Ah	TMR2	09Ah	OSCSTAT	11Ah	CM4CON0	19Ah	TX1REG	21Ah	—	29Ah	CCP2CON	31Ah	—	39Ah	—
01Bh	PR2	09Bh	ADRESL	11Bh	CM4CON1	19Bh	SP1BRGL	21Bh	—	29Bh	—	31Bh	—	39Bh	—
01Ch	T2CON	09Ch	ADRESH	11Ch	APFCON2	19Ch	SP1BRGH	21Ch	—	29Ch	—	31Ch	—	39Ch	—
01Dh	_	09Dh	ADCON0	11Dh	APFCON1	19Dh	RC1STA	21Dh	_	29Dh	_	31Dh	_	39Dh	—
01Eh	_	09Eh	ADCON1	11Eh	CM3CON0	19Eh	TX1STA	21Eh	—	29Eh	—	31Eh	_	39Eh	_
01Fh	—	09Fh	ADCON2	11Fh	CM3CON1	19Fh	BAUD1CON	21Fh		29Fh	—	31Fh	—	39Fh	—
020h		0A0h		120h		1A0h		220h		2A0h		320h		3A0h	
	General Purpose Register 80 Bytes														
06Fh		0EFh		16Fh		1EFh		26Fh		2EFh		36Fh		3EFh	
070h		0F0h		170h		1F0h		270h		2F0h		370h		3F0h	
	Common RAM 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh		Accesses 70h – 7Fh
07Fh		0FFh		17Fh		1FFh		27Fh		2FFh		37Fh		3FFh	

Legend: = Unimplemented data memory locations, read as '0'.

Note 1: PIC16F1788 only.

3.5 Stack

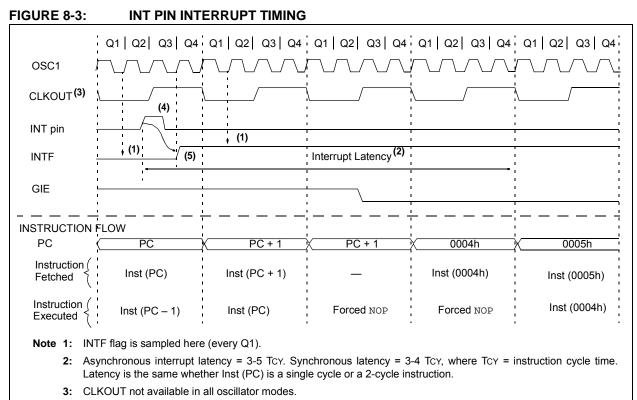
All devices have a 16-level x 15-bit wide hardware stack (refer to Figure 3-1). The stack space is not part of either program or data space. The PC is PUSHed onto the stack when CALL or CALLW instructions are executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not affected by a PUSH or POP operation.

The stack operates as a circular buffer if the STVREN bit is programmed to '0' (Configuration Words). This means that after the stack has been PUSHed sixteen times, the seventeenth PUSH overwrites the value that was stored from the first PUSH. The eighteenth PUSH overwrites the second PUSH (and so on). The STKOVF and STKUNF flag bits will be set on an Overflow/Underflow, regardless of whether the Reset is enabled.

Note: There are no instructions/mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, CALLW, RETURN, RETLW and RETFIE instructions or the vectoring to an interrupt address.

3.5.1 ACCESSING THE STACK

The stack is available through the TOSH, TOSL and STKPTR registers. STKPTR is the current value of the Stack Pointer. TOSH:TOSL register pair points to the TOP of the stack. Both registers are read/writable. TOS is split into TOSH and TOSL due to the 15-bit size of the PC. To access the stack, adjust the value of STKPTR, which will position TOSH:TOSL, then read/write to TOSH:TOSL. STKPTR is five bits to allow detection of overflow and underflow.


Note:	Care should be taken when modifying the
	STKPTR while interrupts are enabled.

During normal program operation, CALL, CALLW and interrupts will increment STKPTR while RETLW, RETURN, and RETFIE will decrement STKPTR. At any time, STKPTR can be inspected to see how much stack is left. The STKPTR always points at the currently used place on the stack. Therefore, a CALL or CALLW will increment the STKPTR and then write the PC, and a return will unload the PC and then decrement the STKPTR.

Reference Figure 3-4 through Figure 3-7 for examples of accessing the stack.

FIGURE 3-4: ACCESSING THE STACK EXAMPLE 1

TOSH:TOSL 0x0F	STKPTR = 0x1F Stack Reset Disabled (STVREN = 0)
√ 0x0E	
0x0D	
0x0C	
0x0B	
0x0A	Initial Stack Configuration
0x09	Initial Stack Configuration:
0x08	After Reset, the stack is empty. The empty stack is initialized so the Stack
0x07	Pointer is pointing at 0x1F. If the Stack Overflow/Underflow Reset is enabled, the
0x06	TOSH/TOSL registers will return '0'. If the Stack Overflow/Underflow Reset is
0x05	disabled, the TOSH/TOSL registers will return the contents of stack address 0x0F.
0x04	
0x03	
0x02	
0x01	
0x00	
TOSH:TOSL 0x1F 0x0000	Stack Reset Enabled (STVREN = 1)
	N

4: For minimum width of INT pulse, refer to AC specifications in Section 31.0 "Electrical Specifications"".

5: INTF is enabled to be set any time during the Q4-Q1 cycles.

9.2 Low-Power Sleep Mode

"F" devices contain an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode. "F" devices allow the user to optimize the operating current in Sleep, depending on the application requirements.

A Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register. With this bit set, the LDO and reference circuitry are placed in a low-power state when the device is in Sleep.

9.2.1 SLEEP CURRENT VS. WAKE-UP TIME

In the default operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

9.2.2 PERIPHERAL USAGE IN SLEEP

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The LDO will remain in the normal power mode when those peripherals are enabled. The Low-Power Sleep mode is intended for use with these peripherals:

- Brown-Out Reset (BOR)
- Watchdog Timer (WDT)
- · External interrupt pin/Interrupt-on-change pins
- Timer1 (with external clock source)
- Note: "LF" devices do not have a configurable Low-Power Sleep mode. "LF" devices are an unregulated device and are always in the lowest power state when in Sleep, with no wake-up time penalty. These devices have a lower maximum VDD and I/O voltage than "F" devices. See Section 31.0 "Electrical Specifications" for more information.

EXAMPLE 12-6: WRITING TO FLASH PROGRAM MEMORY

(AMPL	LE 12-6:	WRITING TO FLA	ASH PROGRAM MEMORY
This	write rout	ine assumes the f	ollowing:
1. Th	ne 16 bytes	of data are load	led, starting at the address in DATA_ADDR
	_		en is made up of two adjacent bytes in DATA_ADDR,
		ttle endian forma	
			e least significant bits = 0000) is loaded in ADDRH:ADDRL
			n shared data memory 0x70 - 0x7F (common RAM)
	BCF	INTCON, GIE	; Disable ints so required sequences will execute properly
	BANKSEL	EEADRH	; Bank 3
	MOVF	ADDRH, W	; Load initial address
	MOVWF	EEADRH	;
	MOVF	ADDRL,W	;
	MOVF MOVWF	EEADRL	, ;
	MOVWF MOVLW		' ; Load initial data address
	MOVEW	FSROL	;
	MOVLW		; Load initial data address
	MOVEW		;
	BSF		; Point to program memory : Not configuration grade
	BCF		; Not configuration space
	BSF	EECON1, WREN	; Enable writes
0.05	BSF	EECON1,LWLO	; Only Load Write Latches
00P		2220	
	MOVIW	FSR0++	; Load first data byte into lower
	MOVWF	EEDATL	;
	MOVIW	FSR0++	; Load second data byte into upper
	MOVWF	EEDATH	;
	MOVF	EEADRL,W	; Check if lower bits of address are '000'
	XORLW	0x0F	; Check if we're on the last of 16 addresses
	ANDLW	0x0F	i
	BTFSC	STATUS , Z	; Exit if last of 16 words,
	GOTO	START_WRITE	;
	MOVLW	55h	; Start of required write sequence:
	MOVWF	EECON2	; Write 55h
g g	MOVLW	0AAh	i
enc	MOVWF	EECON2	; Write AAh
Required Sequence	BSF	EECON1,WR	; Set WR bit to begin write
s, R	NOP		; Any instructions here are ignored as processor
			; halts to begin write sequence
1	NOP		; Processor will stop here and wait for write to complete.
			; After write processor continues with 3rd instruction.
	INCF	EEADRL, F	; Still loading latches Increment address
	GOTO	LOOP	; Write next latches
TART_W	VRITE		
	BCF	EECON1,LWLO	; No more loading latches - Actually start Flash program
			; memory write
	MOVLW	55h	; Start of required write sequence:
	MOVWF	EECON2	; Write 55h
မ ရ	MOVLW	0AAh	;
uire	MOVWF	EECON2	; Write AAh
Required Sequence	BSF	EECON1,WR	; Set WR bit to begin write
Ϋ́ Ϋ́	NOP		; Any instructions here are ignored as processor
			; halts to begin write sequence
	NOP		; Processor will stop here and wait for write complete.
	-		a arre i i a a anne eer arre tampioool
			; after write processor continues with 3rd instruction
	BCF	EECON1 . WREN	; after write processor continues with 3rd instruction ; Disable writes
	BCF BSF	EECON1,WREN INTCON,GIE	<pre>; after write processor continues with 3rd instruction ; Disable writes ; Enable interrupts</pre>

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'					
u = Bit is unchanged x = Bit is ur			nown	-n/n = Value at POR and BOR/Value at all other Rese					
'1' = Bit is set		'0' = Bit is clea	ared						

REGISTER 13-25: INLVLC: PORTC INPUT LEVEL CONTROL REGISTER

bit 7-0 INLVLC<7:0>: PORTC Input Level Select bits

For RC<7:0> pins, respectively

1 = ST input used for PORT reads and interrupt-on-change

0 = TTL input used for PORT reads and interrupt-on-change

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	147
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	147
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	147
WPUC	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	148
INLVLC	INLVLC7	INLVLC6	INLVLC5	INLVLC4	INLVLC3	INLVLC2	INLVLC1	INLVLC0	149
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	147
ODCONC	ODC7	ODC6	ODC5	ODC4	ODC3	ODC2	ODC1	ODC0	148
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	147
SLRCONC	SLRC7	SLRC6	SLRC5	SLRC4	SLRC3	SLRC2	SLRC1	SLRC0	148

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

17.1 ADC Configuration

When configuring and using the ADC the following functions must be considered:

- · Port configuration
- · Channel selection
 - Single-ended
 - Differential
- ADC voltage reference selection
- ADC conversion clock source
- · Interrupt control
- · Result formatting

17.1.1 PORT CONFIGURATION

The ADC can be used to convert both analog and digital signals. When converting analog signals, the I/O pin should be configured for analog by setting the associated TRIS and ANSEL bits. Refer to **Section 13.0 "I/O Ports"** for more information.

Note:	Analog voltages on any pin that is defined										
	as a digital input may cause the input										
	buffer to conduct excess current.										

17.1.2 CHANNEL SELECTION

There are up to 18 channel selections available:

- AN<13:8, 4:0> pins (PIC16(L)F1788 only)
- AN<21, 13:0> pins (PIC16(L)F1789 only)
- Temperature Indicator
- DAC_output
- FVR (Fixed Voltage Reference) Output

Refer to Section 15.0 "Fixed Voltage Reference (FVR)" and Section 16.0 "Temperature Indicator Module" for more information on these channel selections.

When converting differential signals, the negative input for the channel is selected with the CHSN<3:0> bits of the ADCON2 register. Any positive input can be paired with any negative input to determine the differential channel.

The CHS<4:0> bits of the ADCON0 register determine which positive channel is selected.

When CHSN<3:0> = 1111 then the ADC is effectively a single ended ADC converter.

When changing channels, a delay is required before starting the next conversion.

17.1.3 ADC VOLTAGE REFERENCE

The ADPREF bits of the ADCON1 register provide control of the positive voltage reference. The positive voltage reference can be:

- VREF+
- VDD
- FVR Buffer1

The ADNREF bits of the ADCON1 register provide control of the negative voltage reference. The negative voltage reference can be:

- VREF- pin
- Vss

See **Section 15.0** "Fixed Voltage Reference (FVR)" for more details on the Fixed Voltage Reference.

17.1.4 CONVERSION CLOCK

The source of the conversion clock is software selectable via the ADCS bits of the ADCON1 register. There are seven possible clock options:

- Fosc/2
- Fosc/4
- Fosc/8
- Fosc/16
- Fosc/32
- Fosc/64
- FRC (dedicated internal FRC oscillator)

The time to complete one bit conversion is defined as TAD. One full 12-bit conversion requires 15 TAD periods as shown in Figure 17-2.

For correct conversion, the appropriate TAD specification must be met. Refer to the ADC conversion requirements in **Section 31.0 "Electrical Specifications"** for more information. Table 17-1 gives examples of appropriate ADC clock selections.

Note: Unless using the FRC, any changes in the system clock frequency will change the ADC clock frequency, which may adversely affect the ADC result.

18.4 Register Definitions: Op Amp Control

REGISTER 18-1: OPAxCON: OPERATIONAL AMPLIFIERS (OPAx) CONTROL REGISTERS

R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0
OPAxEN	OPAxSP		—	_		OPAxCH<2:0>	
bit 7					·		bit 0
Legend:							
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0							
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared	q = Value de	pends on condit	ion	
bit 7	OPAxEN: Op	Amp Enable b	it				
	1 = Op amp i						
	0 = Op amp i	s disabled and	consumes no	active power			
bit 6	OPAxSP: Op	Amp Speed/Po	ower Select bi	it			
		tor operates in	high GBWP m	node			
	0 = Reserved	I. Do not use.					
bit 5-3	Unimplemen	ted: Read as '	D'				
bit 2-0	OPAxCH<2:0	>: Non-invertir	ng Channel Se	election bits			
	$111 = Non_{-in}$	verting input co	nnects to DA				

- 111 = Non-inverting input connects to DAC4_output
- 110 = Non-inverting input connects to DAC3_output
- 101 = Non-inverting input connects to DAC2_output
- 100 = Non-inverting input connects to DAC1_output
- 011 = Non-inverting input connects to FVR Buffer 2 output
- 010 = Reserved do not use
- 001 = Reserved do not use
- 000 = Non-inverting input connects to OPAxIN+ pin

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	ANSA7	_	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	137
ANSELB	—	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	143
DAC1CON0	DAC1EN	_	DAC10E1	DAC10E2	DAC1PS	SS<1:0>	_	DAC1NSS	192
DAC1CON1				DAC1	1R<7:0>				192
OPA1CON	OPA1EN	OPA1SP	—	_	_	—	OPA1P0	CH<1:0>	187
OPA2CON	OPA2EN	OPA2SP	—	_	_	—	OPA2P0	CH<1:0>	187
OPA3CON ⁽¹⁾	OPA3EN	OPA3SP	—	_	_	—	OPA3PCH<1:0>		187
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	136
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	142
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	147

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH OP AMPS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by op amps.

Note 1: PIC16(L)F1789 only

20.0 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC2/3/4) MODULES

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The input of the DAC can be connected to:

- External VREF+ pin
- VDD supply voltage

The output of the DAC can be configured to supply a reference voltage to the following:

- · Comparator positive input
- · ADC input channel
- DACxOUT1 pin
- DACxOUT2 pin

The Digital-to-Analog Converter (DACx) can be enabled by setting the DACxEN bit of the DACxCON0 register.

EQUATION 20-1: DAC OUTPUT VOLTAGE

 $\frac{IF DACxEN = 1}{Vout}$ $Vout = \left((VSOURCE+ - VSOURCE-) \times \frac{DACxR[4:0]}{2^5} \right) + VSOURCE \frac{IF DACxEN = 0 \text{ and } DACxLPS = 1 \text{ and } DACxR[4:0] = 11111}{Vout}$ Vout = VSOURCE + $\frac{IF DACxEN = 0 \text{ and } DACxLPS = 0 \text{ and } DACxR[4:0] = 00000}{Vout} = VSOURCE -$ VSOURCE+ = VDD, VREF, or FVR BUFFER 2 VSOURCE- = VSS

20.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in **Section 31.0** "**Electrical Specifications**".

Note: Register names, I/O pins, and bit names may use the generic designator 'x' to indicate the use of a numeral to distinguish a particular module, when required. The 'x' designator in DACx applies only to DAC2, DAC3, and DAC4.

20.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DACxR<4:0> bits of the DACxCON1 register.

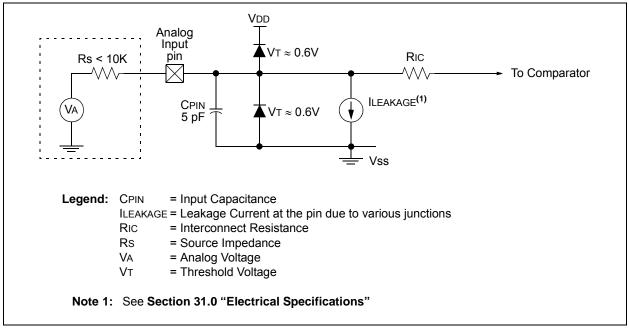
The DAC output voltage is determined by the following equations:

20.3 DAC Voltage Reference Output

The DAC voltage can be output to the DACxOUT1 and DACxOUT2 pins by setting the respective DACxOE1 and DACxOE2 pins of the DACxCON0 register. Selecting the DAC reference voltage for output on either DACxOUTx pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the DACxOUTx pin when it has been configured for DAC reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to either DACxOUTx pin. Figure 20-2 shows an example buffering technique.

21.10 Analog Input Connection Considerations


A simplified circuit for an analog input is shown in Figure 21-4. Since the analog input pins share their connection with a digital input, they have reverse biased ESD protection diodes to VDD and Vss. The analog input, therefore, must be between Vss and VDD. If the input voltage deviates from this range by more than 0.6V in either direction, one of the diodes is forward biased and a latch-up may occur.

A maximum source impedance of $10 \text{ k}\Omega$ is recommended for the analog sources. Also, any external component connected to an analog input pin, such as a capacitor or a Zener diode, should have very little leakage current to minimize inaccuracies introduced.

- Note 1: When reading a PORT register, all pins configured as analog inputs will read as a '0'. Pins configured as digital inputs will convert as an analog input, according to the input specification.
 - 2: Analog levels on any pin defined as a digital input, may cause the input buffer to consume more current than is specified.

21.10.1 ALTERNATE PIN LOCATIONS

This module incorporates I/O pins that can be moved to other locations with the use of the alternate pin function register APFCON. To determine which pins can be moved and what their default locations are upon a Reset, see **Section 13.1 "Alternate Pin Function**" for more information.

FIGURE 21-4: ANALOG INPUT MODEL

26.5.3 COMPLEMENTARY PWM STEERING

In Complementary PWM Steering mode, the primary PWM signal (non-complementary) and complementary signal can be steered according to their respective type.

Primary PWM signal can be steered to any of the following outputs:

- PSMCxA
- PSMCxC
- PSMCxE

The complementary PWM signal can be steered to any of the following outputs:

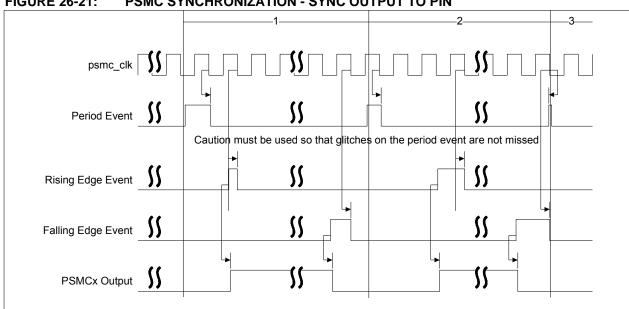
- PSMCxB
- PSMCxD
- PSMCxE

Examples of unsynchronized complementary steering are shown in Figure 26-17.

FIGURE 26-17: COMPLEMENTARY PWM STEERING WAVEFORM (NO SYNCHRONIZATION, ZERO DEAD-BAND TIME)

Base_PWM_signal	
PxSTRA	
PSMCxA	
PSMCxB	
PxSTRB	Arrows indicate where a change in the steering bit automatically forces a change in the corresponding PSMC output.
PxSTRC	
PSMCxC	
PSMCxD	
PxSTRD	
PxSTRE	
PSMCxE	
PSMCxF	
PxSTRF	

26.8 **PSMC Synchronization**


It is possible to synchronize the periods of two or more PSMC modules together, provided that all modules are on the same device.

Synchronization is achieved by sending a sync signal from the master PSMC module to the desired slave modules. This sync signal generates a period event in each slave module, thereby aligning all slaves with the master. This is useful when an application requires different PWM signal generation from each module but the waveforms must be consistent within a PWM period.

SYNCHRONIZATION SOURCES 26.8.1

The synchronization source can be any PSMC module on the same device. For example, in a device with two PSMC modules, the possible sources for each device is as shown below:

- Sources for PSMC1
 - PSMC2
- Sources for PSMC2
 - PSMC1

FIGURE 26-21: PSMC SYNCHRONIZATION - SYNC OUTPUT TO PIN

26.8.1.1 **PSMC Internal Connections**

The sync signal from the master PSMC module is essentially that modules period event trigger. The slave PSMC modules reset their PSMCxTMR with the sync signal instead of their own period event.

Enabling a module as a slave recipient is done with the PxSYNC bits of the PSMC Synchronization Control (PSMCxSYNC) registers; registers 26-3 and 26-4.

26.8.1.2 Phase Offset Synchronization

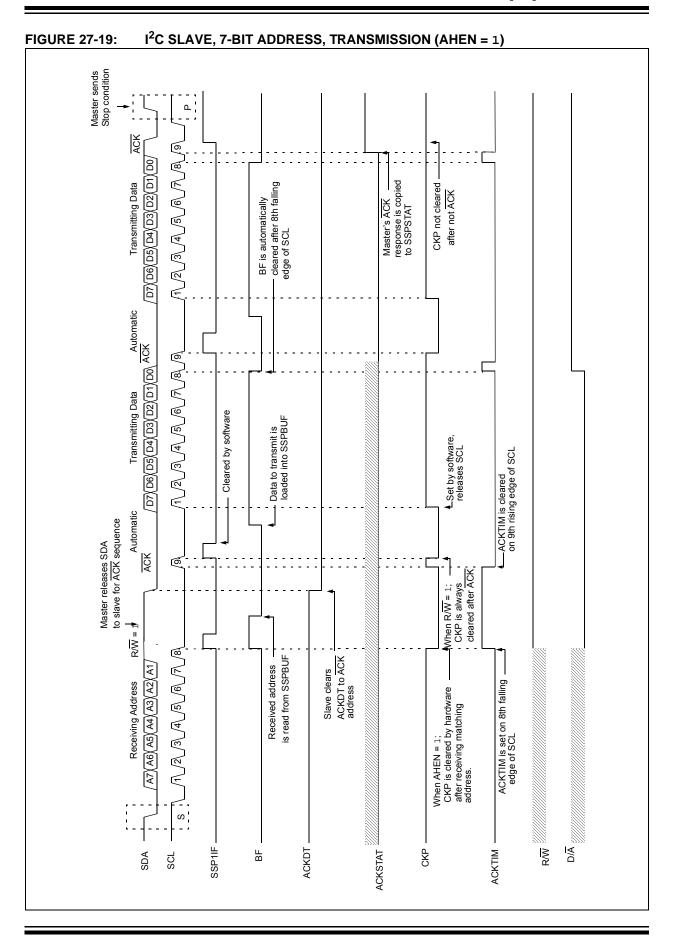
The synchronization output signal from the PSMC module is selectable. The sync_out source may be either:

- Period Event
- Rising Event

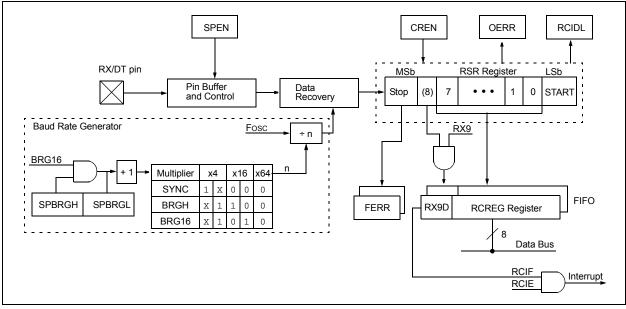
Source selection is made with the PxPOFST bit of the PSMCxSYNC registers, registers 26-3, 26-4 and 26-7.

When the PxPOFST bit is set, the sync out signal comes from the rising event and the period event replaces the rising event as the start of the active drive period. When PxPOFST is set, duty cycles of up to 100% are achievable in both the slave and master.

When PXPOFST is clear, the sync_out signal comes from the period event. When PxPOFST is clear, rising events that start after the period event remove the equivalent start delay percentage from the maximum 100% duty cycle.


26.8.1.3 Synchronization Skid

When the sync_out source is the Period Event, the slave synchronous rising and falling events will lag by one psmc clk period. When the sync out source is the Rising Event, the synchronous events will lag by two clock periods. To compensate for this, the values in PHH:PHL and DCH:DCL registers can be reduced by the number of lag cycles.


26.12 Register Definitions: PSMC Control

REGISTER 26-1: PSMCxCON: PSMC CONTROL REGISTER

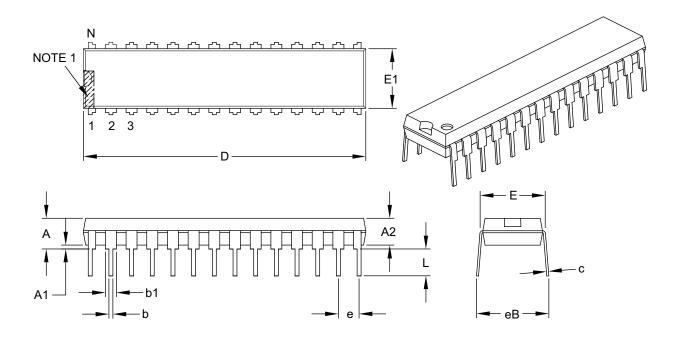
R/W-0/0	R/W/HC-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
PSMCxEN	PSMCxLD	PxDBFE	PxDBRE	PxMODE<3:0>				
bit 7							bit C	
Legend:								
R = Readable bit		W = Writable bit		•	nented bit, read			
u = Bit is unchanged		x = Bit is unknown		-n/n = Value a	at POR and BO	R/Value at all o	other Resets	
'1' = Bit is set		'0' = Bit is cle	ared					
bit 7		SMC Module I	-nable bit					
		module is enal						
		module is disa						
bit 6	PSMCxLD: P	SMC Load But	fer Enable bit					
	1 = PSMCx registers are ready to be updated with the appropriate register contents							
	0 = PSMCx buffer update complete							
bit 5		MC Falling Edg						
	1 = PSMCx falling edge dead band enabled							
	0 = PSMCx falling edge dead band disabled							
bit 4	PxDBRE: PSMC Rising Edge Dead-Band Enable bit							
	 1 = PSMCx rising edge dead band enabled 0 = PSMCx rising edge dead band disabled 							
bit 3-0		> PSMC Oper						
	1111 = Rese	-	J					
	1110 = Rese							
	1101 = Rese		A / N A					
	1100 = 3-phase steering PWM 1011 = Fixed duty cycle, variable frequency, complementary PWM							
	1011 = Fixed duty cycle, variable frequency, complementary PWM 1010 = Fixed duty cycle, variable frequency, single PWM							
	1001 = ECCP compatible Full-Bridge forward output							
	1000 = ECCP compatible Full-Bridge reverse output							
	0111 = Pulse-skipping with complementary output 0110 = Pulse-skipping PWM output							
	0110 = Pulse-skipping PVVM output 0101 = Push-pull with four full-bridge outputs and complementary outputs							
	0100 = Push-pull with four full-bridge outputs							
	0011 = Push	n-pull with com						
	0010 = Push				\^/\			
	0001 = Singl0000 = Singl				WM steering ca			

FIGURE 28-2: EUSART RECEIVE BLOCK DIAGRAM

The operation of the EUSART module is controlled through three registers:

- Transmit Status and Control (TXSTA)
- Receive Status and Control (RCSTA)
- Baud Rate Control (BAUDCON)

These registers are detailed in Register 28-1, Register 28-2 and Register 28-3, respectively.


When the receiver or transmitter section is not enabled then the corresponding RX or TX pin may be used for general purpose input and output.

34.2 Package Details

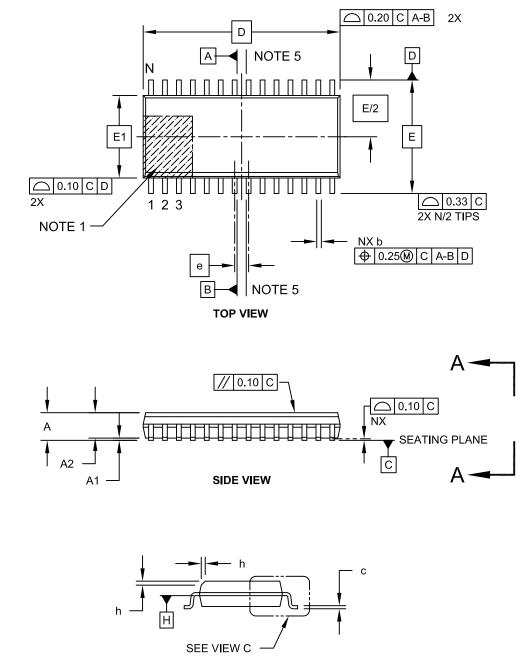
The following sections give the technical details of the packages.

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		28	•
Pitch	e .100 BSC			
Top to Seating Plane	А	-	-	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §		-	-	.430

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-052C Sheet 1 of 2

THE MICROCHIP WEBSITE

Microchip provides online support via our website site at www.microchip.com. This website is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the website contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip website at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- · Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the website at: http://microchip.com/support