

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, I ² C, LINbus, SCI, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	79
Program Memory Size	288KB (288K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 27x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f6b6rbpmc-gse1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3. Pin Assignment

*1: CMOS input level only

 $*^2$: CMOS input level only for I^2C

*³: Please set ROM Configuration Block (RCB) to use the subclock.

Other than those above, general-purpose pins have only Automotive input level.

7. Memory Map

FF:FFFF _H	
	USER ROM*1
DE:0000H	
DD:FFFF _H	-
	Reserved
10:0000 _H	
0F:C000 _H	Boot-ROM
	Deriphoral
0E:9000 _H	Penpheral
	Reserved
	Reserved
01:0000 _H	_
	ROM/RAM
00:8000 _H	MIRROR
	Internal RAM
RAMSTART0*2	bank0
	Reserved
00:0C00 _H	-
00:0380 _H	Peripheral
00:0180 _H	GPR*3
00:0100 _H	DMA
00:00F0 _H	Reserved

*1: For details about USER ROM area, see "User Rom Memory Map for Flash Devices" on the following pages.

- *2: For RAMSTART Addresses, see the table on the next page.
- *3: Unused GPR banks can be used as RAM area.
 - GPR: General-Purpose Register

The DMA area is only available if the device contains the corresponding resource.

The available RAM and ROM area depends on the device.

11. Interrupt Vector Table

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
0	3FC _H	CALLV0	No	-	CALLV instruction
1	3F8 _H	CALLV1	No	-	CALLV instruction
2	3F4 _H	CALLV2	No	-	CALLV instruction
3	3F0 _Н	CALLV3	No	-	CALLV instruction
4	3EC _H	CALLV4	No	-	CALLV instruction
5	3E8 _H	CALLV5	No	-	CALLV instruction
6	3E4 _H	CALLV6	No	-	CALLV instruction
7	3E0 _H	CALLV7	No	-	CALLV instruction
8	3DC _H	RESET	No	-	Reset vector
9	3D8 _H	INT9	No	-	INT9 instruction
10	3D4 _H	EXCEPTION	No	-	Undefined instruction execution
11	3D0 _H	NMI	No	-	Non-Maskable Interrupt
12	3CC _H	DLY	No	12	Delayed Interrupt
13	3C8 _Н	RC_TIMER	No	13	RC Clock Timer
14	3C4 _H	MC_TIMER	No	14	Main Clock Timer
15	3C0 _Н	SC_TIMER	No	15	Sub Clock Timer
16	3BC _H	LVDI	No	16	Low Voltage Detector
17	3B8 _Н	EXTINT0	Yes	17	External Interrupt 0
18	3B4 _Н	EXTINT1	Yes	18	External Interrupt 1
19	3B0 _Н	EXTINT2	Yes	19	External Interrupt 2
20	3AC _H	EXTINT3	Yes	20	External Interrupt 3
21	3А8 _Н	EXTINT4	Yes	21	External Interrupt 4
22	3A4 _H	EXTINT5	Yes	22	External Interrupt 5
23	3А0 _Н	EXTINT6	Yes	23	External Interrupt 6
24	39C _Н	EXTINT7	Yes	24	External Interrupt 7
25	398 _Н	EXTINT8	Yes	25	External Interrupt 8
26	394 _Н	EXTINT9	Yes	26	External Interrupt 9
27	390 _Н	EXTINT10	Yes	27	External Interrupt 10
28	38C _H	EXTINT11	Yes	28	External Interrupt 11
29	388 _H	EXTINT12	Yes	29	External Interrupt 12
30	384 _H	EXTINT13	Yes	30	External Interrupt 13
31	380 _Н	EXTINT14	Yes	31	External Interrupt 14
32	37C _H	EXTINT15	Yes	32	External Interrupt 15
33	378 _H	CAN0	No	33	CAN Controller 0
34	374 _H	-	-	34	Reserved
35	370 _Н	-	-	35	Reserved
36	36C _Н	-	-	36	Reserved
37	368 _H	-	-	37	Reserved
38	364 _H	PPG0	Yes	38	Programmable Pulse Generator 0
39	360н	PPG1	Yes	39	Programmable Pulse Generator 1

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
40	35Cн	PPG2	Yes	40	Programmable Pulse Generator 2
41	358 _Н	PPG3	Yes	41	Programmable Pulse Generator 3
42	354 _Н	PPG4	Yes	42	Programmable Pulse Generator 4
43	350 _Н	PPG5	Yes	43	Programmable Pulse Generator 5
44	34C _Н	PPG6	Yes	44	Programmable Pulse Generator 6
45	348 _H	PPG7	Yes	45	Programmable Pulse Generator 7
46	344 _H	-	-	46	Reserved
47	340 _H	-	-	47	Reserved
48	33Cн	-	-	48	Reserved
49	338 _H	-	-	49	Reserved
50	334 _H	PPG12	Yes	50	Programmable Pulse Generator 12
51	330 _H	PPG13	Yes	51	Programmable Pulse Generator 13
52	32C _H	PPG14	Yes	52	Programmable Pulse Generator 14
53	328 _H	PPG15	Yes	53	Programmable Pulse Generator 15
54	324 _H	-	-	54	Reserved
55	320 _H	-	-	55	Reserved
56	31C _H	-	-	56	Reserved
57	318 _Н	-	-	57	Reserved
58	314 _H	RLT0	Yes	58	Reload Timer 0
59	310 _н	RLT1	Yes	59	Reload Timer 1
60	30C _H	RLT2	Yes	60	Reload Timer 2
61	308 _Н	RLT3	Yes	61	Reload Timer 3
62	304 _H	-	-	62	Reserved
63	300 _н	-	-	63	Reserved
64	2FC _H	RLT6	Yes	64	Reload Timer 6
65	2F8 _Н	ICU0	Yes	65	Input Capture Unit 0
66	2F4 _H	ICU1	Yes	66	Input Capture Unit 1
67	2F0 _Н	-	-	67	Reserved
68	2EC _H	-	-	68	Reserved
69	2E8 _H	ICU4	Yes	69	Input Capture Unit 4
70	2E4 _H	ICU5	Yes	70	Input Capture Unit 5
71	2E0 _H	ICU6	Yes	71	Input Capture Unit 6
72	2DC _H	ICU7	Yes	72	Input Capture Unit 7
73	2D8 _H	-	-	73	Reserved
74	2D4 _H	-	-	74	Reserved
75	2D0 _H	-	-	75	Reserved
76	2CC _H	-	-	76	Reserved
77	2C8 _H	OCU0	Yes	77	Output Compare Unit 0
78	2C4 _H	OCU1	Yes	78	Output Compare Unit 1
79	2C0 _H	OCU2	Yes	79	Output Compare Unit 2
80	2BC _H	OCU3	Yes	80	Output Compare Unit 3
81	2B8 _H	-	-	81	Reserved

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
82	2B4 _H	-	-	82	Reserved
83	2B0 _H	-	-	83	Reserved
84	2AC _H	-	-	84	Reserved
85	2A8 _H	-	-	85	Reserved
86	2A4 _H	-	-	86	Reserved
87	2A0 _H	-	-	87	Reserved
88	29C _H	-	-	88	Reserved
89	298 _Н	FRT0	Yes	89	Free-Running Timer 0
90	294 _H	FRT1	Yes	90	Free-Running Timer 1
91	290 _H	-	-	91	Reserved
92	28C _Н	-	-	92	Reserved
93	288 _H	RTC0	No	93	Real Time Clock
94	284 _H	CAL0	No	94	Clock Calibration Unit
95	280н	SG0	No	95	Sound Generator 0
96	27C _Н	IIC0	Yes	96	I ² C interface 0
97	278 _H	-	-	97	Reserved
98	274 _H	ADC0	Yes	98	A/D Converter 0
99	270 _Н	-	-	99	Reserved
100	26C _H	-	-	100	Reserved
101	268 _Н	LINR0	Yes	101	LIN USART 0 RX
102	264 _H	LINT0	Yes	102	LIN USART 0 TX
103	260н	LINR1	Yes	103	LIN USART 1 RX
104	25Cн	LINT1	Yes	104	LIN USART 1 TX
105	258 _Н	LINR2	Yes	105	LIN USART 2 RX
106	254 _H	LINT2	Yes	106	LIN USART 2 TX
107	250 _Н	-	-	107	Reserved
108	24C _H	-	-	108	Reserved
109	248 _H	LINR4	Yes	109	LIN USART 4 RX
110	244 _H	LINT4	Yes	110	LIN USART 4 TX
111	240 _H	LINR5	Yes	111	LIN USART 5 RX
112	23C _H	LINT5	Yes	112	LIN USART 5 TX
113	238 _H	-	-	113	Reserved
114	234 _H	-	-	114	Reserved
115	230 _H	-	-	115	Reserved
116	22C _H	-	-	116	Reserved
117	228 _H	-	-	117	Reserved
118	224 _H	-	-	118	Reserved
119	220 _H	-	-	119	Reserved
120	21C _H	-	-	120	Reserved

■ Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

12.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative.

■Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

■Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

■Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

■ Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C.

When you open Dry Package that recommends humidity 40% to 70% relative humidity.

- 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h

Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- 3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 $M\Omega$).

Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.

- 4. Ground all fixtures and instruments, or protect with anti-static measures.
- 5. Avoid the use of Styrofoam or other highly static-prone materials for storage of completed board assemblies.

12.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

1. Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

2. Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

3. Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

4. Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

5. Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.

13.8 Pin handling when not using the A/D converter

If the A/D converter is not used, the power supply pins for A/D converter should be connected such as $AV_{CC} = V_{CC}$, $AV_{SS} = AVRH = AVRL = V_{SS}$.

13.9 Notes on Power-on

To prevent malfunction of the internal voltage regulator, supply voltage profile while turning the power supply on should be slower than 50µs from 0.2V to 2.7V.

13.10Stabilization of power supply voltage

If the power supply voltage varies acutely even within the operation safety range of the V_{CC} power supply voltage, a malfunction may occur. The V_{CC} power supply voltage must therefore be stabilized. As stabilization guidelines, the power supply voltage must be stabilized in such a way that V_{CC} ripple fluctuations (peak to peak value) in the commercial frequencies (50Hz to 60Hz) fall within 10% of the standard V_{CC} power supply voltage and the transient fluctuation rate becomes 0.1V/µs or less in instantaneous fluctuation for power supply switching.

13.11 Serial communication

There is a possibility to receive wrong data due to noise or other causes on the serial communication.

Therefore, design a printed circuit board so as to avoid noise.

Consider receiving of wrong data when designing the system. For example apply a checksum and retransmit the data if an error occurs.

13.12Mode Pin (MD)

Connect the mode pin directly to Vcc or Vss pin. To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the mode pin to Vcc or Vss pin and provide a low-impedance connection.

14.2 Recommended Operating Conditions

$(V_{SS} = A)$	AV _{SS} =	0V)
----------------	--------------------	-----

Baramotor	Symbol	Value			Unit	Bomarka	
Falameter	Symbol	Min	Тур	Max	Unit	Reliaiks	
Power supply	V _{CC} , AV _{CC}	2.7	-	5.5	V		
voltage		2.0	-	5.5	V	Maintains RAM data in stop mode	
Smoothing capacitor at C pin	Cs	0.5	1.0 to 3.9	4.7	μF	$\begin{array}{l} 1.0 \mu F \ (\mbox{Allowance within \pm 50\%) \\ 3.9 \mu F \ (\mbox{Allowance within \pm 20\%) \\ \mbox{Please use the ceramic capacitor or the capacitor of the frequency response of this level. \\ \mbox{The smoothing capacitor at V_{CC} must use the one of a capacity value that is larger than C_{S}.} \end{array}$	

WARNING

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure. No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

14.4.2 Sub Clock Input Characteristics

Baramatar	Symbol	Pin name	Conditions	Value			Unit	Pomarka
Falameter	Symbol			Min	Тур	Max	Onit	Remarks
Input frequency	f _{CL}	X0A, X1A	-	-	32.768	-	kHz	When using an oscillation circuit
			-	-	-	100	kHz	When using an opposite phase external clock
		X0A	-	-	-	50	kHz	When using a single phase external clock
Input clock cycle	t _{CYLL}	-	-	10	-	-	μs	
Input clock pulse width	-	-	P _{WH} /t _{CYLL} , P _{WL} /t _{CYLL}	30	-	70	%	

14.4.7 Power-on Reset Timing

Paramotor	Symbol	Pin namo		Value	Unit	
Falailletei	Symbol	Fill lidille	Min	Тур	Max	Onit
Power on rise time	t _R	Vcc	0.05	-	30	ms
Power off time	t _{OFF}	Vcc	1	-	-	ms

tscyc	N
$4 \times t_{\text{CLKP1}}$	2
$5 \times t_{CLKP1}, 6 \times t_{CLKP1}$	3
$7 \times t_{CLKP1}, 8 \times t_{CLKP1}$	4

14.4.9 External Input Timing

Parameter	Symbol	Pin name	Value		Unit	Pomarks
Faranteter	Symbol	Fili lialite	Min	Max	Unit	Reillarks
		Pnn_m				General Purpose I/O
		ADTG				A/D Converter trigger input
		TINn				Reload Timer
	t _{INH} , t _{INL}	TTGn	2t _{CLKP1} +200 (t _{CLKP1} = 1/f _{CLKP1})*			PPG trigger input
		FRCKn,		-	ns	Free-Running Timer input
Input pulse width		FRCKn_R				clock
		INn, INn_R				Input Capture
		AlNn,				Quadrature
		BINn,				Position/Revolution
		ZINn				Counter
		INTn, INTn_R	200		20	External Interrupt
		NMI	200	-	115	Non-Maskable Interrupt

(V_{CC} = AV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C to + 125°C)

*: t_{CLKP1} indicates the peripheral clock1 (CLKP1) cycle time except stop when in stop mode.

14.5.2 Accuracy and Setting of the A/D Converter Sampling Time

If the external impedance is too high or the sampling time too short, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting the A/D conversion precision.

To satisfy the A/D conversion precision, a sufficient sampling time must be selected. The required sampling time (T_{samp}) depends on the external driving impedance R_{ext}, the board capacitance of the A/D converter input pin C_{ext} and the AV_{CC} voltage level. The following replacement model can be used for the calculation:

Rext: External driving impedance

Cext: Capacitance of PCB at A/D converter input

CVIN: Analog input capacity (I/O, analog switch and ADC are contained)

R_{VIN}: Analog input impedance (I/O, analog switch and ADC are contained)

The following approximation formula for the replacement model above can be used:

 $T_{samp} = 7.62 \times (R_{ext} \times C_{ext} + (R_{ext} + R_{VIN}) \times C_{VIN})$

- Do not select a sampling time below the absolute minimum permitted value. $(0.5\mu s \text{ for } 4.5V \le AVCC \le 5.5V, 1.2\mu s \text{ for } 2.7V \le AVCC < 4.5V)$
- If the sampling time cannot be sufficient, connect a capacitor of about 0.1µF to the analog input pin.
- A big external driving impedance also adversely affects the A/D conversion precision due to the pin input leakage current IIL (static current before the sampling switch) or the analog input leakage current IAIN (total leakage current of pin input and comparator during sampling). The effect of the pin input leakage current IIL cannot be compensated by an external capacitor.
- The accuracy gets worse as |AVRH AVRL| becomes smaller.

■Used setting

Mode	Selected Source Clock	Clock/Regulator and FLASH Settings
Run mode	PLL	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32MHz
	Main osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 4MHz
	RC clock fast	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 2MHz
	RC clock slow	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 100kHz
	Sub osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32kHz
Sleep mode	PLL	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32MHz
		Regulator in High Power Mode,
		(CLKB is stopped in this mode)
	Main osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 4MHz
		Regulator in High Power Mode,
		(CLKB is stopped in this mode)
	RC clock fast	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 2MHz
		Regulator in High Power Mode,
		(CLKB is stopped in this mode)
	RC clock slow	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 100kHz
		Regulator in Low Power Mode,
		(CLKB is stopped in this mode)
	Sub osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32kHz
		Regulator in Low Power Mode,
		(CLKB is stopped in this mode)
Timer mode	PLL	CLKMC = 4MHz, CLKPLL = 32MHz
		(System clocks are stopped in this mode)
		Regulator in High Power Mode,
		FLASH in Power-down / reset mode
	Main osc.	CLKMC = 4MHz
		(System clocks are stopped in this mode)
		Regulator in High Power Mode,
	DC alaak faat	
	RC CIOCK IASI	CLKMC = 2MHZ
		(System clocks are stopped in this mode)
		FLASH in Power-down / reset mode
	RC clock slow	
		(System clocks are stopped in this mode)
		Regulator in Low Power Mode
		FLASH in Power-down / reset mode
	Sub osc.	CLKMC = 32 kHz
		(System clocks are stopped in this mode)
		Regulator in Low Power Mode.
		FLASH in Power-down / reset mode
Stop mode	stopped	(All clocks are stopped in this mode)
		Regulator in Low Power Mode,
		FLASH in Power-down / reset mode

18. Major Changes

Spansion Publication Number: MB966B0-DS704-00013

Page	Section	Change Results
Revision	1.0	
-	-	PRELIMINARY \rightarrow Data sheet
2	Features	Changed the description of "System clock" Up to 16 MHz external clock for devices with fast clock input feature
		Up to 8 MHz external clock for devices with fast clock input feature
4		Changed the description of "LCD Controller" On-chip drivers for internal divider resistors or external divider resistors →
		Internal divider resistors or external divider resistors Added "Sound Generator"
		Changed the description of "External Interrupts" Interrupt mask and pending bit per channel \rightarrow
		Interrupt mask bit per channel
		Added the description of "I/O Ports" "Some pins offer high current output capability for LED
5		Changed the description of "Built-in On Chip Debugger" - Event sequencer: 2 levels
5		→ - Event sequencer: 2 levels + reset
	Product Lineup	Added the Product
6		Changed the Remark of RLT RLT 0/1/2/3/6 Only RLT6 can be used as PPG clock source
		RLT 0 to 3/6
	Dia ala Dia amang	Added the Feature of Sound Generator
	BIOCK Diagram	Added the block of Sound Generator
8		Deleted the block of RL16 from PPG block
		4ch
		0/1/2/3/6 5ch
9	Pin Assignment	Added the Pin Pin no.23, SGO1 Pin no.24, SGA1
		Pin no.28, SGO1_R Pin no.29, SGA1_R Pin no.81, SGO0 Pin no.82, SGA0
10	Pin Description	Changed the Description of PPGn_B Programmable Pulse Generator n output (8bit) →
		Programmable Pulse Generator n output (16bit/8bit) Added the Pin
		SGAn SGAn_R SGOn SGOn R

Page	Section	Change Results
		Changed the Value and condition of "Power supply current for active Low Voltage detector"
		Typ: 5μA, Max: 15μA, Remarks: nothing
		Typ: 5μA, Max: -, Remarks: T _A = +25°C Typ: -, Max: 12.5μA, Remarks: T _A = +125°C
		Changed the condition of "Flash Write/Erase current"
		ICCFLASH Typ: 12.5mA, Max: 20mA, Remarks: nothing →
		Typ: 12.5mA, Max: -, Remarks: $T_A = +25^{\circ}C$ Typ: -, Max: 20mA, Remarks: $T_A = +125^{\circ}C$
		Changed the annotation *2 The power supply current is measured with a 4MHz external
		clock connected to the Main oscillator and a 32kHz external clock connected to the Sub oscillator.
		→ When Flash is not in Power-down / reset mode, I _{CCFLASHPD}
		must be added to the Power supply current.
		clock connected to the Main oscillator and a 32kHz external
		clock connected to the Sub oscillator. The current for "On Chip
	0. DO Oberneteriation	Debugger" part is not included.
	3. DC Characteristics	Voltas Voltas
44		Added the Symbol for DEBUG I/F pin
		V _{OLD}
	3. DC Characteristics	Changed the Pin name of "Input capacitance"
	(2) Pin Characteristics	Vcc
		Vss,
		AVcc,
		AVss,
		AVRH,
		P08 m
		P09_m,
		P10_m
45		\rightarrow Other than
		C,
		Vcc,
		Vss,
		AVSS, AVRH.
		AVRL,
		P08_m,
		P09_m,
		Deleted the annotation
		" I_{OH} and I_{OL} are target value."
		Added the annotation
		"In the case of high current outputs, set "1" to the bit in the Port High Drive Register "

Page	Section	Change Results
46	4. AC Characteristics (1) Main Clock Input Characteristics	Changed MAX frequency for f_{FCI} in all conditions 16 \rightarrow 8 Changed MIN frequency for t_{CYLH} 62.5 \rightarrow 125 Changed MIN, MAX and Unit for P_{WH} , P_{WL} MIN: 30 \rightarrow 55 MAX: 70 \rightarrow - Unit % \rightarrow ns
47	4. AC Characteristics	Added the figure (t_{CYLH}) when using the external clock
40	(2) Sub Clock Input Characteristics4. AC Characteristics	Added "DC clock stabilization time"
48	(3) Built-in RC Oscillation Characteristics	Added RC clock stabilization time
	(5) Operating Conditions of PLL	Changed the Value of PLL input clock frequency Max: $16MHz \rightarrow 8MHz$
49		$f_{PLLO} \rightarrow f_{CLKVCO}$
10		Added Remarks to "PLL oscillation clock frequency"
	4. AC Characteristics	
	(6) Reset Input	Added the figure for reset input time (t _{RSTL})
51	4. AC Characteristics (8) USART Timing	Changed the condition $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$ \rightarrow $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C}, C_L = 50\text{pF})$ Changed the HARDWARE MANUAL "MB966B0 series HARDWARE MANUAL"
		→ "MB96600 series HARDWARE MANUAL"
52		Changed the figure for "Internal shift clock mode"
54	4. AC Characteristics	Added parameter, "Noise filter" and an annotation *5 for it
	5 A/D Converter	Added (SP to the ligure
55	(1) Electrical Characteristics for the A/D	Added "Variation between channels"
	Converter	Added the annotation
56	 A/D Converter Accuracy and Setting of the A/D Converter Sampling Time 	Deleted the unit "[Min]" from approximation formula of Sampling time
57	5. A/D Converter (3) Definition of A/D Converter Terms	Changed the Description and the figure "Linearity" \rightarrow "Nonlinearity" "Differential linearity error" \rightarrow "Differential nonlinearity error" Changed the Description Linearity error: Deviation of the line between the zero-transition point (0b000000000 $\leftarrow \rightarrow$ 0b000000001) and the full-scale transition point (0b111111110 $\leftarrow \rightarrow$ 0b111111111) from the actual conversion characteristics. \rightarrow Nonlinearity error: Deviation of the actual conversion characteristics from a straight line that connects the zero transition point (0b000000000 $\leftarrow \rightarrow$ 0b000000001) to the full-scale transition point (0b111111110 $\leftarrow \rightarrow$ 0b111111111).

Document History

Document Title: MB966B0 Series F²MC-16FX 16-Bit Microcontroller

Document Number: 002-04721

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	-	KSUN	01/31/2014	Migrated to Cypress and assigned document number 002-04721 No change to document contents or format.
*A	5126730	KSUN	03/03/2016	Updated to Cypress format.