

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	35
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 1x8b, 3x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1789-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F178X Family Types

Device	Data Sheet Index	Program Memory Flash (words)	Data EEPROM (bytes)	Data SRAM (bytes)	I/O'S ⁽²⁾	12-bit ADC (ch)	Comparators	Operational Amplifiers	DAC (8/5-bit)	Timers (8/16-bit)	Programmable Switch Mode Controllers (PSMC)	ССР	EUSART	MSSP (I ² C/SPI)	Debug ⁽¹⁾	ХГР
PIC16(L)F1782	(1)	2048	256	256	25	11	3	2	1/0	2/1	2	2	1	1	Ι	Y
PIC16(L)F1783	(1)	4096	256	512	25	11	3	2	1/0	2/1	2	2	1	1	Ι	Υ
PIC16(L)F1784	(2)	4096	256	512	36	15	4	3	1/0	2/1	3	3	1	1	Ι	Υ
PIC16(L)F1786	(2)	8192	256	1024	25	11	4	2	1/0	2/1	3	3	1	1	Ι	Υ
PIC16(L)F1787	(2)	8192	256	1024	36	15	4	3	1/0	2/1	3	3	1	1	Ι	Υ
PIC16(L)F1788	(3)	16384	256	2048	25	11	4	2	1/3	2/1	4	3	1	1	Ι	Y
PIC16(L)F1789	(3)	16384	256	2048	36	15	4	3	1/3	2/1	4	3	1	1	Ι	Y

Note 1: I - Debugging, Integrated on Chip; H - Debugging, available using Debug Header.

2: One pin is input-only.

Data Sheet Index: (Unshaded devices are described in this document.)

- 1: DS40001579 PIC16(L)F1782/3 Data Sheet, 28-Pin Flash, 8-bit Advanced Analog MCUs.
- 2: DS40001637 PIC16(L)F1784/6/7 Data Sheet, 28/40/44-Pin Flash, 8-bit Advanced Analog MCUs.

3: DS40001675 PIC16(L)F1788/9 Data Sheet, 28/40/44-Pin Flash, 8-bit Advanced Analog MCUs.

Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office.

PIC16(L)F1788/9

TABLE 3-12: S	PECIAL FUNCTION REGISTER SU	MMARY (CONTINUED)
---------------	-----------------------------	--------------------------

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Ban	k 4										
20Ch	WPUA	WPUA7	WPUA6	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	1111 1111	1111 1111
20Dh	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	WPUB3	WPUB2	WPUB1	WPUB0	1111 1111	1111 1111
20Eh	WPUC	WPUC7	WPUC6	WPUC5	WPUC4	WPUC3	WPUC2	WPUC1	WPUC0	1111 1111	1111 1111
20Fh	WPUD ⁽³⁾	WPUD7	WPUD6	WPUD5	WPUD4	WPUD3	WPUD2	WPUD1	WPUD0	1111 1111	1111 1111
210h	WPUE	—	_	—	—	WPUE3	WPUE2 ⁽³⁾	WPUE1 ⁽³⁾	WPUE0 ⁽³⁾	1111	1111
211h	SSP1BUF	Synchronous S	Serial Port Re	ceive Buffer/Tra	ansmit Register					XXXX XXXX	uuuu uuuu
212h	SSP1ADD				ADD<	7:0>				0000 0000	0000 0000
213h	SSP1MSK		MSK<7:0>								
214h	SSP1STAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
215h	SSP1CON1	WCOL	SSPOV	SSPEN	I CKP SSPM<3:0>						0000 0000
216h	SSP1CON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	0000 0000
217h	SSP1CON3	ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN	0000 0000	0000 0000
218h 21Fh	_	Unimplemente	Jnimplemented								
Ban	Bank 5										
28Ch	ODCONA	Open-Drain Co	Open-Drain Control for PORTA								
28Dh	ODCONB	Open-Drain Control for PORTB									0000 0000
28Eh	ODCONC	Open-Drain Control for PORTC									0000 0000
28Fh	ODCOND ⁽³⁾	Open-Drain Control for PORTD									0000 0000
290h	ODCONE ⁽³⁾	—	_	—	—	_	ODE2	ODE1	ODE0	000	uuu
291h	CCPR1L	Capture/Comp	are/PWM Re	gister 1 (LSB)						xxxx xxxx	uuuu uuuu
292h	CCPR1H	Capture/Comp	are/PWM Re	gister 1 (MSB)						XXXX XXXX	uuuu uuuu
293h	CCP1CON	—	_	DC1E	8<1:0>		CCP1	∕l<3:0>		00 0000	00 0000
294h 297h	_	Unimplemente	d							-	_
298h	CCPR2L	Capture/Comp	are/PWM Re	gister 2 (LSB)						xxxx xxxx	uuuu uuuu
299h	CCPR2H	Capture/Comp	are/PWM Re	gister 2 (MSB)						xxxx xxxx	uuuu uuuu
29Ah	CCP2CON	—	—	DC2E	3<1:0>		CCP2	M<3:0>		00 0000	00 0000
29Bh 29Fh	-	Unimplemente	d							-	-
Ban	k 6										
30Ch	SLRCONA	Slew Rate Cor	ntrol for PORT	Ā						0000 0000	0000 0000
30Dh	SLRCONB	Slew Rate Cor	ntrol for PORT	В						0000 0000	0000 0000
30Eh	SLRCONC	Slew Rate Cor	ntrol for PORT	C						0000 0000	0000 0000
30Fh	SLRCOND ⁽³⁾	Slew Rate Cor	ntrol for PORT	D						0000 0000	0000 0000
310h	SLRCONE ⁽³⁾	—	—	—	—	—	SLRE2	SLRE1	SLRE0	111	111
311h	CCPR3L	Capture/Comp	are/PWM Re	gister 3 (LSB)						xxxx xxxx	uuuu uuuu
312h	CCPR3H	Capture/Comp	are/PWM Re	gister 3 (MSB)						xxxx xxxx	uuuu uuuu
313h	CCP3CON	—	—	DC3E	8<1:0>		CCP3N	M<3:0>		00 0000	00 0000
314h	_	Unimplemente	d							_	-

x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'. These registers can be addressed from any bank. Unimplemented, read as '1'. PIC16(L)F1789 only. Legend:

Note

1: 2:

3:

PIC16F1788/9 only. 4:

10.0 LOW DROPOUT (LDO) VOLTAGE REGULATOR

The "F" devices have an internal Low Dropout Regulator (LDO) which provide operation above 3.6V. The LDO regulates a voltage for the internal device logic while permitting the VDD and I/O pins to operate at a higher voltage. There is no user enable/disable control available for the LDO, it is always active. The "LF" devices operate at a maximum VDD of 3.6V and does not incorporate an LDO.

A device I/O pin may be configured as the LDO voltage output, identified as the VCAP pin. Although not required, an external low-ESR capacitor may be connected to the VCAP pin for additional regulator stability.

The $\overline{\text{VCAPEN}}$ bit of Configuration Words determines if which pin is assigned as the VCAP pin. Refer to Table 10-1.

VCAPEN	Pin
1	No VCAP
0	RA6

TABLE 10-1: VCAPEN SELECT BIT

On power-up, the external capacitor will load the LDO voltage regulator. To prevent erroneous operation, the device is held in Reset while a constant current source charges the external capacitor. After the cap is fully charged, the device is released from Reset. For more information on the constant current rate, refer to the LDO Regulator Characteristics Table in **Section 31.0 "Electrical Specifications"**.

TABLE 10-2: SUMMARY OF CONFIGURATION WORD WITH LDO

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG2	13:8			LVP	DEBUG	LPBOR	BORV	STVREN	PLLEN	<u> </u>
	7:0	_		VCAPEN ⁽¹⁾	_			WRT	<1:0>	60

Legend: — = unimplemented locations read as '0'. Shaded cells are not used by LDO.

Note 1: "F" devices only.

13.1 Alternate Pin Function

The Alternate Pin Function Control (APFCON1 and APFCON2) registers are used to steer specific peripheral input and output functions between different pins. The APFCON1 and APFCON2 registers are shown in Register 13-1 and Register 13-2. For this device family, the following functions can be moved between different pins.

- C2OUT output
- CCP1 output
- SDO output
- · SCL/SCK output
- SDA/SDI output
- TX/RX output
- CCP2 output
- CCP3 output
- SS input

These bits have no effect on the values of any TRIS register. PORT and TRIS overrides will be routed to the correct pin. The unselected pin will be unaffected.

15.4 Register Definitions: FVR Control

REGISTER 15-1:	FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0				
FVREN	FVRRDY ⁽¹⁾	TSEN	TSRNG	CDAF	/R<1:0>	ADFV	R<1:0>				
bit 7							bit 0				
Legend:											
R = Readabl	le bit	W = Writable	able bit U = Unimplemented bit, read as '0'								
u = Bit is und	changed	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets				
'1' = Bit is se	et	'0' = Bit is cle	ared	q = Value dep	ends on condit	ion					
bit 7	FVREN: Fixe	d Voltage Refe	rence Enable	bit							
	1 = Fixed Vo	Itage Reference	e is enabled								
h # 0		lage Reference	e is disabled	(Ele a bit(1)							
DILO	TURRUT: FIX	ed voltage Re	erence Ready	/ Flag bit							
	0 = Fixed Vo	Itage Reference	e output is rea	t ready or not e	nabled						
bit 5	TSEN: Tempe	erature Indicato	or Enable bit ⁽³)							
	1 = Tempera	ure Indicator is enabled									
	0 = Tempera	ture Indicator is	s disabled								
bit 4	TSRNG: Tem	perature Indica	ator Range Se	lection bit ⁽³⁾							
	1 = VOUT = V	1 = VOUT = VDD - 4VT (High Range)									
	0 = VOUT = V	/DD - 2VT (Low	Range)								
bit 3-2	CDAFVR<1:0	>: Comparator	and DAC Fix	ed Voltage Ref	erence Selectio	on bit)				
	11 = Comparing 10 =	11 = Comparator and DAC Fixed Voltage Reference Peripheral output is $4x (4.096V)^{(2)}$									
	01 = Compar	ator and DAC	Fixed Voltage	Reference Per	ipheral output is	s 1x (1.024V)					
	00 = Compar	00 = Comparator and DAC Fixed Voltage Reference Peripheral output is off.									
bit 1-0	ADFVR<1:0>	ADC Fixed V	oltage Refere	nce Selection b	bit						
	11 = ADC Fix	ed Voltage Re	ference Peripl	neral output is 4	4x (4.096V) ⁽²⁾						
	10 = ADC Fix	ed Voltage Re	ference Peripl	neral output is 2	2x (2.048V) ⁽²⁾						
		ed Voltage Re	terence Peripl	neral output is	1x (1.024V)						
	00 = ADC FIX	teu voltage Re	ierence Peripi		JII.						

Note 1: FVRRDY is always '1' on "F" devices only.

- 2: Fixed Voltage Reference output cannot exceed VDD.
- 3: See Section 16.0 "Temperature Indicator Module" for additional information.

TABLE 15-2: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFVR<1:0>		ADFVF	२<1:0>	167

Legend: Shaded cells are not used with the Fixed Voltage Reference.

18.4 Register Definitions: Op Amp Control

REGISTER 18-1: OPAxCON: OPERATIONAL AMPLIFIERS (OPAx) CONTROL REGISTERS

R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0					
OPAxEN	OPAxSP	—	_			OPAxCH<2:0>						
bit 7							bit 0					
Legend:												
R = Readable	bit	U = Unimpler	mented bit, read	l as '0'								
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Re								
'1' = Bit is set '0' = Bit is cleared				q = Value de	pends on condit	ion						
bit 7	OPAxEN: Op	Amp Enable b	it									
	1 = Op amp i	s enabled										
	0 = Op amp i	s disabled and	consumes no	active power								
bit 6	OPAxSP: Op	Amp Speed/Po	ower Select bi	it								
	1 = Compara	tor operates in	high GBWP n	node								
	0 = Reserved	I. Do not use.										
bit 5-3	Unimplemen	ted: Read as '	0'									
bit 2-0	OPAxCH<2:0>: Non-inverting Channel Selection bits											

- 111 = Non-inverting input connects to DAC4_output
- 110 = Non-inverting input connects to DAC3_output
- 101 = Non-inverting input connects to DAC2_output
- 100 = Non-inverting input connects to DAC1_output
- 011 = Non-inverting input connects to FVR Buffer 2 output
- 010 = Reserved do not use
- 001 = Reserved do not use
- 000 = Non-inverting input connects to OPAxIN+ pin

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	ANSA7	—	ANSA5	ANSA4	ANSA3	ANSA2	ANSA1	ANSA0	137
ANSELB	—	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	143
DAC1CON0	DAC1EN	—	DAC10E1	DAC10E2	DAC1PS	SS<1:0>	> _ DAC1NSS		
DAC1CON1	DAC1R<7:0>								
OPA1CON	OPA1EN	OPA1SP	—	—	_	—	OPA1P	CH<1:0>	187
OPA2CON	OPA2EN	OPA2SP	—	—	_	—	OPA2P	CH<1:0>	187
OPA3CON ⁽¹⁾	OPA3EN	OPA3SP	—	—	_	—	OPA3P0	CH<1:0>	187
TRISA	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	136
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	142
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	147

TABLE 18-1: SUMMARY OF REGISTERS ASSOCIATED WITH OP AMPS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by op amps.

Note 1: PIC16(L)F1789 only

19.0 8-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 256 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- Comparator positive input
- Op amp positive input
- ADC input channel
- DAC1OUT1 pin
- DAC1OUT2 pin

The Digital-to-Analog Converter (DAC) is enabled by setting the DAC1EN bit of the DAC1CON0 register.

19.1 Output Voltage Selection

The DAC has 256 voltage level ranges. The 256 levels are set with the DAC1R<7:0> bits of the DAC1CON1 register.

The DAC output voltage is determined by Equation 19-1:

EQUATION 19-1: DAC OUTPUT VOLTAGE

$$\frac{IF DACxEN = 1}{VOUT} = \left((VSOURCE+ - VSOURCE-) \times \frac{DACxR[7:0]}{2^8} \right) + VSOURCE-$$
$$VSOURCE+ = VDD, VREF, or FVR BUFFER 2$$
$$VSOURCE- = VSS$$

19.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in **Section 31.0** "**Electrical Specifications**".

19.3 DAC Voltage Reference Output

The DAC voltage can be output to the DAC1OUT1 and DAC1OUT2 pins by setting the respective DAC1OE1 and DAC1OE2 pins of the DAC1CON0 register. Selecting the DAC reference voltage for output on either DAC1OUTx pin automatically overrides the digital output buffer and digital input threshold detector functions of that pin. Reading the DAC1OUTx pin when it has been configured for DAC reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to either DAC1OUTx pin. Figure 19-2 shows an example buffering technique.

© 2013-2015 Microchip Technology Inc.

26.5 Output Steering

Output steering allows for PWM signals generated by the PSMC module to be placed on different pins under software control. Synchronized steering will hold steering changes until the first period event after the PSMCxLD bit is set. Unsynchronized steering changes will take place immediately.

Output steering is available in the following modes:

- 3-phase PWM
- Single PWM
- Complementary PWM

26.5.1 3-PHASE STEERING

3-phase steering is available in the 3-Phase Modulation mode only. For more details on 3-phase steering refer to **Section 26.3.12 "3-Phase PWM"**.

26.5.2 SINGLE PWM STEERING

In Single PWM Steering mode, the single PWM signal can be routed to any combination of the PSMC output pins. Examples of unsynchronized single PWM steering are shown in Figure 26-16.

PxSTRB	
PxSTR <u>C</u>	
PxSTRFPSMCxF With synchronization disabled, it is possible to get glitches on the PWM outputs.	

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	
PxASE	PxASDEN	PxARSEN	—	—	—	—	PxASDOV	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	n = Value at POR and BOR/Value at all other Resets			
'1' = Bit is set		'0' = Bit is clea	ared					
bit 7	PxASE: PWM	Auto-Shutdov	vn Event Statu	us bit ⁽¹⁾				
	1 = A shutdo	own event has	occurred, PW	M outputs are	inactive and in t	heir shutdown	n states	
	0 = PWM or	utputs are oper	ating normally	4				
bit 6	PxASDEN: P	WM Auto-Shut	down Enable	bit				
	1 = Auto-shutdown is enabled. If any of the sources in PSMCxASDS assert a logic '1', then the out-							
	puts will	go into their ai	uto-shutdown	state and PSM	ICXSIF flag will I	be set.		
bit 5		WM Auto-Rest	art Enable bit					
bit 5	1 = PWMre	starts automati	cally when the	e shutdown co	ndition is remov	ed		
	0 = The PxASE bit must be cleared in firmware to restart PWM after the auto-shutdown condition is			wn condition is				
	cleared.							
bit 4-1	Unimplemen	ted: Read as '	0'					
bit 0	PxASDOV: PWM Auto-Shutdown Override bit							
	PxASDEN = 1:							
	1 = Force P	xASDL[n] level	s on the PSM	Cx[n] pins with	out causing a P	SMCxSIF inte	errupt	
		PWM and auto	-shutdown ex	ecution				
	$\frac{P \times ASDEN}{No off oct} = 0$	<u>):</u>						
	NO ellect							
Note 1: PASE bit may be set in software. When this occurs the functionality is the same as that caused by								
hardware.								

REGISTER 26-16: PSMCxASDC: PSMC AUTO-SHUTDOWN CONTROL REGISTER

PIC16(L)F1788/9

The $\mathsf{I}^2\mathsf{C}$ interface supports the following modes and features:

- · Master mode
- Slave mode
- Byte NACKing (Slave mode)
- · Limited multi-master support
- 7-bit and 10-bit addressing
- · Start and Stop interrupts
- Interrupt masking
- Clock stretching
- · Bus collision detection
- · General call address matching
- · Address masking
- · Address Hold and Data Hold modes
- Selectable SDA hold times

Figure 27-2 is a block diagram of the I^2C interface module in Master mode. Figure 27-3 is a diagram of the I^2C interface module in Slave mode.

FIGURE 27-2: MSSP BLOCK DIAGRAM (I²C MASTER MODE)

27.2.2 SPI MODE OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON1<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master mode (SCK is the clock output)
- · Slave mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data Input Sample Phase (middle or end of data output time)
- Clock Edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- · Slave Select mode (Slave mode only)

To enable the serial port, SSP Enable bit, SSPEN of the SSPCON1 register, must be set. To reset or reconfigure SPI mode, clear the SSPEN bit, re-initialize the SSPCONx registers and then set the SSPEN bit. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed as follows:

- · SDI must have corresponding TRIS bit set
- · SDO must have corresponding TRIS bit cleared
- SCK (Master mode) must have corresponding TRIS bit cleared
- SCK (Slave mode) must have corresponding
 TRIS bit set
- SS must have corresponding TRIS bit set

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

The MSSP consists of a transmit/receive shift register (SSPSR) and a buffer register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR until the received data is ready. Once the eight bits of data have been received, that byte is moved to the SSPBUF register. Then, the Buffer Full Detect bit, BF of the SSPSTAT register, and the interrupt flag bit, SSP1IF, are set. This double-buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF reaister durina transmission/reception of data will be ignored and the write collision detect bit WCOL of the SSPCON1 register, will be set. User software must clear the WCOL bit to allow the following write(s) to the SSPBUF register to complete successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. The Buffer Full bit, BF of the SSPSTAT register, indicates when SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, the BF bit is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally, the MSSP interrupt is used to determine when the transmission/reception has completed. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur.

FIGURE 27-5: SPI MASTER/SLAVE CONNECTION

FIGURE 27-8: SLAVE SELECT SYNCHRONOUS WAVEFORM

When one device is transmitting a logical one, or letting the line float, and a second device is transmitting a logical zero, or holding the line low, the first device can detect that the line is not a logical one. This detection, when used on the SCL line, is called clock stretching. Clock stretching gives slave devices a mechanism to control the flow of data. When this detection is used on the SDA line, it is called arbitration. Arbitration ensures that there is only one master device communicating at any single time.

27.3.1 CLOCK STRETCHING

When a slave device has not completed processing data, it can delay the transfer of more data through the process of clock stretching. An addressed slave device may hold the SCL clock line low after receiving or sending a bit, indicating that it is not yet ready to continue. The master that is communicating with the slave will attempt to raise the SCL line in order to transfer the next bit, but will detect that the clock line has not yet been released. Because the SCL connection is open-drain, the slave has the ability to hold that line low until it is ready to continue communicating.

Clock stretching allows receivers that cannot keep up with a transmitter to control the flow of incoming data.

27.3.2 ARBITRATION

Each master device must monitor the bus for Start and Stop bits. If the device detects that the bus is busy, it cannot begin a new message until the bus returns to an Idle state.

However, two master devices may try to initiate a transmission on or about the same time. When this occurs, the process of arbitration begins. Each transmitter checks the level of the SDA data line and compares it to the level that it expects to find. The first transmitter to observe that the two levels do not match, loses arbitration, and must stop transmitting on the SDA line.

For example, if one transmitter holds the SDA line to a logical one (lets it float) and a second transmitter holds it to a logical zero (pulls it low), the result is that the SDA line will be low. The first transmitter then observes that the level of the line is different than expected and concludes that another transmitter is communicating.

The first transmitter to notice this difference is the one that loses arbitration and must stop driving the SDA line. If this transmitter is also a master device, it also must stop driving the SCL line. It then can monitor the lines for a Stop condition before trying to reissue its transmission. In the meantime, the other device that has not noticed any difference between the expected and actual levels on the SDA line continues with its original transmission. It can do so without any complications, because so far, the transmission appears exactly as expected with no other transmitter disturbing the message.

Slave Transmit mode can also be arbitrated, when a master addresses multiple slaves, but this is less common.

If two master devices are sending a message to two different slave devices at the address stage, the master sending the lower slave address always wins arbitration. When two master devices send messages to the same slave address, and addresses can sometimes refer to multiple slaves, the arbitration process must continue into the data stage.

Arbitration usually occurs very rarely, but it is a necessary process for proper multi-master support.

27.6.8 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPCON2 register. When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 27-29).

27.6.8.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).

27.6.9 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPCON2 register. At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit of the SSPSTAT register is set. A TBRG later, the PEN bit is cleared and the SSP1IF bit is set (Figure 27-30).

27.6.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 27-30: ACKNOWLEDGE SEQUENCE WAVEFORM

28.5.2 SYNCHRONOUS SLAVE MODE

The following bits are used to configure the EUSART for synchronous slave operation:

- SYNC = 1
- CSRC = 0
- SREN = 0 (for transmit); SREN = 1 (for receive)
- CREN = 0 (for transmit); CREN = 1 (for receive)
- SPEN = 1

Setting the SYNC bit of the TXSTA register configures the device for synchronous operation. Clearing the CSRC bit of the TXSTA register configures the device as a slave. Clearing the SREN and CREN bits of the RCSTA register ensures that the device is in the Transmit mode, otherwise the device will be configured to receive. Setting the SPEN bit of the RCSTA register enables the EUSART.

28.5.2.1 EUSART Synchronous Slave Transmit

The operation of the Synchronous Master and Slave modes are identical (see **Section 28.5.1.3 "Synchronous Master Transmission")**, except in the case of the Sleep mode. If two words are written to the TXREG and then the SLEEP instruction is executed, the following will occur:

- 1. The first character will immediately transfer to the TSR register and transmit.
- 2. The second word will remain in TXREG register.
- 3. The TXIF bit will not be set.
- After the first character has been shifted out of TSR, the TXREG register will transfer the second character to the TSR and the TXIF bit will now be set.
- 5. If the PEIE and TXIE bits are set, the interrupt will wake the device from Sleep and execute the next instruction. If the GIE bit is also set, the program will call the Interrupt Service Routine.
- 28.5.2.2 Synchronous Slave Transmission Set-up:
- 1. Set the SYNC and SPEN bits and clear the CSRC bit.
- 2. Clear the ANSEL bit for the CK pin (if applicable).
- 3. Clear the CREN and SREN bits.
- If interrupts are desired, set the TXIE bit of the PIE1 register and the GIE and PEIE bits of the INTCON register.
- 5. If 9-bit transmission is desired, set the TX9 bit.
- 6. Enable transmission by setting the TXEN bit.
- 7. If 9-bit transmission is selected, insert the Most Significant bit into the TX9D bit.
- 8. Start transmission by writing the Least Significant eight bits to the TXREG register.

TABLE 28-9:SUMMARY OF REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE
TRANSMISSION

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
APFCON1	C2OUTSEL	CC1PSEL	SDOSEL	SCKSEL	SDISEL	TXSEL	RXSEL	CCP2SEL	132
BAUDCON	ABDOVF	RCIDL	-	SCKP	BRG16	-	WUE	ABDEN	356
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	CCP1IE	TMR2IE	TMR1IE	98
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF	102
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	355
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	147
TXREG	EUSART Transmit Data Register					346*			
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	354

Legend: — = unimplemented location, read as '0'. Shaded cells are not used for synchronous slave transmission.

Page provides register information.

PIC16(L)F1788/9

BRA	Relative Branch		
Syntax:	[<i>label</i>]BRA label [<i>label</i>]BRA \$+k		
Operands:	-256 \leq label - PC + 1 \leq 255 -256 \leq k \leq 255		
Operation:	$(PC) + 1 + k \rightarrow PC$		
Status Affected:	None		
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + k. This instruction is a 2-cycle instruction. This branch has a limited range		

BTFSC	Bit Test f, Skip if Clear		
Syntax:	[label] BTFSC f,b		
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$		
Operation:	skip if (f) = 0		
Status Affected:	None		
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.		

BRW	Relative Branch with W
Syntax:	[<i>label</i>] BRW
Operands:	None
Operation:	$(PC) + (W) \to PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + (W). This instruction is a 2-cycle instruction.

BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BTFSS f,b
Operands:	$0 \le f \le 127$ $0 \le b < 7$
Operation:	skip if (f) = 1
Status Affected:	None
Description:	If bit 'b' in register 'f' is '0', the next instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed instead, making this a 2-cycle instruction.

BSF	Bit Set f
Syntax:	[label]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

CALL	Call Subroutine
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \leq k \leq 2047$
Operation:	(PC)+ 1 \rightarrow TOS, k \rightarrow PC<10:0>, (PCLATH<6:3>) \rightarrow PC<14:11>
Status Affected:	None
Description:	Call Subroutine. First, return address (PC + 1) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. The upper bits of the PC are loaded from PCLATH. CALL is a 2-cycle instruction.

31.5 AC Characteristics

Timing Parameter Symbology has been created with one of the following formats:

- 1. TppS2ppS
- 2. TppS

2. 1990					
Т					
F	Frequency	Т	Time		
Lowerc	ase letters (pp) and their meanings:				
рр					
сс	CCP1	OSC	OSC1		
ck	CLKOUT	rd	RD		
CS	CS	rw	RD or WR		
di	SDI	SC	SCK		
do	SDO	SS	SS		
dt	Data in	t0	ТОСКІ		
io	I/O PORT	t1	T1CKI		
mc	MCLR	wr	WR		
Uppercase letters and their meanings:					
S					
F	Fall	Р	Period		
Н	High	R	Rise		
I	Invalid (High-impedance)	V	Valid		
L	Low	Z	High-impedance		

FIGURE 31-4: LOAD CONDITIONS

PIC16(L)F1788/9

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 32-97: ADC 12-bit Mode, Single-Ended DNL, VDD = 5.5V, VREF = 5.5V.

FIGURE 32-98: ADC 12-bit Mode, Single-Ended INL, VDD = 5.5V, VREF = 5.5V.

FIGURE 32-99: Temp. Indicator Initial Offset, High Range, Temp. = 20°C, PIC16F1788/9 Only.

FIGURE 32-101: Temp. Indicator Initial Offset, Low Range, Temp. = 20°C, PIC16LF1788/9 Only.

FIGURE 32-100: Temp. Indicator Initial Offset, Low Range, Temp. = 20°C, PIC16F1788/9 Only.

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 32-103: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 3.6V, PIC16F1788/9 Only.

FIGURE 32-105: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 1.8V, PIC16LF1788/9 Only.

FIGURE 32-107: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 3.6V, PIC16LF1788/9 Only.

FIGURE 32-104: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 3.0V, PIC16F1788/9 Only.

FIGURE 32-106: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 3.0V, PIC16LF1788/9 Only.

FIGURE 32-108: Op Amp, Common Mode Rejection Ratio (CMRR), VDD = 3.0V.

APPENDIX A: DATA SHEET REVISION HISTORY

Revision A (02/2013)

Initial release.

Revision B (09/2014)

Change from Preliminary to Final data sheet.

Corrected the following Tables: Family Types Table on page 3, Table 3-3, Table 3-8, Table 20-3, Table 22-2, Table 22-3, Table 23-1, Table 25-3, Table 30-1, Table 30-2, Table 30-3, Table 30-6, Table 30-7, Table 30-13, Table 30-14, Table 30-15, Table 30-16, Table 30-20.

Corrected the following Sections: Section 3.2, Section 9.2, Section 13.3, Section 17.1.6, Section 15.1, Section 15.3, Section 17.2.5, Section 18.2, Section 18.3, Section 19.0, Section 22.6.5, Section 22.9, Section 23.0, Section 23.1, Section 24.2.4, Section 24.2.5, Section 24.2.7, Section 24.8, Section 25.0, Section 26.6.7.4, Section 30.3.

Corrected the following Registers: Register 4-2, Register 8-2, Register 8-5, Register 17-3, Register 18-1, Register 24-3, Register 24-4.

Corrected Equation 17-1.

Corrected Figure 30-9. Removed Figure 24-21.

Revision C (12/2015)

Updated the following Tables: Table 1-1, Table 30-3, Table 31-17, Table 31-18. Updated the following Figures: Figure 18-1, Figure 19-1 and Figure 32-128. Updated Register 18-1 and Register 21-2. Updated the following Sections: Section 26.3.10.2, Section 28.4.2 and Section 31.1; Other minor corrections.