

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PSMC, PWM, WDT
Number of I/O	35
Program Memory Size	28KB (16K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 14x12b; D/A 1x8b, 3x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1789t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16(L)F1788/9

4.2 Register Definitions: Configuration Words

REGISTER 4-1: CONFIG1: CONFIGURATION WORD 1

		R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
		FCMEN	IESO	CLKOUTEN	BORE	N<1:0>	CPD
		bit 13					bit 8
R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
CP	MCLRE	PWRTE	WD	FE<1:0>		FOSC<2:0>	
Dit 7							Dit U
Legend:]
R = Readable	bit	P = Programm	able bit	U = Unimplem	ented bit. rea	d as '1'	
'0' = Bit is clea	ared	'1' = Bit is set		-n = Value whe	n blank or af	ter Bulk Erase	
bit 13	FCMEN: Fail- 1 = Fail-Safe 0 = Fail-Safe	-Safe Clock Mo Clock Monitor a Clock Monitor is	nitor Enable l and internal/e s disabled	bit external switchove	er are both en	abled.	
bit 12	IESO: Internal 1 = Internal/E 0 = Internal/E	al External Switc External Switcho External Switcho	chover bit over mode is o over mode is o	enabled disabled			
bit 11	1 CLKOUTEN: Clock Out Enable bit If FOSC configuration bits are set to LP. XT. HS modes: This bit is ignored, CLKOUT function is disabled. Oscillator function on the CLKOUT pin. All other FOSC modes: 1 = CLKOUT function is disabled. I/O function on the CLKOUT pin.				Г pin.		
bit 10-9	 BOREN<1:0>: Brown-out Reset Enabled bits 11 = BOR enabled 10 = BOR enabled during operation and disabled in Sleep 01 = BOR controlled by SBOREN bit of the BORCON register 00 = BOR disabled 						
bit 8	CPD : Data Co 1 = Data men 0 = Data men	ode Protection I nory code prote nory code prote	bit ⁽¹⁾ ction is disab ction is enab	led			
bit 7	CP: Code Pro 1 = Program 0 = Program	otection bit memory code p memory code p	rotection is d rotection is e	isabled nabled			
bit 6 MCLRE: MCLR/VPP Pin Function Select bit <u>If LVP bit = 1</u> : This bit is ignored. <u>If LVP bit = 0</u> : 1 = MCLR/VPP pin function is MCLR; Weak pull-up enabled. 0 = MCLR/VPP pin function is digital input; MCLR internally disabled; Weak pull-up under control of WPUE3 bit.					er control of		
bit 5	PWRTE : Pow 1 = PWRT di 0 = PWRT er	ver-up Timer En sabled nabled	able bit				
bit 4-3	 0 = PWRT enabled WDTE<1:0>: Watchdog Timer Enable bit 11 = WDT enabled 10 = WDT enabled while running and disabled in Sleep 01 = WDT controlled by the SWDTEN bit in the WDTCON register 00 = WDT disabled 						

PIC16(L)F1788/9

4: For minimum width of INT pulse, refer to AC specifications in Section 31.0 "Electrical Specifications"".

5: INTF is enabled to be set any time during the Q4-Q1 cycles.

R/W-0/0	R/W-0/0	R-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	CCP1IF	TMR2IF	TMR1IF
bit 7			•				bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	nanged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	TMR1GIF: Tir	mer1 Gate Inte	rrupt Flag bit				
	1 = Interrupt is	s pending					
bit 6		s not pending	unt Elog hit				
DIL O	1 = Interrunt i	s nendina	upt Flag bit				
	0 = Interrupt is	s not pending					
bit 5	RCIF: EUSAF	RT Receive Inte	errupt Flag bit				
	1 = Interrupt i	s pending					
	0 = Interrupt i	s not pending					
bit 4	TXIF: EUSAR	T Transmit Inte	errupt Flag bit				
	1 = Interrupt is	s pending					
hit 3	SSP1IE: Sync	s not pending hronous Seria	l Port (MSSP)	Interrunt Flag	bit		
bit o	1 = Interrupt is	s pendina		interrupt i lag	Sit		
	0 = Interrupt is	s not pending					
bit 2	CCP1IF: CCF	1 Interrupt Fla	g bit				
	1 = Interrupt is	s pending					
	0 = Interrupt is	s not pending					
bit 1	TMR2IF: Time	er2 to PR2 Inte	errupt Flag bit				
	1 = Interrupt is 0 = Interrupt is	s penaing s not pending					
bit 0	TMR1IF: Time	er1 Overflow In	iterrupt Flag bi	t			
1 = Interrupt is pending							
	0 = Interrupt i	s not pending					
Note: Int	errupt flag bits a	re set when an	interrupt				
CO	ndition occurs, re	egardless of the	e state of				
its	corresponding e	enable bit or th	e Global				
En Us	able bit, GIE, o	t the INICON should ensu	register.				
ap	propriate interru	upt flag bits a	are clear				
pri	or to enabling ar	n interrupt.					

REGISTER 8-6: PIR1: PERIPHERAL INTERRUPT REQUEST REGISTER 1

9.2 Low-Power Sleep Mode

"F" devices contain an internal Low Dropout (LDO) voltage regulator, which allows the device I/O pins to operate at voltages up to 5.5V while the internal device logic operates at a lower voltage. The LDO and its associated reference circuitry must remain active when the device is in Sleep mode. "F" devices allow the user to optimize the operating current in Sleep, depending on the application requirements.

A Low-Power Sleep mode can be selected by setting the VREGPM bit of the VREGCON register. With this bit set, the LDO and reference circuitry are placed in a low-power state when the device is in Sleep.

9.2.1 SLEEP CURRENT VS. WAKE-UP TIME

In the default operating mode, the LDO and reference circuitry remain in the normal configuration while in Sleep. The device is able to exit Sleep mode quickly since all circuits remain active. In Low-Power Sleep mode, when waking up from Sleep, an extra delay time is required for these circuits to return to the normal configuration and stabilize.

The Low-Power Sleep mode is beneficial for applications that stay in Sleep mode for long periods of time. The normal mode is beneficial for applications that need to wake from Sleep quickly and frequently.

9.2.2 PERIPHERAL USAGE IN SLEEP

Some peripherals that can operate in Sleep mode will not operate properly with the Low-Power Sleep mode selected. The LDO will remain in the normal power mode when those peripherals are enabled. The Low-Power Sleep mode is intended for use with these peripherals:

- Brown-Out Reset (BOR)
- Watchdog Timer (WDT)
- · External interrupt pin/Interrupt-on-change pins
- Timer1 (with external clock source)
- Note: "LF" devices do not have a configurable Low-Power Sleep mode. "LF" devices are an unregulated device and are always in the lowest power state when in Sleep, with no wake-up time penalty. These devices have a lower maximum VDD and I/O voltage than "F" devices. See Section 31.0 "Electrical Specifications" for more information.

12.0 DATA EEPROM AND FLASH PROGRAM MEMORY CONTROL

The data EEPROM and Flash program memory are readable and writable during normal operation (full VDD range). These memories are not directly mapped in the register file space. Instead, they are indirectly addressed through the Special Function Registers (SFRs). There are six SFRs used to access these memories:

- EECON1
- EECON2
- EEDATL
- EEDATH
- EEADRL
- EEADRH

When interfacing the data memory block, EEDATL holds the 8-bit data for read/write, and EEADRL holds the address of the EEDATL location being accessed. These devices have 256 bytes of data EEPROM with an address range from 0h to 0FFh.

When accessing the program memory block, the EEDATH:EEDATL register pair forms a 2-byte word that holds the 14-bit data for read/write, and the EEADRL and EEADRH registers form a 2-byte word that holds the 15-bit address of the program memory location being read.

The EEPROM data memory allows byte read and write. An EEPROM byte write automatically erases the location and writes the new data (erase before write).

The write time is controlled by an on-chip timer. The write/erase voltages are generated by an on-chip charge pump rated to operate over the voltage range of the device for byte or word operations.

Depending on the setting of the Flash Program Memory Self Write Enable bits WRT<1:0> of the Configuration Words, the device may or may not be able to write certain blocks of the program memory. However, reads from the program memory are always allowed.

When the device is code-protected, the device programmer can no longer access data or program memory. When code-protected, the CPU may continue to read and write the data EEPROM memory and Flash program memory.

12.1 EEADRL and EEADRH Registers

The EEADRH:EEADRL register pair can address up to a maximum of 256 bytes of data EEPROM or up to a maximum of 32K words of program memory.

When selecting a program address value, the MSB of the address is written to the EEADRH register and the LSB is written to the EEADRL register. When selecting a EEPROM address value, only the LSB of the address is written to the EEADRL register.

12.1.1 EECON1 AND EECON2 REGISTERS

EECON1 is the control register for EE memory accesses.

Control bit EEPGD determines if the access will be a program or data memory access. When clear, any subsequent operations will operate on the EEPROM memory. When set, any subsequent operations will operate on the program memory. On Reset, EEPROM is selected by default.

Control bits RD and WR initiate read and write, respectively. These bits cannot be cleared, only set, in software. They are cleared in hardware at completion of the read or write operation. The inability to clear the WR bit in software prevents the accidental, premature termination of a write operation.

The WREN bit, when set, will allow a write operation to occur. On power-up, the WREN bit is clear. The WRERR bit is set when a write operation is interrupted by a Reset during normal operation. In these situations, following Reset, the user can check the WRERR bit and execute the appropriate error handling routine.

Interrupt flag bit EEIF of the PIR2 register is set when write is complete. It must be cleared in the software.

Reading EECON2 will read all '0's. The EECON2 register is used exclusively in the data EEPROM write sequence. To enable writes, a specific pattern must be written to EECON2.

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
			EEPROM Co	ontrol Register 2			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
S = Bit can only	y be set	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				

REGISTER 12-6: EECON2: EEPROM CONTROL 2 REGISTER

bit 7-0 Data EEPROM Unlock Pattern bits

To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the EECON1 register. The value written to this register is used to unlock the writes. There are specific timing requirements on these writes. Refer to **Section 12.2.2** "Writing to the Data EEPROM Memory" for more information.

TABLE 12-3: SUMMARY OF REGISTERS ASSOCIATED WITH DATA EEPROM

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
EECON1	EEPGD	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	128
EECON2	EEPROM Control Register 2 (not a physical register)								129*
EEADRL	EEADRL<7:0>							127	
EEADRH	_(1)	(1) EEADRH<6:0>							127
EEDATL	EEDATL<7:0>								127
EEDATH	_	—	EEDATH<5:0>					127	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	97
PIE2	OSFIE	C2IE	C1IE	EEIE	BCL1IE	C4IE	C3IE	CCP2IE	99
PIR2	OSFIF	C2IF	C1IF	EEIF	BCL1IF	C4IF	C3IF	CCP2IF	103

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by data EEPROM module.

* Page provides register information.

2: Unimplemented, read as '1'.

13.4 Register Definitions: PORTA

REGISTER 13-3: PORTA: PORTA REGISTER

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x
RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable b	it	U = Unimplem	nented bit, read a	s '0'	
u = Bit is unchar	nged	x = Bit is unkno	own	-n/n = Value a	t POR and BOR/	Value at all othe	er Resets
'1' = Bit is set		'0' = Bit is clea	red				

bit 7-0 RA<7:0>: PORTA I/O Value bits⁽¹⁾ 1 = Port pin is ≥ VIH 0 = Port pin is ≤ VIL

REGISTER 13-4: TRISA: PORTA TRI-STATE REGISTER

| R/W-1/1 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

- TRISA<7:0>: PORTA Tri-State Control bits
 - 1 = PORTA pin configured as an input (tri-stated)

0 = PORTA pin configured as an output

REGISTER 13-5: LATA: PORTA DATA LATCH REGISTER

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| LATA7 | LATA6 | LATA5 | LATA4 | LATA3 | LATA2 | LATA1 | LATA0 |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4 LATA<7:0>: PORTA Output Latch Value bits⁽¹⁾

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

Note 1: Writes to PORTA are actually written to corresponding LATA register. Reads from PORTA register is return of actual I/O pin values.

13.5 PORTB Registers

13.5.1 DATA REGISTER

PORTB is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 13-12). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a High-Impedance mode). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin). Example 13-1 shows how to initialize an I/O port.

Reading the PORTB register (Register 13-11) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

13.5.2 DIRECTION CONTROL

The TRISB register (Register 13-12) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog inputs always read '0'.

13.5.3 OPEN-DRAIN CONTROL

The ODCONB register (Register 13-16) controls the open-drain feature of the port. Open-drain operation is independently selected for each pin. When an ODCONB bit is set, the corresponding port output becomes an open-drain driver capable of sinking current only. When an ODCONB bit is cleared, the corresponding port output pin is the standard push-pull drive capable of sourcing and sinking current.

13.5.4 SLEW RATE CONTROL

The SLRCONB register (Register 13-17) controls the slew rate option for each port pin. Slew rate control is independently selectable for each port pin. When an SLRCONB bit is set, the corresponding port pin drive is slew rate limited. When an SLRCONB bit is cleared, The corresponding port pin drive slews at the maximum rate possible.

13.5.5 INPUT THRESHOLD CONTROL

The INLVLB register (Register 13-18) controls the input voltage threshold for each of the available PORTB input pins. A selection between the Schmitt Trigger CMOS or the TTL Compatible thresholds is available. The input threshold is important in determining the value of a read of the PORTB register and also the level at which an interrupt-on-change occurs, if that feature is enabled. See **Section TABLE 31-1: "Supply Voltage"** for more information on threshold levels.

Note: Changing the input threshold selection should be performed while all peripheral modules are disabled. Changing the threshold level during the time a module is active may inadvertently generate a transition associated with an input pin, regardless of the actual voltage level on that pin.

13.5.6 ANALOG CONTROL

The ANSELB register (Register 13-14) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with TRIS clear and ANSELB set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note: The ANSELB bits default to the Analog mode after Reset. To use any pins as digital general purpose or peripheral inputs, the corresponding ANSEL bits must be initialized to '0' by user software.

Absolute ADC Value	Sign and Mag ADFM = 0,	nitude Result ADRMD = 0	2's Complin ADFM = 1,	ment Result ADRMD = 0
(decimal)	ADRESH (ADRES<15:8>)	ADRESL (ADRES<7:0>)	ADRESH (ADRES<15:8>)	ADRESL (ADRES<7:0>)
+ 4095	1111 1111	1111 000 <u>0</u>	0000 1111	1111 1111
+ 2355	1001 0011	0011 000 <u>0</u>	0000 1001	0011 0011
+ 0001	0000 0000	0001 000 <u>0</u>	0000 0000	0000 0001
0000	0000 0000	0000 000 <u>0</u>	0000 0000	0000 0000
- 0001	0000 0000	0001 000 <u>1</u>	1111 1111	1111 1111
- 4095	1111 1111	1111 000 <u>1</u>	1111 0000	0000 0001
- 4096	0000 0000	0000 000 <u>1</u>	1111 0000	0000 0000

TABLE 17-2: ADC OUTPUT RESULTS FORMAT

Note 1: For the RSD ADC, the raw 13-bits from the ADC is presented in 2's compliment format, so no data translation is required for 2's compliment results.

2: For the SAR ADC, the raw 13-bits from the ADC is presented in sign and magnitude format, so no data translation is required for sign and magnitude results

25.3.6 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 25-4.

EQUATION 25-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + 1)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 25-1:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)
-------------	---

PWM Frequency	1.22 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 25-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	1.22 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	16	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

25.3.7 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the CCPx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

25.3.8 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See Section 6.0 "Oscillator Module (with Fail-Safe Clock Monitor)" for additional details.

25.3.9 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the CCP registers to their Reset states.

26.8 **PSMC** Synchronization

It is possible to synchronize the periods of two or more PSMC modules together, provided that all modules are on the same device.

Synchronization is achieved by sending a sync signal from the master PSMC module to the desired slave modules. This sync signal generates a period event in each slave module, thereby aligning all slaves with the master. This is useful when an application requires different PWM signal generation from each module but the waveforms must be consistent within a PWM period.

26.8.1 SYNCHRONIZATION SOURCES

The synchronization source can be any PSMC module on the same device. For example, in a device with two PSMC modules, the possible sources for each device is as shown below:

- Sources for PSMC1
 - PSMC2
- Sources for PSMC2
 PSMC1

26.8.1.1 PSMC Internal Connections

The sync signal from the master PSMC module is essentially that modules period event trigger. The slave PSMC modules reset their PSMCxTMR with the sync signal instead of their own period event.

Enabling a module as a slave recipient is done with the PxSYNC bits of the PSMC Synchronization Control (PSMCxSYNC) registers; registers 26-3 and 26-4.

26.8.1.2 Phase Offset Synchronization

The synchronization output signal from the PSMC module is selectable. The sync_out source may be either:

- Period Event
- Rising Event

Source selection is made with the PxPOFST bit of the PSMCxSYNC registers, registers 26-3, 26-4 and 26-7.

When the PxPOFST bit is set, the sync_out signal comes from the rising event and the period event replaces the rising event as the start of the active drive period. When PxPOFST is set, duty cycles of up to 100% are achievable in both the slave and master.

When PXPOFST is clear, the sync_out signal comes from the period event. When PxPOFST is clear, rising events that start after the period event remove the equivalent start delay percentage from the maximum 100% duty cycle.

26.8.1.3 Synchronization Skid

When the sync_out source is the Period Event, the slave synchronous rising and falling events will lag by one psmc_clk period. When the sync_out source is the Rising Event, the synchronous events will lag by two clock periods. To compensate for this, the values in PHH:PHL and DCH:DCL registers can be reduced by the number of lag cycles.

27.6 I²C Master Mode

Master mode is enabled by setting and clearing the appropriate SSPM bits in the SSPCON1 register and by setting the SSPEN bit. In Master mode, the SDA and SCK pins must be configured as inputs. The MSSP peripheral hardware will override the output driver TRIS controls when necessary to drive the pins low.

Master mode of operation is supported by interrupt generation on the detection of the Start and Stop conditions. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set, or the bus is Idle.

In Firmware Controlled Master mode, user code conducts all I²C bus operations based on Start and Stop bit condition detection. Start and Stop condition detection is the only active circuitry in this mode. All other communication is done by the user software directly manipulating the SDA and SCL lines.

The following events will cause the SSP Interrupt Flag bit, SSP1IF, to be set (SSP interrupt, if enabled):

- Start condition detected
- · Stop condition detected
- · Data transfer byte transmitted/received
- Acknowledge transmitted/received
- Repeated Start generated
 - Note 1: The MSSP module, when configured in I²C Master mode, does not allow queuing of events. For instance, the user is not allowed to initiate a Start condition and immediately write the SSPBUF register to initiate transmission before the Start condition is complete. In this case, the SSPBUF will not be written to and the WCOL bit will be set, indicating that a write to the SSPBUF did not occur
 - Note 1: Master mode suspends Start/Stop detection when sending the Start/Stop condition by means of the SEN/PEN control bits. The SSPxIF bit is set at the end of the Start/Stop generation when hardware clears the control bit.

27.6.1 I²C MASTER MODE OPERATION

The master device generates all of the serial clock pulses and the Start and Stop conditions. A transfer is ended with a Stop condition or with a Repeated Start condition. Since the Repeated Start condition is also the beginning of the next serial transfer, the I²C bus will not be released.

In Master Transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. Start and Stop conditions are output to indicate the beginning and the end of a serial transfer.

In Master Receive mode, the first byte transmitted contains the slave address of the transmitting device (7 bits) and the R/W bit. In this case, the R/W bit will be logic '1'. Thus, the first byte transmitted is a 7-bit slave address followed by a '1' to indicate the receive bit. Serial data is received via SDA, while SCL outputs the serial clock. Serial data is received eight bits at a time. After each byte is received, an Acknowledge bit is transmitted. Start and Stop conditions indicate the beginning and end of transmission.

A Baud Rate Generator is used to set the clock frequency output on SCL. See **Section 27.7** "**Baud Rate Generator**" for more detail.

27.7 BAUD RATE GENERATOR

The MSSP module has a Baud Rate Generator available for clock generation in both I^2C and SPI Master modes. The Baud Rate Generator (BRG) reload value is placed in the SSPADD register (Register 27-6). When a write occurs to SSPBUF, the Baud Rate Generator will automatically begin counting down.

Once the given operation is complete, the internal clock will automatically stop counting and the clock pin will remain in its last state.

An internal signal "Reload" in Figure 27-39 triggers the value from SSPADD to be loaded into the BRG counter. This occurs twice for each oscillation of the module

clock line. The logic dictating when the reload signal is asserted depends on the mode the MSSP is being operated in.

Table 27-4 demonstrates clock rates based on instruction cycles and the BRG value loaded into SSPADD.

$$FCLOCK = \frac{FOSC}{(SSPxADD + 1)(4)}$$

FIGURE 27-40: BAUD RATE GENERATOR BLOCK DIAGRAM

Note: Values of 0x00, 0x01 and 0x02 are not valid for SSPADD when used as a Baud Rate Generator for I²C. This is an implementation limitation.

TABLE 27-4: MSSP CLOCK RATE W/BRG

Fosc	Fcy	BRG Value	FcLock (2 Rollovers of BRG)
32 MHz	8 MHz	13h	400 kHz ⁽¹⁾
32 MHz	8 MHz	19h	308 kHz
32 MHz	8 MHz	4Fh	100 kHz
16 MHz	4 MHz	09h	400 kHz ⁽¹⁾
16 MHz	4 MHz	0Ch	308 kHz
16 MHz	4 MHz	27h	100 kHz
4 MHz	1 MHz	09h	100 kHz

Note 1: Refer to the I/O port electrical and timing specifications in Table 31-9 and Figure 31-7 to ensure the system is designed to support the I/O timing requirements.

R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
ACKTIM	PCIE	SCIE	BOEN	SDAHT	SBCDE	AHEN	DHEN
bit 7							bit 0
Levende							
R = Readab	le hit	\// = \//ritable	hit	II – I Inimple	mented bit read	as 'O'	
N = Readable bit $W = Witable bit$ $U = Onliniple include bit, read as 0$							
(1) = Bit is set	enangea et	0' = Bit is clear	ared				
		o Dicio dici					
bit 7	ACKTIM: Ack	knowledge Tim	e Status bit (l ²	² C mode only)	(3)		
	1 = Indicates	the I ² C bus is i	in an Acknowl	edge sequenc	e, set on 8 ^{⊤н} fall	ing edge of SC	L clock
	0 = Not an Ac	knowledge see	quence, cleare	ed on 9 ^{⊤∺} risin	g edge of SCL c	lock	
bit 6	PCIE: Stop Co	ondition Interru	pt Enable bit	(I ² C Slave mo	de only)		
	1 = Enable int 0 = Stop dete	terrupt on dete	ction of Stop of are disabled	condition (2)			
bit 5	SCIE: Start C	ondition Interru	pt Enable bit	(I ² C Slave mo	de onlv)		
	1 = Enable in	terrupt on dete	ction of Start of	or Restart cond	ditions		
	0 = Start dete	ction interrupts	are disabled	(2)			
bit 4	BOEN: Buffer	Overwrite Ena	able bit				
	<u>In SPI Slave r</u> 1 = SSPI	<u>mode:</u> ('') BLIE undates e	verv time that	a new data hi	/te is shifted in ic	noring the BF	hit
	0 = lf ne	w byte is recei	ved with BF b	bit of the SSP	STAT register al	ready set, SSF	POV bit of the
	SSP0	CON1 register	is set, and the	e buffer is not ι	pdated		
	In I C Master This bit is	mode and SPI	Master mode	<u>).</u>			
	In I ² C Slave n	node:					
	1 = SSPE	BUF is updated	and ACK is ge	enerated for a	received address	s/data byte, ign	oring the state
		BUF is only up	dated when S	t = 0. SPOV is clear			
bit 3	SDAHT: SDA	Hold Time Sel	lection bit (I ² C	mode only)			
	1 = Minimum	of 300 ns hold	time on SDA	after the falling	g edge of SCL		
	0 = Minimum	of 100 ns hold	time on SDA	after the falling	g edge of SCL		
bit 2	SBCDE: Slav	e Mode Bus C	ollision Detect	t Enable bit (I ²	C Slave mode o	nly)	
	If on the risin	g edge of SCI	_, SDA is san	npled low whe	n the module is	outputting a h	high state, the
	1 = Enable sl	ave hus collisio	n interrunte	bus goes luie			
	0 = Slave bus	s collision interr	upts are disat	bled			
bit 1	AHEN: Addre	ess Hold Enable	e bit (I ² C Slav	e mode only)			
	1 = Following	g the 8th fallin	g edge of SC	CL for a match	hing received a	ddress byte; C	KP bit of the
	SSPCON	11 register will	be cleared an	d the SCL will	be held low.		
bit 0	DHEN: Data I	Hold Enable bit	t (I ² C Slave m	ode only)			
bit o	1 = Following	the 8th falling	edge of SCL	for a received	data byte; slave	hardware clea	rs the CKP bit
	of the SS	PCON1 regist	er and SCL is	held low.			
	0 = Data hold	ing is disabled					
Note 1: F	or daisy-chained hen a new byte is	SPI operation; s received and	allows the use BF = 1, but ha	er to ignore all ardware contin	but the last rece ues to write the r	ived byte. SSP most recent byt	OV is still set e to SSPBUF.

REGISTER 27-4: SSPCON3: SSP CONTROL REGISTER 3

- 2: This bit has no effect in Slave modes that Start and Stop condition detection is explicitly listed as enabled.
- 3: The ACKTIM Status bit is only active when the AHEN bit or DHEN bit is set.

PIC16(L)F1788/9

TABLE 31-10: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS

Standa	Standard Operating Conditions (unless otherwise stated)								
Param No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions		
30	ТмсL	MCLR Pulse Width (low)	2 5			μS μS	VDD = 3.3-5V, -40°C to +85°C VDD = 3.3-5V		
31	TWDTLP	Low-Power Watchdog Timer Time-out Period	10	16	27	ms	VDD = 3.3V-5V 1:512 Prescaler used		
32	Tost	Oscillator Start-up Timer Period ^{(1), (2)}	_	1024	_	Tosc	(Note 3)		
33*	TPWRT	Power-up Timer Period, $\overline{PWRTE} = 0$	40	65	140	ms			
34*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset	_		2.0	μS			
35	VBOR	Brown-out Reset Voltage	2.55 2.30 1.80	2.70 2.45 1.90	2.85 2.6 2.10	V V V	BORV = 0 BORV =1 (F device) BORV =1 (F device)		
35A	VLPBOR	Low-Power Brown-out	1.8	2.1	2.5	V	LPBOR = 1		
36*	VHYST	Brown-out Reset Hysteresis	0	25	75	mV	-40°C to +85°C		
37*	TBORDC	Brown-out Reset DC Response Time	1	3	5	μS	$VDD \leq VBOR$		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

- **Note 1:** Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.
 - 2: By design.
 - **3:** Period of the slower clock.
 - 4: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

*

TABLE 31-17: 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS

Operating Conditions:	$\sqrt{DD} = 3\sqrt{2}$	Temperature = 25°C	(unloss	otherwise stated)
Operating Conditions.	VUU - 3V.	1000000000000000000000000000000000000	luniess	ollielwise stateu).

- I J			- (, ,		
Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
DAC01*	CLSB5	Step Size	_	VDD/32	_	V	
DAC02*	CACC5	Absolute Accuracy	_	_	± 1/2	LSb	
DAC03*	CR5	Unit Resistor Value (R)	_	5K	-	Ω	
DAC04*	CST5	Settling Time ⁽²⁾	—	_	10	μS	

These parameters are characterized but not tested.

Note 1: See Section 32.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

2: Settling time measured while DACR<7:0> transitions from '00000' to '01111'.

TABLE 31-18: 8-BIT DIGITAL-TO-ANALOG CONVERTER (DAC) SPECIFICATIONS

Operating Conditions: VDD = 3V, Temperature = 25°C (unless otherwise stated).							
Param No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
DAC05*	CLSB8	Step Size	_	VDD/256		V	
DAC06*	CACC8	Absolute Accuracy	_	—	± 1.5	LSb	
DAC07*	CR8	Unit Resistor Value (R)	—	600	_	Ω	
DAC08*	CST8	Settling Time ⁽¹⁾	—	—	10	μS	
*	These per	amotora are obaractorized but a	at tootod				

These parameters are characterized but not tested.

Note 1: Settling time measured while DACR<7:0> transitions from ' 0×00 ' to ' $0 \times FF$ '.

FIGURE 31-14: EUSART SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 31-19: EUSART SYNCHRONOUS TRANSMISSION REQUIREMENTS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol	Characteristic	Characteristic		Max.	Units	Conditions	
US120	TCKH2DTV	SYNC XMIT (Master and Slave)	3.0-5.5V	—	80	ns		
	Clock high to data-out valid	1.8-5.5V	_	100	ns			
US121	TCKRF	Clock out rise time and fall time	3.0-5.5V		45	ns		
	(Master mode)	1.8-5.5V		50	ns			
US122	TDTRF Data-out rise time and fall time		3.0-5.5V		45	ns		
			1.8-5.5V		50	ns		

Note: Unless otherwise noted, VIN = 5V, Fosc = 300 kHz, CIN = 0.1 μ F, TA = 25°C.

FIGURE 32-103: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 3.6V, PIC16F1788/9 Only.

FIGURE 32-105: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 1.8V, PIC16LF1788/9 Only.

FIGURE 32-107: Temp. Indicator Slope Normalized to 20°C, High Range, VDD = 3.6V, PIC16LF1788/9 Only.

FIGURE 32-104: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 3.0V, PIC16F1788/9 Only.

FIGURE 32-106: Temp. Indicator Slope Normalized to 20°C, Low Range, VDD = 3.0V, PIC16LF1788/9 Only.

FIGURE 32-108: Op Amp, Common Mode Rejection Ratio (CMRR), VDD = 3.0V.

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	N	MILLIMETERS			
Dimension	MIN	NOM	MAX		
Contact Pitch	E		0.65 BSC		
Contact Pad Spacing	С		7.20		
Contact Pad Width (X28)	X1			0.45	
Contact Pad Length (X28)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

44-Lead Plastic Quad Flat, No Lead Package (ML) - 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	N	MILLIMETERS			
Dimension Limits		MIN	NOM	MAX		
Number of Pins		44				
Pitch	е		0.65 BSC			
Overall Height	A	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Terminal Thickness	A3	0.20 REF				
Overall Width	E		8.00 BSC			
Exposed Pad Width	E2	6.25	6.45	6.60		
Overall Length	D		8.00 BSC			
Exposed Pad Length	D2	6.25	6.45	6.60		
Terminal Width	b	0.20	0.30	0.35		
Terminal Length	L	0.30	0.40	0.50		
Terminal-to-Exposed-Pad	K	0.20	-	-		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Package is saw singulated
- 3. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension. usually without tolerance. for information purposes only.

Microchip Technology Drawing C04-103C Sheet 2 of 2

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾ - X T I Tape and Reel Temperature Option Range	/XX Package	XXX Pattern	Exa a)	PIC16 Indust PDIP	: LF1788- I/P rial temperature package
Device:	PIC16F1788, PIC16LF1788, PIC16F1789, PIC16LF1789			5)	Extend	jed temperature, package
Tape and Reel Option:	Blank = Standard packaging (t T = Tape and Reel ⁽¹⁾	ube or tray)				
Temperature Range:	$ \begin{array}{rcl} I & = -40^{\circ}C \text{ to } +85^{\circ}C \\ E & = -40^{\circ}C \text{ to } +125^{\circ}C \end{array} \end{array} $	Industrial) Extended)				
Package: ⁽²⁾	$ \begin{array}{llllllllllllllllllllllllllllllllllll$			Note	1:	Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
Pattern:	QTP, SQTP, Code or Special Re (blank otherwise)	quirements			2:	Small form-factor packaging options may be available. Please check <u>www.microchip.com/packaging</u> for small-form factor package availability, or contact your local Sales Office.