

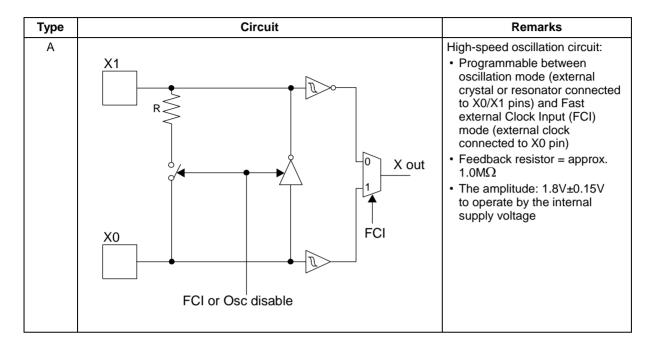
Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

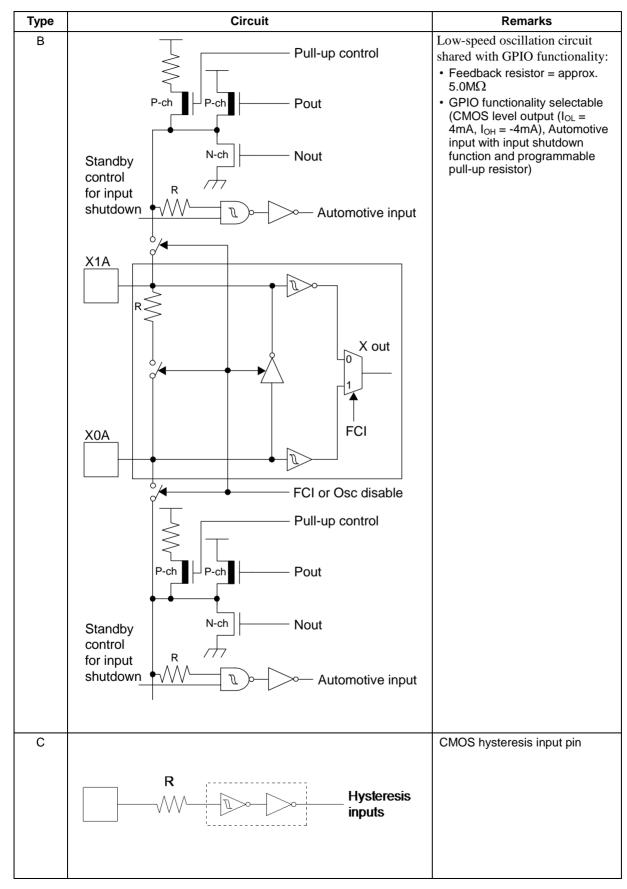
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

tails	
oduct Status	Active
re Processor	F ² MC-16FX
re Size	16-Bit
eed	32MHz
nnectivity	CANbus, I ² C, LINbus, SCI, UART/USART
ripherals	DMA, LCD, LVD, POR, PWM, WDT
mber of I/O	79
ogram Memory Size	288KB (288K x 8)
gram Memory Type	FLASH
PROM Size	-
M Size	16K x 8
tage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
a Converters	A/D 27x8/10b
illator Type	Internal
erating Temperature	-40°C ~ 125°C (TA)
unting Type	Surface Mount
kage / Case	100-LQFP
oplier Device Package	100-LQFP (14x14)
chase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f6b6rbpmc-gse2


■Flash Memory

- □ Dual operation flash allowing reading of one Flash bank while programming or erasing the other bank
- □ Command sequencer for automatic execution of programming algorithm and for supporting DMA for programming of the Flash Memory
- □ Supports automatic programming, Embedded Algorithm
- □ Write/Erase/Erase-Suspend/Resume commands


- ☐ A flag indicating completion of the automatic algorithm
- ☐ Erase can be performed on each sector individually
- □ Sector protection
- □ Flash Security feature to protect the content of the Flash
- □ Low voltage detection during Flash erases or writes

6. I/O Circuit Type

Туре	Circuit	Remarks
Р	Pull-up control	 CMOS level output (I_{OL} = 4mA, I_{OH} = -4mA) CMOS hysteresis inputs with
	P-ch P-ch Pout	input shutdown functionProgrammable pull-up resistorSEG or COM output
	N-ch Nout	
	Standby control for input shutdown	
	SEG or COM output	
Q	Pull-up control	 CMOS level output (I_{OL} = 4mA, I_{OH} = -4mA) CMOS hysteresis inputs with input shutdown function
	P-ch P-ch Pout	Programmable pull-up resistorVn input or SEG output
	N-ch Nout	
	Standby control for input shutdown	
	Vn input or SEG output	
V	Pull-up control	• CMOS level output (programmable I _{OL} = 4mA, I _{OH} = -4mA and I _{OL} = 20mA, I _{OH} = -20mA)
	P-ch P-ch Pout	 Automotive input with input shutdown function Programmable pull-up resistor Analog input
	N-ch Nout	
	Standby control Automotive input for input shutdown	
	Analog input	

Туре	Circuit	Remarks
W	Pull-up control	• CMOS level output (programmable I _{OL} = 4mA, I _{OH} = -4mA and I _{OL} = 20mA, I _{OH} = -20mA)
	P-ch P-ch Pout	 CMOS hysteresis input with input shutdown function Programmable pull-up resistor Analog input
	N-ch Nout	
	Standby control Hysteresis input for input shutdown	
	Analog input	

Vector number	Offset in vector table	Vector name	Cleared by DMA	Index in ICR to program	Description
121	218 _H	SG1	No	121	Sound Generator 1
122	214 _H	-	-	122	Reserved
123	210 _H	-	-	123	Reserved
124	20C _H	-	-	124	Reserved
125	208н	-	-	125	Reserved
126	204 _H	-	-	126	Reserved
127	200 _H	-	-	127	Reserved
128	1FC _H	-	-	128	Reserved
129	1F8 _H	-	-	129	Reserved
130	1F4 _H	-	-	130	Reserved
131	1F0 _H	-	-	131	Reserved
132	1EC _H	-	-	132	Reserved
133	1E8 _H	FLASHA	Yes	133	Flash memory A interrupt
134	1E4 _H	-	-	134	Reserved
135	1E0 _H	-	-	135	Reserved
136	1DC _H	-	-	136	Reserved
137	1D8 _H	QPRC0	Yes	137	Quadrature Position/Revolution counter 0
138	1D4 _H	QPRC1	Yes	138	Quadrature Position/Revolution counter 1
139	1D0 _H	ADCRC0	No	139	A/D Converter 0 - Range Comparator
140	1CC _H	ADCPD0	No	140	A/D Converter 0 - Pulse detection
141	1C8 _H	-	-	141	Reserved
142	1C4 _H	-	-	142	Reserved
143	1C0 _H	-	-	143	Reserved

12. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

12.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

■ Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

■ Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

■Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

- 1. Preventing Over-Voltage and Over-Current Conditions
 - Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.
- 2. Protection of Output Pins
 - Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.
- Handling of Unused Input Pins
 - Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

■Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

■Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

■ Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

13.8 Pin handling when not using the A/D converter

If the A/D converter is not used, the power supply pins for A/D converter should be connected such as $AV_{CC} = V_{CC}$, $AV_{SS} = AVRH = AVRL = V_{SS}$.

13.9 Notes on Power-on

To prevent malfunction of the internal voltage regulator, supply voltage profile while turning the power supply on should be slower than 50 µs from 0.2V to 2.7V.

13.10Stabilization of power supply voltage

If the power supply voltage varies acutely even within the operation safety range of the V_{CC} power supply voltage, a malfunction may occur. The V_{CC} power supply voltage must therefore be stabilized. As stabilization guidelines, the power supply voltage must be stabilized in such a way that V_{CC} ripple fluctuations (peak to peak value) in the commercial frequencies (50Hz to 60Hz) fall within 10% of the standard V_{CC} power supply voltage and the transient fluctuation rate becomes $0.1V/\mu s$ or less in instantaneous fluctuation for power supply switching.

13.11 Serial communication

There is a possibility to receive wrong data due to noise or other causes on the serial communication.

Therefore, design a printed circuit board so as to avoid noise.

Consider receiving of wrong data when designing the system. For example apply a checksum and retransmit the data if an error occurs.

13.12Mode Pin (MD)

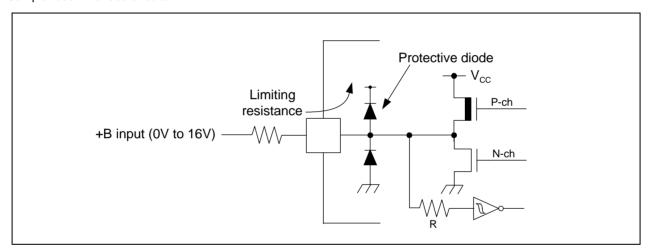
Connect the mode pin directly to Vcc or Vss pin. To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the mode pin to Vcc or Vss pin and provide a low-impedance connection.

Document Number: 002-04721 Rev.*A

14. Electrical Characteristics

14.1 Absolute Maximum Ratings

Parameter	Symbol	Condition	Ra	ating	Unit	Remarks	
	Symbol	Condition	Min	Max	Unit	Remarks	
Power supply voltage*1	V _{CC}	-	V _{SS} - 0.3	V _{SS} + 6.0	V		
Analog power supply voltage*1	AVcc	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_{CC} = AV_{CC}^{*2}$	
Analog reference voltage*1	AVRH, AVRL	-	V _{SS} - 0.3	V _{SS} + 6.0	V	AV _{CC} ≥ AVRH, AV _{CC} ≥ AVRL, AVRH > AVRL, AVRL ≥ AV _{SS}	
LCD power supply voltage*1	V0 to V3	-	V _{SS} - 0.3	V _{SS} + 6.0	V	V0 to V3 must not exceed V _{CC}	
Input voltage*1	VI	-	V _{SS} - 0.3	V _{SS} + 6.0	V	$V_1 \le V_{CC} + 0.3V^{*3}$	
Output voltage*1	Vo	-	V _{SS} - 0.3	$V_{SS} + 6.0$	V	$V_0 \le V_{CC} + 0.3V^{*3}$	
Maximum Clamp Current	I _{CLAMP}	-	-4.0	+4.0	mA	Applicable to general purpose I/O pins *4	
Total Maximum Clamp Current	Σ I _{CLAMP}	-	-	26	mA	Applicable to general purpose I/O pins *4	
"L" level maximum	I _{OL}	-	-	15	mΑ	Normal port	
output current	I _{OLHCO}	-	-	20	mA	High current port	
"L" level average	I _{OLAV}	-	-	4	mA	Normal port	
output current	I _{OLAVHCO}	-	-	15	mA	High current port	
"L" level maximum	ΣI _{OL}	-	-	64	mA	Normal port	
overall output current	ΣI _{OLHCO}	-	-	150	mA	High current port	
"L" level average	ΣI _{OLAV}	-	-	32	mA	Normal port	
overall output current	ΣI _{OLAVHCO}	-	-	100	mA	High current port	
"H" level maximum	Іон	-	-	-15	mA	Normal port	
output current	Іоннсо	-	-	-20	mA	High current port	
"H" level average	I _{OHAV}	-	-	-4	mA	Normal port	
output current	I _{OHAVHCO}	-	-	-15	mA	High current port	
"H" level maximum	ΣΙ _{ΟΗ}	-	-	-64	mA	Normal port	
overall output current	ΣΙ _{ΟΗΗ} Ο	-	-	-150	mA	High current port	
"H" level average	ΣΙ _{ΟΗΑ}	-	-	-32	mA	Normal port	
overall output current	ΣΙ _{ΟΗΑVΗCO}	-	-	-100	mA	High current port	
Power consumption*5	P _D	T _A = +125°C	-	416 ^{*6}	mW		
Operating ambient temperature	T _A	-	-40	+125 ^{*7}	°C		
Storage temperature	T _{STG}	-	-55	+150	°C		


^{*1:} This parameter is based on $V_{SS} = AV_{SS} = 0V$.

^{*2:} AV_{CC} and V_{CC} must be set to the same voltage. It is required that AV_{CC} does not exceed V_{CC} and that the voltage at the analog inputs does not exceed AV_{CC} when the power is switched on.

^{*3:} V_I and V_O should not exceed V_{CC} + 0.3V. V_I should also not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating. Input/Output voltages of general I/O ports depend on V_{CC} .

- *4: Applicable to all general purpose I/O pins (Pnn_m).
 - · Use within recommended operating conditions.
 - Use at DC voltage (current).
 - The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the VCC pin, and this may affect other devices.
 - Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the Power reset.
 - The DEBUG I/F pin has only a protective diode against VSS. Hence it is only permitted to input a negative clamping current (4mA). For protection against positive input voltages, use an external clamping diode which limits the input voltage to maximum 6.0V.
 - · Sample recommended circuits:

*5: The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal conductance of the package on the PCB.

The actual power dissipation depends on the customer application and can be calculated as follows:

$$\mathsf{P}_\mathsf{D} = \mathsf{P}_\mathsf{IO} + \mathsf{P}_\mathsf{INT}$$

 P_{IO} = Σ ($V_{OL} \times I_{OL} + V_{OH} \times I_{OH}$) (I/O load power dissipation, sum is performed on all I/O ports)

 $P_{INT} = V_{CC} \times (I_{CC} + I_A)$ (internal power dissipation)

 I_{CC} is the total core current consumption into V_{CC} as described in the "DC characteristics" and depends on the selected operation mode and clock frequency and the usage of functions like Flash programming. I_A is the analog current consumption into AV_{CC} .

- *6: Worst case value for a package mounted on single layer PCB at specified TA without air flow.
- *7: Write/erase to a large sector in flash memory is warranted with T_A ≤ + 105°C.

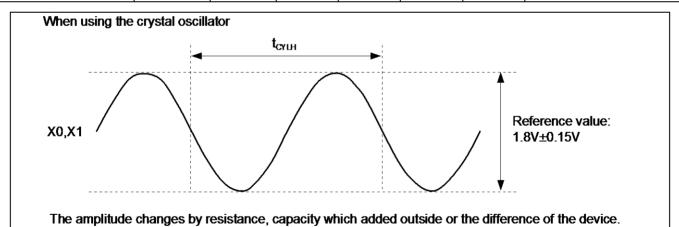
WARNING

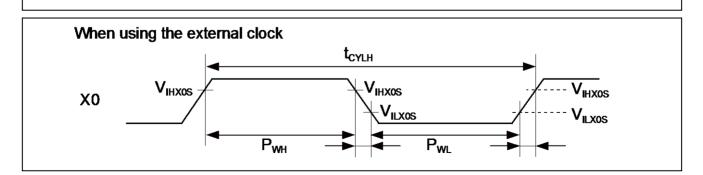
Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Davamatav	Cumala al	Pin	Conditions	T	Value			Damarka
Parameter	Symbol	Symbol riii Conditions		Min	Тур	Max	Unit	Remarks
			PLL Timer mode with	-	1800	2250	μΑ	$T_A = +25^{\circ}C$
	ICCTPLL		CLKPLL = 32MHz (CLKRC and	-	-	3220	μΑ	$T_A = +105^{\circ}C$
			CLKSC stopped)	-	-	4200	μΑ	T _A = +125°C
			Main Timer mode with	-	285	330	μА	T _A = +25°C
	I _{CCTMAIN}		CLKMC = 4MHz, SMCR:LPMSS = 0 (CLKPLL, CLKRC and CLKSC stopped)	-	-	1200	μА	T _A = +105°C
				-	-	2155	μА	T _A = +125°C
Dower cumply	RC Timer mode with CLKRC = 2MHz,	RC Timer mode with CLKRC = 2MHz,	-	160	215	μА	T _A = +25°C	
Power supply current in	I _{CCTRCH}	Vcc	SMCR:LPMSS = 0 (CLKPLL, CLKMC and CLKSC stopped)	-	-	1110	μА	T _A = +105°C
Timer modes ^{*2}				-	-	2065	μΑ	T _A = +125°C
			RC Timer mode with	-	35	75	μА	T _A = +25°C
	I _{CCTRCL}		CLKRC = 100kHz, (CLKPLL, CLKMC and CLKSC	-	-	910	μА	T _A = +105°C
		stopped)	stopped)	-	-	1870	μА	T _A = +125°C
		Sub Timer mode with	-	25	65	μА	T _A = +25°C	
	I _{CCTSUB}		CLKSC = 32kHz (CLKMC, CLKPLL and CLKRC	-	-	885	μА	T _A = +105°C
			stopped)	-	-	1845	μΑ	T _A = +125°C

Parameter	Symbol	Pin name	Conditions		Value		Unit	Remarks	
raiailletei	Symbol	Filitianie		Min	Тур	Max	Oilit		
lament lamb		Pnn_m	$V_{SS} < V_I < V_{CC}$ AV_{SS} , $AVRL < V_I < AV_{CC}$, AVRH	- 1	-	+ 1	μА	Single port pin except high current output I/O	
Input leak current	I _{IL}	P08_m, P09_m, P10_m	$V_{SS} < V_I < V_{CC}$ AV_{SS} , $AVRL < V_I < AV_{CC}$, AVRH	- 3	-	+ 3	μА		
Total LCD leak current	Σ I _{ILCD}	All SEG/ COM pin	V _{CC} = 5.0V	-	0.5	10	μА	Maximum leakage current of all LCD pins	
Internal LCD divide resistance	R _{LCD}	Between V3 and V2, V2 and V1, V1 and V0	V _{CC} = 5.0V	6.25	12.5	25	kΩ		
Pull-up resistance value	R _{PU}	Pnn_m	V _{CC} = 5.0V ±10%	25	50	100	kΩ		
Input capacitance	C _{IN}	Other than C, Vcc, Vss, AVcc, AVss, AVRH, AVRL, P08_m, P09_m, P10_m	-	-	5	15	pF		
		P08_m, P09_m, P10_m	-	-	15	30	pF		

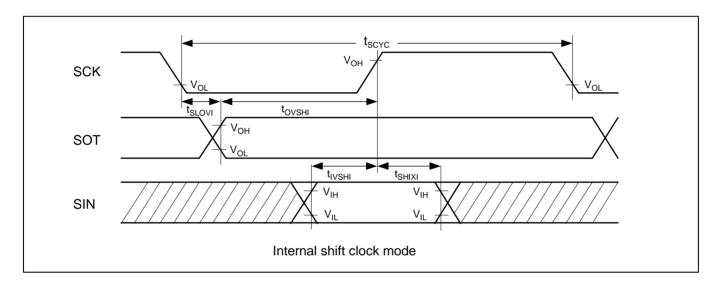
^{*:} In the case of high current outputs, set "1" to the bit in the Port High Drive Register.

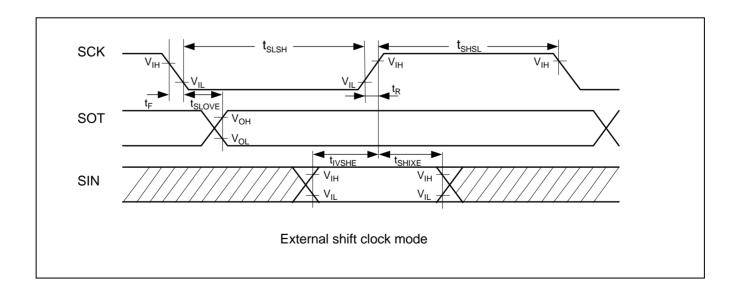



14.4 AC Characteristics

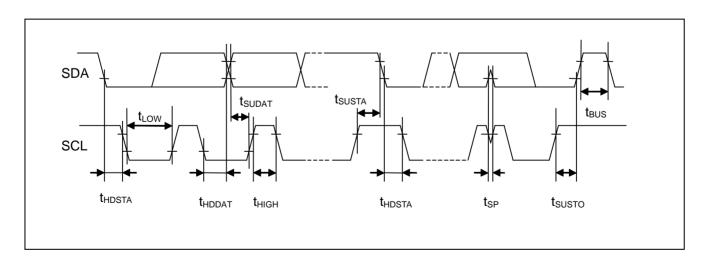
14.4.1 Main Clock Input Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, VD=1.8V\pm0.15V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$


Doromotor	Cymphol	Din nama		Value		Unit	Remarks
Parameter	Symbol	Pin name	Min	Тур	Max	Unit	Remarks
			4	-	8	MHz	When using a crystal oscillator, PLL off
Input frequency	f _C	f _C X0, X1	-	-	8	MHz	When using an opposite phase external clock, PLL off
			4	-	8	MHz	When using a crystal oscillator or opposite phase external clock, PLL on
Input fraguency	f	νο.	-	-	8	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL off
Input frequency	f _{FCI} X0		4	-	8	MHz	When using a single phase external clock in "Fast Clock Input mode", PLL on
Input clock cycle	t _{CYLH}	-	125	-	-	ns	
Input clock pulse width	P _{WH} , P _{WL}	-	55	-	-	ns	



tscyc	N
4 × t _{CLKP1}	2
5 × t _{CLKP1} , 6 ×t _{CLKP1}	3
7 × t _{CLKP1} , 8 × t _{CLKP1}	4


14.4.10 f²C Timing

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 125^{\circ}\text{C})$

Parameter	Symbol	Conditions	Typic	al mode	High m	n-speed node* ⁴	Unit
			Min	Max	Min	Max	
SCL clock frequency	f _{SCL}		0	100	0	400	kHz
(Repeated) START condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	tHDSTA		4.0	-	0.6	-	μЅ
SCL clock "L" width	t _{LOW}		4.7	-	1.3	-	μS
SCL clock "H" width	t _{HIGH}		4.0	-	0.6	-	μS
(Repeated) START condition setup time SCL↑→SDA↓	tsusta	C ₁ = 50pF.	4.7	-	0.6	-	μЅ
Data hold time $SCL \downarrow \rightarrow SDA \downarrow \uparrow$	t _{HDDAT}	$C_L = 50pF,$ $R = (V_p/I_{OL})^{*1}$	0	3.45* ²	0	0.9*3	μS
Data setup time $SDA \downarrow \uparrow \rightarrow SCL \uparrow$	t _{SUDAT}		250	-	100	-	ns
STOP condition setup time $SCL \uparrow \rightarrow SDA \uparrow$	t _{SUSTO}		4.0	-	0.6	-	μS
Bus free time between "STOP condition" and "START condition"	t _{BUS}		4.7	-	1.3	-	μѕ
Pulse width of spikes which will be suppressed by input noise filter	t _{SP}	-	0	(1-1.5) × t _{CLKP1} *5	0	(1-1.5) × t _{CLKP1} *5	ns

^{*1:} R and C_L represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively. Vp indicates the power supply voltage of the pull-up resistance and I_{OL} indicates V_{OL} guaranteed current.

^{*5:} t_{CLKP1} indicates the peripheral clock1 (CLKP1) cycle time.

^{*2:} The maximum t_{HDDAT} only has to be met if the device does not extend the "L" width (t_{LOW}) of the SCL signal.

^{*&}lt;sup>3</sup>: A high-speed mode I²C bus device can be used on a standard mode I²C bus system as long as the device satisfies the requirement of "t_{SUDAT} ≥ 250ns".

^{*4:} For use at over 100 kHz, set the peripheral clock1 (CLKP1) to at least 6MHz.

14.5.3 Definition of A/D Converter Terms

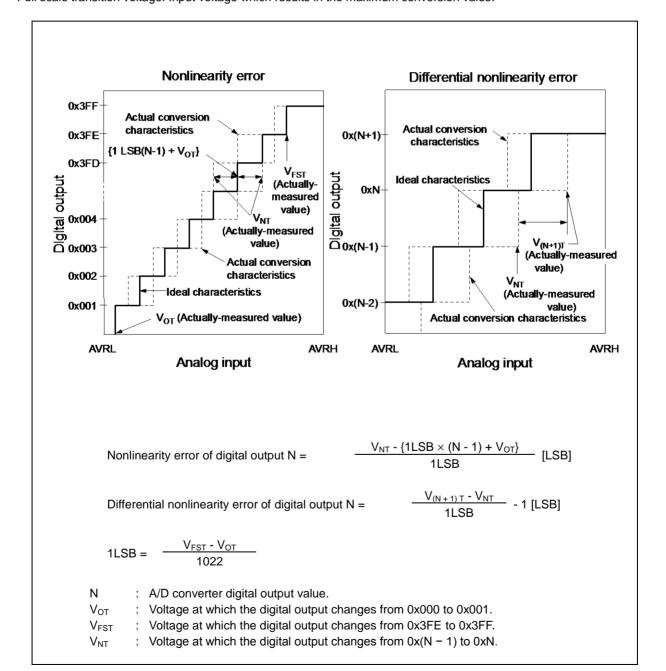
Resolution : Analog variation that is recognized by an A/D converter.

• Nonlinearity error : Deviation of the actual conversion characteristics from a straight line that connects the zero

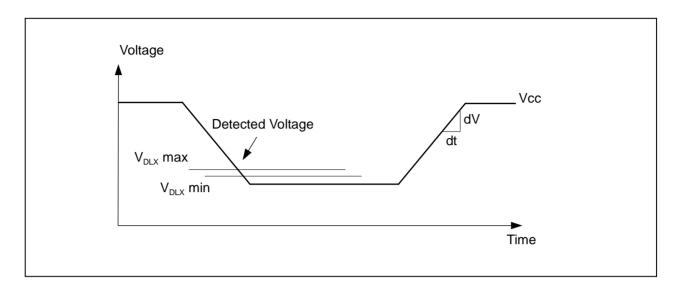
transition point (0b000000000 ←→ 0b000000001) to the full-scale transition point

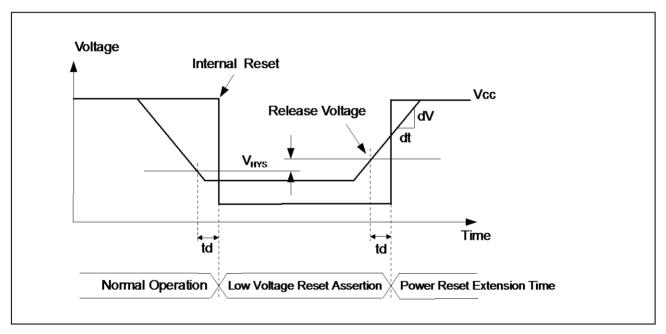
 $(0b11111111110 \longleftrightarrow 0b1111111111).$

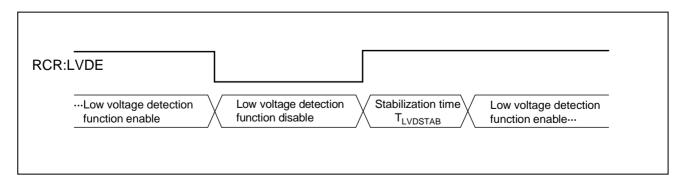
• Differential nonlinearity error : Deviation from the ideal value of the input voltage that is required to


change the output code by 1LSB.

• Total error : Difference between the actual value and the theoretical value. The total error


includes zero transition error, full-scale transition error and nonlinearity error.


• Zero transition voltage : Input voltage which results in the minimum conversion value.


• Full scale transition voltage: Input voltage which results in the maximum conversion value.

14.8 Flash Memory Write/Erase Characteristics

 $(V_{CC} = AV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 125^{\circ}C)$

Parar	Parameter		Conditions Value			Unit	Remarks
гатат	iletei	Conditions	Min	Тур	Max	Offic	Remarks
	Large Sector	T _A ≤+ 105°C	-	1.6	7.5	s	
Sector erase time	Small Sector	-	-	0.4	2.1	s	Includes write time prior to internal erase.
	Security Sector	-	-	0.31	1.65	s	
Word (16-bit) write	Large Sector	T _A ≤ + 105°C	-	25	400	μS	Not including system-level
time	Small Sector	-	-	25	400	μS	overhead time.
Chip erase time		T _A ≤ + 105°C	-	8.31	40.05	s	Includes write time prior to internal erase.

Note:

While the Flash memory is written or erased, shutdown of the external power (V_{CC}) is prohibited. In the application system where the external power (V_{CC}) might be shut down while writing or erasing, be sure to turn the power off by using a low voltage detection function.

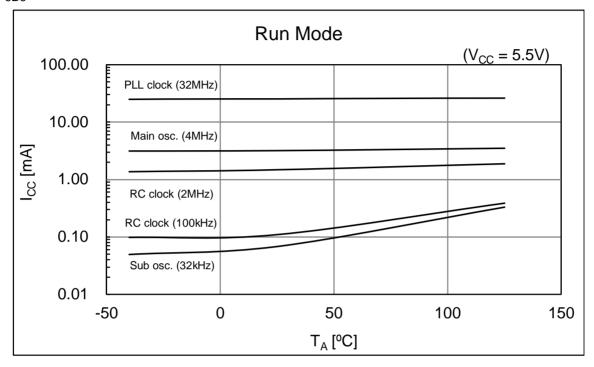
To put it concrete, change the external power in the range of change ration of power supply voltage (-0.004V/ μ s to +0.004V/ μ s) after the external power falls below the detection voltage (V_{DLX})⁻¹.

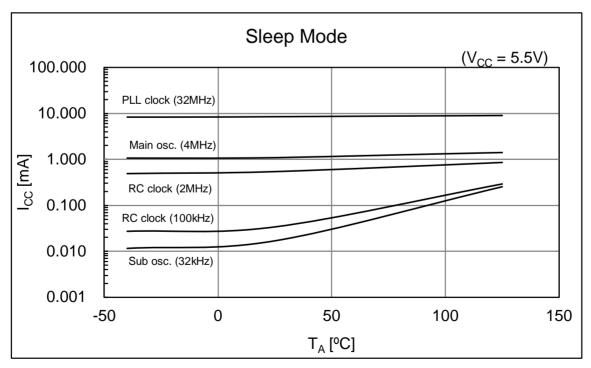
Write/Erase cycles and data hold time

Write/Erase cycles (cycle)	Data hold time (year)
1,000	20 *2
10,000	10 *2
100,000	5 *2

^{*1:} See "14.7 Low Voltage Detection Function Characteristics".

Document Number: 002-04721 Rev.*A


^{*2:} This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at + 85°C).



15. Example Characteristics

This characteristic is an actual value of the arbitrary sample. It is not the guaranteed value.

■MB96F6B6

■Used setting

Mode	Selected Source Clock	Clock/Regulator and FLASH Settings
Run mode	PLL	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32MHz
	Main osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 4MHz
	RC clock fast	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 2MHz
	RC clock slow	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 100kHz
	Sub osc.	CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32kHz
Sleep mode	PLL	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32MHz
	1 22	Regulator in High Power Mode,
		(CLKB is stopped in this mode)
	Main osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 4MHz
		Regulator in High Power Mode,
		(CLKB is stopped in this mode)
	RC clock fast	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 2MHz
		Regulator in High Power Mode,
		(CLKB is stopped in this mode)
	RC clock slow	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 100kHz
		Regulator in Low Power Mode,
		(CLKB is stopped in this mode)
	Sub osc.	CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32kHz
		Regulator in Low Power Mode,
Timer mode	PLL	(CLKB is stopped in this mode) CLKMC = 4MHz, CLKPLL = 32MHz
	FLL	(System clocks are stopped in this mode)
		Regulator in High Power Mode,
		FLASH in Power-down / reset mode
	Main osc.	CLKMC = 4MHz
		(System clocks are stopped in this mode)
		Regulator in High Power Mode,
		FLASH in Power-down / reset mode
	RC clock fast	CLKMC = 2MHz
		(System clocks are stopped in this mode)
		Regulator in High Power Mode,
	RC clock slow	FLASH in Power-down / reset mode
	RC Clock Slow	CLKMC = 100kHz (System clocks are stopped in this mode)
		Regulator in Low Power Mode,
		FLASH in Power-down / reset mode
	Sub osc.	CLKMC = 32 kHz
		(System clocks are stopped in this mode)
		Regulator in Low Power Mode,
		FLASH in Power-down / reset mode
Stop mode	stopped	(All clocks are stopped in this mode)
		Regulator in Low Power Mode, FLASH in Power-down / reset mode