

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

2 014110	
Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, PWM, Voltage Detect, WDT
Number of I/O	75
Program Memory Size	64KB (64K × 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 20x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21388snfp-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Port	Pin No.			SSL	I/I ² C			Time	er RJ	Timer RB2
Port	Pin No.	SCL_0	SDA_0	SSI_0	SCS_0	SSCK_0	SSO_0	TRJO_0	TRJIO_0	TRBO_0
P8_0	44									
P8_1	43									
P8_2	42									
P8_3	41									
P8_4	40									
P8_5	39									
P8_6	38									
P8_7	37									
P9_0	34									
P9_1	33									
P9_2	32									
P9_3	31									
P9_4	79									
P9_5	78									

Table 1.7 Pin Name Information by Pin Number (SSU/I²C, Timer RJ, and Timer RB2) (2)

Port	Pin No.	TRCCLK_0	TRCIOA_0	Time TRCIOB_0	er RC TRCIOC_0	TRCIOD_0	TRCTRG_0	Timer RE2 TMRE20		Others	
P0_0	72	TRUCLK_U	TRCIOA_0	TRCIOB_0	TRCIOC_0	TRCIOD_0	TRCTRG_0	TMRE20	AN7		r
P0_0 P0_1	72		TRCIOA_0				TRCTRG_0		AN7 AN6		-
	70								AN6 AN5		
P0_2			TRCIOA_0	TRCIOB_0			TRCTRG_0				
P0_3	69 68			TRCIOB_0				TMPEOO	AN4 AN3		
P0_4								TMRE20			
P0_5	67			TRCIOB_0					AN2		
P0_6	66					TRCIOD_0			AN1		
P0_7	65				TRCIOC_0				AN0		-
P1_0	56					TRCIOD_0			AN8	KIO	-
P1_1	55		TRCIOA_0				TRCTRG_0		AN9	KI1	
P1_2	54			TRCIOB_0					AN10	KI2	
P1_3	53				TRCIOC_0				AN11	KI3	
P1_4	52	TRCCLK_0									
P1_5	51										
P1_6	50								IVREF1		CH00
P1_7	49								IVCMP1		CH01
P2_0	30			TRCIOB_0							CH16
P2_1	29				TRCIOC_0						CH17
P2_2	28					TRCIOD_0					CH18
P2_3	27										CH19
P2_4	26										CH20
P2_5	25										CH21
P2_6	24										CH22
P2_7	23										CH23
P3_0	4										CH24
P3_1	36										CH10
P3_2	3										CH25
P3_3	22	TRCCLK_0							IVCMP3		
P3_4	21				TRCIOC_0				IVREF3		
P3_5	20					TRCIOD_0			-		
P3_6	35										CH11
P3_7	19										
P4_2	5								VREF		
P4_3	7								XCIN		
P4_4	8								XCOUT		
P4_5	48								ADTRG		CH02
P4_6	12								XIN		01102
P4_7	10								XOUT		
	18	TRCCLK_0							7001		
P5_0	17	TROOLK_0	TROLOA				TROTRO A				
P5_1	16		TRCIOA_0	TROOP A			TRCTRG_0				
P5_2				TRCIOB_0	TRCIOC_0		<u> </u>				ł
P5_3	15					TROIDD					<u> </u>
P5_4	14					TRCIOD_0					01/00
P5_5	2										CH26
P5_6	1										CH27
P5_7	80										CH28
P6_0	77							TMRE20			CH31
P6_1	76										CH32
P6_2	75										CH33
P6_3	74										CH34
P6_4	73										CH35
P6_5	47			TRCIOB_0							CH03
P6_6	46				TRCIOC_0						CH04
P6_7	45					TRCIOD_0					CH05
P7_0	64								AN12		
P7_1	63								AN13		
P7_2	62								AN14		
P7_3	61								AN15		
P7_4	60								AN16		
P7_5	59								AN17		
P7_6	58								AN18		1
P7_7	57						ĺ		AN19	l	1

Table 1.8 Pin Name Information by Pin Number (Timer RC, Timer RE2, and Others) (1)

Dec 09, 2011

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts. Interrupts are disabled when the I flag is 0, and are enabled when the I flag is 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is 0. USP is selected when the U flag is 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction for a software interrupt numbered from 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns eight processor interrupt priority levels from 0 to 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

The write value must be 0. The read value is undefined.

3. Address Space

3.1 Memory Map

Figure 3.1 shows the Memory Map. The R8C/38T-A Group has a 1-Mbyte address space from addresses 00000h to FFFFFh. Up to 32 Kbytes of the internal ROM (program ROM) is allocated at lower addresses, beginning with address 0FFFFh. The area in excess of 32 Kbytes is allocated at higher addresses, beginning with address 10000h. For example, a 64-Kbyte internal ROM is allocated at addresses 08000h to 17FFFh.

The fixed interrupt vector table is allocated at addresses 0FFDCh to 0FFFFh. The start address of each interrupt routine is stored here.

The internal ROM (data flash) is allocated at addresses 07000h to 07FFFh.

The internal RAM is allocated at higher addresses, beginning with address 00400h. For example, a 6-Kbyte internal RAM is allocated at addresses 00400h to 01BFFh. The internal RAM is used not only for data storage but also as a stack area when a subroutine is called or when an interrupt request is acknowledged.

Special function registers (SFRs) are allocated at addresses 00000h to 02FFFh and addresses 06800h to 06FFFh. Peripheral function control registers are allocated here. All unallocated locations within the SFRs are reserved and cannot be accessed by users.

00000h SFR 002FFh 00400h Internal RAM 0XXXXh 06800h SFR (2) 0FFDCh 06FFFh Undefined instruction H 07000h Ξ Overflow Internal ROM Η **BRK** instruction (data flash) (Address match Η 07FFFh Single-step Watchdog timer, oscillation stop detection, voltage monitor 0YYYYh Address break Internal ROM (Reserved) (program ROM) Reset OFFFF 0FFFFh Internal ROM (program ROM) ZZZZZł FFFFF Notes: 1. Data flash indicates block A (1 Kbyte), block B (1 Kbyte), block C (1 Kbyte), and block D (1 Kbyte). 2. Addresses 06800h to 06FFFh are used for the ELC, DTC, and TSCU SFR areas. 3. The blank areas are reserved. No access is allowed. Internal ROM Internal RAM Part Number Capacity Address 0YYYYh Address ZZZZZh Capacity Address 0XXXXh R5F21388SNFP, R5F21388SDFP 64 Kbytes 08000h 17FFFh 6 Kbytes 01BFFh R5F21388SNFP, R5F21388SDFP 96 Kbytes 08000h 1FFFFh 8 Kbytes 023FFh R5F21388SNFP, R5F21388SDFP 128 Kbytes 08000h 27FFFh 10 Kbytes 02BFFh

Figure 3.1 Memory Map

R01DS0081EJ0100 Rev.1.00 Dec 09, 2011

00099h 0009Ah 0009Bh 0009Ch 0009Dh 0009Eh 0009Fh 000A0h 000A1h 000A2h 000A3h 000A4h 000A5h 000A8h 000A9h 000AAh 000ABh 000ACh 000ADh 000AEh 000AFh 000B0h 000B1h 000B4h 000B5h

Address	Symbol	Register Name	After Reset	Remarks
007Ah				
07Bh				
07Ch				
07Dh				
07Eh				
07Fh				
080h	U0MR_0	UART0_0 Transmit/Receive Mode Register	00h	
081h	U0BRG_0	UART0_0 Bit Rate Register	XXh	
082h	U0TB_0	UART0_0 Transmit Buffer Register	XXh	
083h			XXh	
084h	U0C0_0	UART0_0 Transmit/Receive Control Register 0	00001000b	
085h	U0C1_0	UART0_0 Transmit/Receive Control Register 1	0000010b	
086h	U0RB_0	UART0_0 Receive Buffer Register	XXXXh	
087h				
088h	U0IR_0	UART0_0 Interrupt Flag and Enable Register	00h	
089h				
08Ah				
08Bh				
08Ch	LINCR2_0	LIN_0 Special Function Register	00h	
08Dh				
08Eh	LINCT_0	LIN_0 Control Register	00h	
08Fh	LINST_0	LIN_0 Status Register	00h	
090h	U0MR_1	UART0_1 Transmit/Receive Mode Register	00h	
091h	U0BRG_1	UART0_1 Bit Rate Register	XXh	
092h	U0TB_1	UART0_1 Transmit Buffer Register	XXh	
093h			XXh	
094h	U0C0_1	UART0_1 Transmit/Receive Control Register 0	00001000b	
095h	U0C1_1	UART0_1 Transmit/Receive Control Register 1	00000010b	
096h	U0RB_1	UART0_1 Receive Buffer Register	XXXXh	
097h				
098h	U0IR_1	UART0_1 Interrupt Flag and Enable Register	00h	
099h				
09Ah				
09Bh				
09Ch				
09Dh				
09Eh				
09Fh				
0A0h				
0A1h				
0A2h				
0A3h				
0A4h				
0A5h				
0A8h				
0A9h				
0AAh				
0ABh				
0ACh				
0ADh				
DAEh				
0AFh				
)B0h				

Table 3.3

000B8h 000B9h

X: Undefined Note:

1. The blank areas are reserved. No access is allowed.

Address	Symbol	Register Name	After Reset	Remarks
000FAh				
00FBh				
00FCh				
00FDh				
00FEh				
000FFh				
00100h				
00101h				
00102h				
00103h				
00104h				
00105h				
00106h				
00107h				
00108h				
00109h				
0010Ah				
010Bh				
010Ch				
0010Dh				
0010Eh				
0010Fh				
00110h	TRJ_0	Timer RJ_0 Counter Register	FFFFh	
00111h				
00112h	TRJCR_0	Timer RJ_0 Control Register	00h	
00113h	TRJIOC_0	Timer RJ_0 I/O Control Register	00h	
00114h	TRJMR_0	Timer RJ_0 Mode Register	00h	
00115h	TRJISR_0	Timer RJ_0 Event Pin Select Register	00h	
00116h				
00117h				
00118h				
00119h				
0011Ah				
0011Bh				
0011Ch				
0011Dh				
0011Eh				
0011Fh				
00120h				
00121h				
00122h				
00123h				
00124h				
00125h				
00126h				
00127h				
00128h				
00129h				
0012Ah				
0012Bh				
0012Ch				
012Dh				
)012Eh				
0012Fh				
00130h	TRBCR_0	Timer RB2_0 Control Register	00h	
00131h	TRBOCR_0	Timer RB2_0 One-Shot Control Register	00h	
00132h	TRBIOC_0	Timer RB2_0 I/O Control Register	00h	
00133h	TRBMR_0	Timer RB2_0 Mode Register	00h	
00134h	TRBPRE_0	Timer RB2_0 Prescaler Register	FFh	
00135h	TRBPR_0	Timer RB2_0 Primary Register	FFh	
00136h	TRBSC_0	Timer RB2_0 Secondary Register	FFh	
00137h	TRBIR_0	Timer RB2_0 Interrupt Request Register	00h	
00138h	TRCCNT_0	Timer RC_0 Counter	0000h	

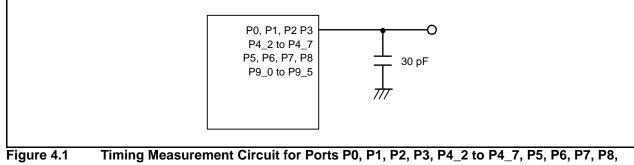
Table 3.5SFR Information (5) (1)

00139h Note:

1. The blank areas are reserved. No access is allowed.

Address Syr	mbol Area Name	After Reset	Address size
:			
0FFDBh OFS2	Option Function Select Register 2	(Note 1)	
0FFDFh ID1		(Note 2)	
:			
0FFE3h ID2		(Note 2)	
:			
0FFEBh ID3		(Note 2)	
:			
0FFEFh ID4		(Note 2)	
:			
0FFF3h ID5		(Note 2)	
:			-
0FFF7h ID6		(Note 2)	
:			1
0FFFBh ID7		(Note 2)	
:			1
0FFFFh OFS	Option Function Select Register	(Note 1)	

Table 3.17 ID code Area, Option Function Select Area


Notes:

1. The option function select area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program.

Do not perform any additional writes to the option function select area. Erasing the block including the option function select area sets the option function select area to FFh.

The ID code area is allocated in the flash memory, not in the SFRs. Set appropriate values as ROM data by a program. Do not perform any additional writes to the ID code area. Erasing the block including the ID code area sets the ID code area to FFh.

and P9_0 to P9_5

Table 4.5Flash Memory (Program ROM) Characteristics
(Vcc = 2.7 V to 5.5 V, Topr =-20°C to 85°C (N version)/-40°C to 85°C (D version),
unless otherwise specified)

Cumhal	Parameter	Conditiona		Standa	ard	Unit
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
_	Program/erase endurance (1)		1,000 (2)	—	—	times
	Byte program time (Program and erase endurance \leq 100 times)		—	_	_	μs
	Byte program time (Program and erase endurance \leq 1,000 times)		—	_	_	μs
	Word program time (Program and erase endurance \leq 100 times)	Topr = 25°C, Vcc = 5.0 V	—	100	200	μs
_	Word program time (Program and erase endurance \leq 100 times)		-	100	400	μs
	Word program time (Program and erase endurance \leq 1,000 times)		—	100	650	μs
_	Block erase time		—	0.3	4	S
td(SR-SUS)	Time delay from suspend request until suspend		—	—	5 + CPU clock × 3 cycles	ms
—	Interval from erase start/restart until following suspend request		0	—	_	μs
—	Time from suspend until erase restart		—	—	30 + CPU clock × 1 cycle	μs
td(CMDRST -READY)	Time from when command is forcibly terminated until reading is enabled		—	—	30 + CPU clock × 1 cycle	μs
_	Program, erase voltage		2.7		5.5	V
_	Read voltage		1.8	_	5.5	V
_	Program, erase temperature		-20 (N ver.) -40 (D ver.)	_	85	°C
_	Data hold time ⁽⁶⁾	Ambient temperature = $55^{\circ}C^{(7)}$	20	_	—	year

Notes:

1. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis.

If the programming and erasure endurance is n (n = 100 or 1,000), each block can be erased n times. For example, if 1,024 1byte writes are performed to different addresses in block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

2. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 3. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erasure endurance of each block and limit the number of erase operations to a certain number.
- 4. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 5. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 6. The data hold time includes time that the power supply is off or the clock is not supplied.
- 7. The data hold time includes 7,000 hours under an environment of ambient temperature 85°C.

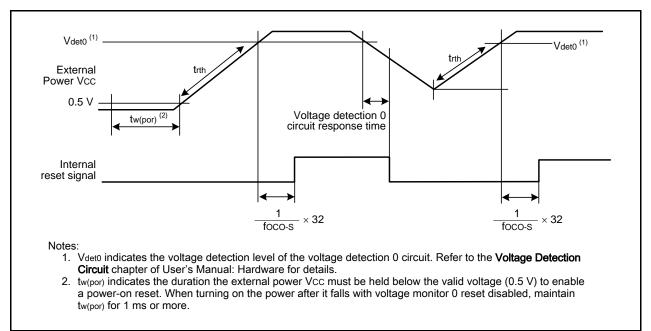


Table 4.10Power-On Reset Circuit Characteristics (1)
(Measurement conditions: Vcc = 1.8 V to 5.5 V, Topr = -20°C to 85°C (N version)/
-40°C to 85°C (D version))

	Parameter	Conditions		Unit		
Symbol	raidificici	Conditions	Min.	Тур.	Max.	
trth Ex	External power VCC rise gradient		0	—	50,000	mV/msec

Note:

1. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVDAS bit in the OFS register to 0.

Table 4.11 High-Speed On-Chip Oscillator Circuit Characteristics

Symbol	Parameter	Conditions		Standard		Unit
Symbol	i didificter	Conditions	Min.	Тур.	Max.	Onit
-	High-speed on-chip oscillator frequency after reset	Vcc = 1.8 V to 5.5 V, −20°C ≤ Topr ≤ 85°C	-	40	_	MHz
	High-speed on-chip oscillator frequency when 01b or 10b is written to bits FRA25 and FRA24 in the FRA2 register (1)	(N version) 40°C ≤ Topr ≤ 85°C (D version)	_	36.864	_	MHz
	High-speed on-chip oscillator frequency when 10b is written to bits FRA25 and FRA24 in the FRA2 register		_	32	_	MHz
	High-speed on-chip oscillator frequency dependence on temperature and power supply voltage ⁽²⁾		– 1.5	_	1.5	%
—	Oscillation stability time	Vcc = 5.0 V, Topr = 25°C	—	250	—	μs
—	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	—	500		μA

Notes:

1. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode.

2. This indicates the precision error for the oscillation frequency of the high-speed on-chip oscillator.

Table 4.15DC Characteristics (2) $[3.3 V \le Vcc \le 5.5 V]$
(Topr = -20°C to 85°C (N version)/-40°C to 85°C (D version), unless otherwise
specified)

							Conditions	i		Sta	andard	(4)	
Symbol	Parameter		Osci	llation	On-Chip	Oscillator		Low-Power-					Unit
,			XIN ⁽²⁾	XCIN	High- Speed	Low- Speed	CPU Clock	Consumption Setting	Other	Min.	Тур.	Max.	
lcc	Power	High-	20 MHz	Off	Off	125 kHz	No division	_		—	6.5	15	mA
	supply current (1)	speed clock	16 MHz	Off	Off	125 kHz	No division	_		—	5.3	12.5	mA
	current	mode	10 MHz	Off	Off	125 kHz	No division	_		-	3.6	—	mA
			20 MHz	Off	Off	125 kHz	Divide-by-8	_		-	3.0	—	mA
			16 MHz	Off	Off	125 kHz	Divide-by-8	_		-	2.2	—	mA
			10 MHz	Off	Off	125 kHz	Divide-by-8	_		-	1.5	—	mA
		High-	Off	Off	20 MHz ⁽³⁾	125 kHz	No division	_		—	7.0	15	mA
		speed on- chip	Off	Off	20 MHz ⁽³⁾	125 kHz	Divide-by-8	_		—	3.0	—	mA
		oscillator mode	Off	Off	4 MHz ⁽³⁾	125 kHz	Divide-by-16	MSTIIC = 1 MSTTRC = 1		-	1	-	mA
		Low- speed on- chip oscillator mode	Off	Off	Off	125 kHz	Divide-by-8	FMR27 = 1 SVC0 = 0		-	90	400	μA
	Low- speed clock mode	speed	Off	32 kHz	Off	Off	-	FMR27 = 1 SVC0 = 0		-	85	400	μA
			Off	32 kHz	Off	Off	-	FMSTP = 1 SVC0 = 0	Program operation on RAM Flash memory off	-	47	-	μA
		Wait mode	Off	Off	Off	125 kHz	-	VCA27 = 0 VCA26 = 0 VCA25 = 0 SVC0 = 1	While a WAIT instruction is executed Peripheral clock operation	-	15	100	μA
			Off	Off	Off	125 kHz	-	VCA27 = 0 VCA26 = 0 VCA25 = 0 SVC0 = 1	While a WAIT instruction is executed Peripheral clock off	-	4	90	μA
			Off	32 kHz	Off	Off	-	VCA27 = 0 VCA26 = 0 VCA25 = 0 SVC0 = 1	While a WAIT instruction is executed Peripheral clock off	-	3.5	—	μA
		Stop mode	Off	Off	Off	Off	-	VCA27 = 0 VCA26 = 0 VCA25 = 0 CM10 = 1	Topr = 25°C Peripheral clock off	-	2.2	6.0	μA
			Off	Off	Off	Off	-	VCA27 = 0 VCA26 = 0 VCA25 = 0 CM10 = 1	Topr = 85°C Peripheral clock off	_	30	—	μA

Notes:

1. Vcc = 3.3 V to 5.5 V, single-chip mode, output pins are open, and other pins are Vss.

2. XIN is set to square wave input.

3. fHOCO-F

4. The typical value (Typ.) indicates the current value when the CPU and the memory operate.

The maximum value (Max.) indicates the current value when the CPU, the memory, and the peripheral functions operate and the flash memory is programmed/erased.

Table 4.19DC Characteristics (6) [1.8 V \leq Vcc < 2.7 V]
(Topr = -20°C to 85°C (N version)/-40°C to 85°C (D version), unless otherwise
specified)

							Conditions			Sta	andarc	(4)	
Symbol	Parameter		Osci	llation	On-Chip	Oscillator		Low-Power-					Unit
-,			XIN (2)	XCIN	High- Speed	Low- Speed	CPU Clock	Consumption Setting	Other	Min.	Тур.	Max.	
lcc	Power	High-	5 MHz	Off	Off	125 kHz	No division	_		-	2.2	—	mA
	supply current ⁽¹⁾	speed clock mode	5 MHz	Off	Off	125 kHz	Divide-by-8	-		-	0.8	Ι	mA
		High-	Off	Off	5 MHz ⁽³⁾	125 kHz	No division	_		—	2.5	10	mA
		speed on- chip	Off	Off	5 MHz ⁽³⁾	125 kHz	Divide-by-8	—		—	1.7	-	mA
		oscillator mode	Off	Off	4 MHz ⁽³⁾	125 kHz	Divide-by-16	MSTIIC = 1 MSTTRC = 1		-	1	-	mA
		Low- speed on- chip oscillator mode	Off	Off	Off	125 kHz	Divide-by-8	FMR27 = 1 SVC0 = 0		-	90	300	μA
		Low- speed clock mode	Off	32 kHz	Off	Off	No division	FMR27 = 1 SVC0 = 0		-	80	350	μA
		Wait mode	Off	Off	Off	125 kHz	_	VCA27 = 0 VCA26 = 0 VCA25 = 0 SVC0 = 1	While a WAIT instruction is executed Peripheral clock operation	-	15	90	μA
			Off	Off	Off	125 kHz	-	VCA27 = 0 VCA26 = 0 VCA25 = 0 SVC0 = 1	While a WAIT instruction is executed Peripheral clock off	-	4	80	μA
			Off	32 kHz	Off	Off	_	VCA27 = 0 VCA26 = 0 VCA25 = 0 SVC0 = 1	While a WAIT instruction is executed Peripheral clock off	-	3.5	—	μA
		Stop mode	Off	Off	Off	Off	-	VCA27 = 0 VCA26 = 0 VCA25 = 0 CM10 = 1	Topr = 25°C Peripheral clock off	-	2.2	6	μA
			Off	Off	Off	Off	-	VCA27 = 0 VCA26 = 0 VCA25 = 0 CM10 = 1	Topr = 85°C Peripheral clock off	-	30	_	μA

Notes:

1. Vcc = 1.8 V to 2.7 V, single-chip mode, output pins are open, and other pins are Vss.

2. XIN is set to square wave input.

3. fHOCO-F

4. The typical value (Typ.) indicates the current value when the CPU and the memory operate.

The maximum value (Max.) indicates the current value when the CPU, the memory, and the peripheral functions operate and the flash memory is programmed/erased.

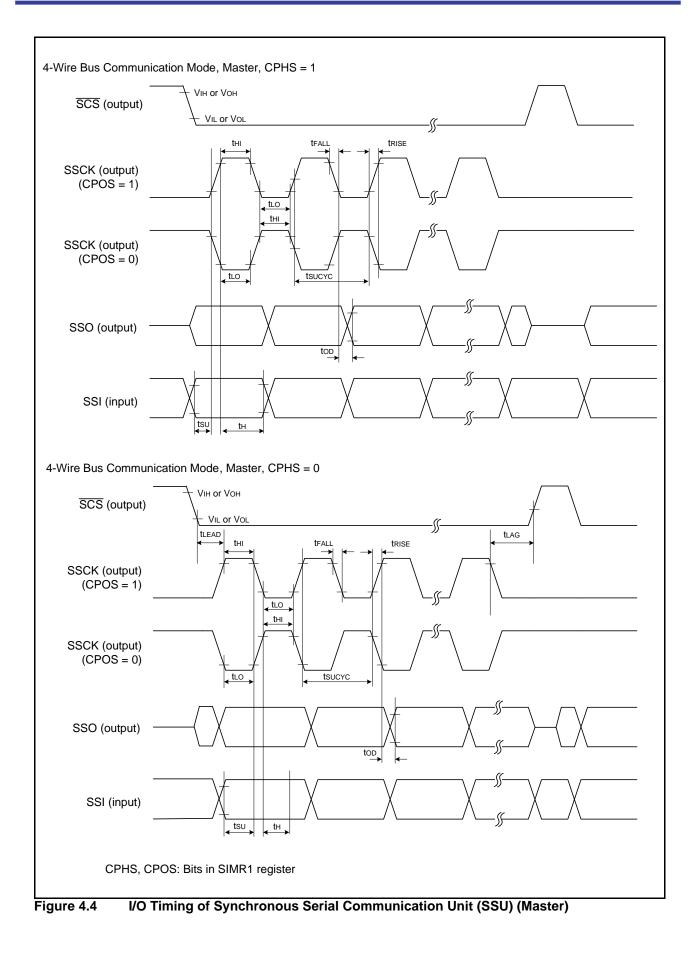
4.5 AC Characteristics

Table 4.20Timing Requirements of Clock Synchronous Serial I/O with Chip Select
(during Master Operation)
(Measurement conditions: Vcc = 1.8 V to 5.5 V, Topr = -20°C to 85°C (N version)/
-40°C to 85°C (D version))

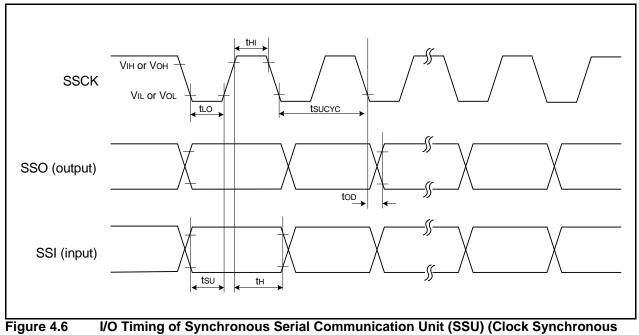
Symbol	Parameter	Conditions	Star	Idard		Unit
Symbol	Farameter	Conditions	Min.	Тур.	Max.	Unit
tsucyc	SSCK clock cycle time		4.00			tcyc (1)
tHI	SSCK clock high width		0.40	—	0.60	tsucyc
t∟o	SSCK clock low width		0.40		0.60	tsucyc
t RISE	SSCK clock rising time	$2.7~V \le Vcc \le 5.5~V$	—		0.50	tcyc (1)
		$1.8~V \leq Vcc < 2.7~V$	—		1.00	tCYC ⁽¹⁾
t FALL	SSCK clock falling time	$2.7~V \leq Vcc \leq 5.5~V$	—		0.50	tCYC ⁽¹⁾
		$1.8~V \leq Vcc < 2.7~V$	—	_	1.00	tCYC ⁽¹⁾
ts∪	SSI, SSO data input setup time	$4.5~V \leq Vcc \leq 5.5~V$	60	_	_	ns
		$2.7~V \leq Vcc < 4.5~V$	70		—	ns
		$1.8~V \leq Vcc < 2.7~V$	100		—	ns
tн	SSI, SSO data input hold time	$2.7~V \leq Vcc \leq 5.5~V$	2.00			tCYC ⁽¹⁾
		$1.8~V \leq Vcc < 2.7~V$	2.00	_	_	tCYC ⁽¹⁾
tlead	SCS-SCK output delay time		0.5 tsucyc - 1 tcyc		—	ns
tlag	SCK -SCS output valid time		0.5 tsucyc - 1 tcyc	—	—	ns
tod	SSO data output delay time	$2.7~V \leq Vcc \leq 5.5~V$	—	—	30.00	ns
		$1.8~V \leq Vcc < 2.7~V$	—	_	1.00	tCYC ⁽¹⁾

Note:

1. 1tcyc = 1/f1 (s)


Table 4.21Timing Requirements of Clock Synchronous Serial I/O with Chip Select
(during Slave Operation)
(Measurement conditions: Vcc = 1.8 V to 5.5 V, Topr = -20°C to 85°C (N version)/
-40°C to 85°C (D version))

Symbol	Parameter	Parameter Conditions Standard		ď	Unit		
Symbol	Faidifietei	Conditions	Min.	Тур.	Max.		
tsucyc	SSCK clock cycle time		4.00	—	—	tCYC ⁽¹⁾	
tHI	SSCK clock high width		0.40	_	0.60	tsucyc	
t∟o	SSCK clock low width		0.40	—	0.60	tsucyc	
t RISE	SSCK clock rising time		—	—	1.00	μs	
tFALL	SSCK clock falling time		—	—	1.00	μs	
tsu	SSO data input setup time		10.00	_	—	ns	
tн	SSO data input hold time		2.00	_	—	tCYC ⁽¹⁾	
t LEAD	SCS setup time		1tcyc + 50	_	—	ns	
tlag	SCS hold time		1tcyc + 50	_	_	ns	
tod	SSI, SSO data output delay time	$4.5~V \le Vcc \le 5.5~V$	—	_	60	ns	
		$2.7~V \leq Vcc < 4.5~V$	—	—	70	ns	
		$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	—	_	100.00	ns	
tSA	SSI slave access time	$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	—	—	1.5tcyc + 100	ns	
		$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	—	—	1.5tcyc + 200	ns	
tor	SSI slave out open time	$2.7~V \leq Vcc \leq 5.5~V$	—	_	1.5tcyc + 100	ns	
		$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$	—	—	1.5tcyc + 200	ns	


Note:

1. 1tcyc = 1/f1 (s)

Communication Mode)

		Standard						
Symbol	Parameter	Vcc = 2.2 V, Topr = 25°C		Vcc = 3 V, Topr = 25°C		Vcc = 5 V, Topr = 25°C		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
tc(XOUT)	XOUT input cycle time	200	_	50	_	50	—	ns
twh(xout)	XOUT input high width	90	—	24	_	24	_	ns
twl(xout)	XOUT input low width	90	—	24	—	24	—	ns
tc(XCIN)	XCIN input cycle time	14	_	14	—	14	—	μs
twh(xcin)	XCIN input high width	7	—	7	—	7	—	μs
twl(xcin)	XCIN input low width	7	—	7	_	7	_	μs

Table 4.22 External Clock Input (XOUT, XCIN)

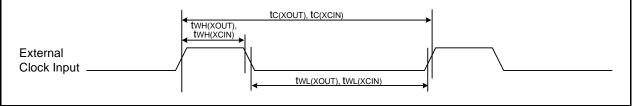


Figure 4.7 External Clock Input Timing Diagram

Table 4.23 Timing Requirements of TRJIO

		Standard						
Symbol	Parameter	Vcc = 2.2 V, Topr = 25°C		Vcc = 3 V, Topr = 25°C		Vcc = 5 V, Topr = 25°C		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
tc(TRJIO)	TRJIO input cycle time	500	—	300	—	100	—	ns
twh(trjio)	TRJIO input high width	200	—	120	—	40	—	ns
twl(trjio)	TRJIO input low width	200	—	120	—	40	—	ns

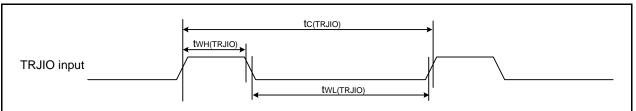


Figure 4.8 Input Timing of TRJIO

Table 4.24	Timing Requirements of Serial Interface
	(Internal clock selected as transfer clock (master communication))

		Standard						
Symbol	Parameter	Vcc = 2.2 V, Topr = 25°C		Vcc = 3 V, Topr = 25°C		Vcc = 5 V, Topr = 25°C		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
td(C-Q)	TXDi output delay time	—	200	—	30	—	10	ns
tsu(D-C)	RXDi input setup time (1)	150	—	120	_	90	—	ns
th(C-D)	RXDi input hold time	90	_	90		90	—	ns

i = 0 or 1 Note:

1. External pin load condition CL = 30 pF

Table 4.25Timing Requirements of Serial Interface
(External clock selected as transfer clock (slave communication))

Symbol	Parameter	Vcc = 2.2 V,	Vcc = 2.2 V, Topr = 25°C		Vcc = 3 V, Topr = 25°C		Vcc = 5 V, Topr = 25°C	
		Min.	Max.	Min.	Max.	Min.	Max.	
tc(CK)	CLKi input cycle time	800	—	300	—	200	—	ns
tw(CKH)	CLKi input high width	400	—	150	—	100	—	ns
tW(CKL)	CLKi input low width	400	—	150	—	100	—	ns
td(C-Q)	TXDi output delay time	—	200	—	120	—	90	ns
tsu(D-C)	RXDi input setup time	150	—	30	—	10	—	ns
th(C-D)	RXDi input hold time	90	_	90	—	90	—	ns
. 0 1								

i = 0 or 1

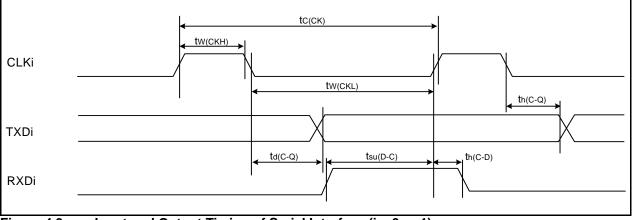


Figure 4.9 Input and Output Timing of Serial Interface (i = 0 or 1)

REVISION HISTORY

R8C/38T-A Group User's Manual: Datasheet

Rev.	Date		Description
Nev.	Dale	Page	Summary
0.01	Feb 23, 2011	—	First Edition issued
1.00	Dec 09, 2011	All pages	"Preliminary", "Under development" deleted, "sensor control unit" \rightarrow "touch sensor control unit"
		2, 3	Tables 1.1 and 1.2 revised
		6	Figure 1.3 revised
		16	2.1 revised
		19, 20, 22 to 25, 27 to31	Tables 3.1, 3.2, 3.4 to 3.7, 3.9 to 3.13
		35	Table 3.17 revised, Note 2 added
		36 to 59	"4. Electrical Characteristics" added

All trademarks and registered trademarks are the property of their respective owners.

Notice

- All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renease Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renease Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or tor which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product for any application categorized as "Specific" or tor which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is expressly specified in a Renesas Electronics data sheets or data books, etc.
- "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools
- personal electronic equipment; and industrial robots. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
- "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and mafunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and mafunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-4000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 1011 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220 Renesas Electronics Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics Corpo GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +44-1628-585-900 Renesas Electronics (Shanghai) Co., Ltd. 7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +480-12452-1557, Talis, Fax: +480-2485-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 204, 205, A221 A Center, No.1223 Lujiazul Ring Rd., Pudong District, Shanghai 200120, China Tel: +480-12435-1155, Fax: +480-2485-77890 Renesas Electronics Hong Kong Limited Unit 1001-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +480-2487-1558, Fax: +480-2485-7870 Renesas Electronics Taiwan Co., Ltd. 154, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +480-2-4175-9800, Fax: +480-24175-9870 Renesas Electronics Taiwan Co., Ltd. 154, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +480-2-4175-9900, Fax: +480-24175-9870 Renesas Electronics Malaysia Sdn.Bhd. Unit 1906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jin Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +605-3755-9300, Fax: +480-2495-9510 Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bildy, 720-2 Veoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +60-5-7375, Fax: +40-2-555-9510